/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ratelimit.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/limits.h>
#include <sys/module.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/refcount.h>
#include <sys/rmlock.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet6/scope6_var.h>
#define TCPSTATES
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/toecore.h>
#ifdef TCP_OFFLOAD
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_tcb.h"
#include "t4_clip.h"
#include "tom/t4_tom_l2t.h"
#include "tom/t4_tom.h"
#include "tom/t4_tls.h"
static struct protosw toe_protosw;
static struct pr_usrreqs toe_usrreqs;
static struct protosw toe6_protosw;
static struct pr_usrreqs toe6_usrreqs;
/* Module ops */
static int t4_tom_mod_load(void);
static int t4_tom_mod_unload(void);
static int t4_tom_modevent(module_t, int, void *);
/* ULD ops and helpers */
static int t4_tom_activate(struct adapter *);
static int t4_tom_deactivate(struct adapter *);
static struct uld_info tom_uld_info = {
.uld_id = ULD_TOM,
.activate = t4_tom_activate,
.deactivate = t4_tom_deactivate,
};
static void release_offload_resources(struct toepcb *);
static int alloc_tid_tabs(struct tid_info *);
static void free_tid_tabs(struct tid_info *);
static void free_tom_data(struct adapter *, struct tom_data *);
static void reclaim_wr_resources(void *, int);
struct toepcb *
alloc_toepcb(struct vi_info *vi, int txqid, int rxqid, int flags)
{
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct toepcb *toep;
int tx_credits, txsd_total, len;
/*
* The firmware counts tx work request credits in units of 16 bytes
* each. Reserve room for an ABORT_REQ so the driver never has to worry
* about tx credits if it wants to abort a connection.
*/
tx_credits = sc->params.ofldq_wr_cred;
tx_credits -= howmany(sizeof(struct cpl_abort_req), 16);
/*
* Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte
* immediate payload, and firmware counts tx work request credits in
* units of 16 byte. Calculate the maximum work requests possible.
*/
txsd_total = tx_credits /
howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16);
KASSERT(txqid >= vi->first_ofld_txq &&
txqid < vi->first_ofld_txq + vi->nofldtxq,
("%s: txqid %d for vi %p (first %d, n %d)", __func__, txqid, vi,
vi->first_ofld_txq, vi->nofldtxq));
KASSERT(rxqid >= vi->first_ofld_rxq &&
rxqid < vi->first_ofld_rxq + vi->nofldrxq,
("%s: rxqid %d for vi %p (first %d, n %d)", __func__, rxqid, vi,
vi->first_ofld_rxq, vi->nofldrxq));
len = offsetof(struct toepcb, txsd) +
txsd_total * sizeof(struct ofld_tx_sdesc);
toep = malloc(len, M_CXGBE, M_ZERO | flags);
if (toep == NULL)
return (NULL);
refcount_init(&toep->refcount, 1);
toep->td = sc->tom_softc;
toep->vi = vi;
toep->tc_idx = -1;
toep->tx_total = tx_credits;
toep->tx_credits = tx_credits;
toep->ofld_txq = &sc->sge.ofld_txq[txqid];
toep->ofld_rxq = &sc->sge.ofld_rxq[rxqid];
toep->ctrlq = &sc->sge.ctrlq[pi->port_id];
mbufq_init(&toep->ulp_pduq, INT_MAX);
mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX);
toep->txsd_total = txsd_total;
toep->txsd_avail = txsd_total;
toep->txsd_pidx = 0;
toep->txsd_cidx = 0;
aiotx_init_toep(toep);
return (toep);
}
struct toepcb *
hold_toepcb(struct toepcb *toep)
{
refcount_acquire(&toep->refcount);
return (toep);
}
void
free_toepcb(struct toepcb *toep)
{
if (refcount_release(&toep->refcount) == 0)
return;
KASSERT(!(toep->flags & TPF_ATTACHED),
("%s: attached to an inpcb", __func__));
KASSERT(!(toep->flags & TPF_CPL_PENDING),
("%s: CPL pending", __func__));
if (toep->ulp_mode == ULP_MODE_TCPDDP)
ddp_uninit_toep(toep);
tls_uninit_toep(toep);
free(toep, M_CXGBE);
}
/*
* Set up the socket for TCP offload.
*/
void
offload_socket(struct socket *so, struct toepcb *toep)
{
struct tom_data *td = toep->td;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = intotcpcb(inp);
struct sockbuf *sb;
INP_WLOCK_ASSERT(inp);
/* Update socket */
sb = &so->so_snd;
SOCKBUF_LOCK(sb);
sb->sb_flags |= SB_NOCOALESCE;
SOCKBUF_UNLOCK(sb);
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
sb->sb_flags |= SB_NOCOALESCE;
if (inp->inp_vflag & INP_IPV6)
so->so_proto = &toe6_protosw;
else
so->so_proto = &toe_protosw;
SOCKBUF_UNLOCK(sb);
/* Update TCP PCB */
tp->tod = &td->tod;
tp->t_toe = toep;
tp->t_flags |= TF_TOE;
/* Install an extra hold on inp */
toep->inp = inp;
toep->flags |= TPF_ATTACHED;
in_pcbref(inp);
/* Add the TOE PCB to the active list */
mtx_lock(&td->toep_list_lock);
TAILQ_INSERT_HEAD(&td->toep_list, toep, link);
mtx_unlock(&td->toep_list_lock);
}
/* This is _not_ the normal way to "unoffload" a socket. */
void
undo_offload_socket(struct socket *so)
{
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = intotcpcb(inp);
struct toepcb *toep = tp->t_toe;
struct tom_data *td = toep->td;
struct sockbuf *sb;
INP_WLOCK_ASSERT(inp);
sb = &so->so_snd;
SOCKBUF_LOCK(sb);
sb->sb_flags &= ~SB_NOCOALESCE;
SOCKBUF_UNLOCK(sb);
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
sb->sb_flags &= ~SB_NOCOALESCE;
SOCKBUF_UNLOCK(sb);
tp->tod = NULL;
tp->t_toe = NULL;
tp->t_flags &= ~TF_TOE;
toep->inp = NULL;
toep->flags &= ~TPF_ATTACHED;
if (in_pcbrele_wlocked(inp))
panic("%s: inp freed.", __func__);
mtx_lock(&td->toep_list_lock);
TAILQ_REMOVE(&td->toep_list, toep, link);
mtx_unlock(&td->toep_list_lock);
}
static void
release_offload_resources(struct toepcb *toep)
{
struct tom_data *td = toep->td;
struct adapter *sc = td_adapter(td);
int tid = toep->tid;
KASSERT(!(toep->flags & TPF_CPL_PENDING),
("%s: %p has CPL pending.", __func__, toep));
KASSERT(!(toep->flags & TPF_ATTACHED),
("%s: %p is still attached.", __func__, toep));
CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)",
__func__, toep, tid, toep->l2te, toep->ce);
/*
* These queues should have been emptied at approximately the same time
* that a normal connection's socket's so_snd would have been purged or
* drained. Do _not_ clean up here.
*/
MPASS(mbufq_len(&toep->ulp_pduq) == 0);
MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0);
#ifdef INVARIANTS
if (toep->ulp_mode == ULP_MODE_TCPDDP)
ddp_assert_empty(toep);
#endif
if (toep->l2te)
t4_l2t_release(toep->l2te);
if (tid >= 0) {
remove_tid(sc, tid, toep->ce ? 2 : 1);
release_tid(sc, tid, toep->ctrlq);
}
if (toep->ce)
t4_release_lip(sc, toep->ce);
if (toep->tc_idx != -1)
t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->tc_idx);
mtx_lock(&td->toep_list_lock);
TAILQ_REMOVE(&td->toep_list, toep, link);
mtx_unlock(&td->toep_list_lock);
free_toepcb(toep);
}
/*
* The kernel is done with the TCP PCB and this is our opportunity to unhook the
* toepcb hanging off of it. If the TOE driver is also done with the toepcb (no
* pending CPL) then it is time to release all resources tied to the toepcb.
*
* Also gets called when an offloaded active open fails and the TOM wants the
* kernel to take the TCP PCB back.
*/
static void
t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp)
{
#if defined(KTR) || defined(INVARIANTS)
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
KASSERT(toep->flags & TPF_ATTACHED,
("%s: not attached", __func__));
#ifdef KTR
if (tp->t_state == TCPS_SYN_SENT) {
CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)",
__func__, toep->tid, toep, toep->flags, inp,
inp->inp_flags);
} else {
CTR6(KTR_CXGBE,
"t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)",
toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp,
inp->inp_flags);
}
#endif
tp->t_toe = NULL;
tp->t_flags &= ~TF_TOE;
toep->flags &= ~TPF_ATTACHED;
if (!(toep->flags & TPF_CPL_PENDING))
release_offload_resources(toep);
}
/*
* setsockopt handler.
*/
static void
t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name)
{
struct adapter *sc = tod->tod_softc;
struct toepcb *toep = tp->t_toe;
if (dir == SOPT_GET)
return;
CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name);
switch (name) {
case TCP_NODELAY:
if (tp->t_state != TCPS_ESTABLISHED)
break;
t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
V_TF_NAGLE(1), V_TF_NAGLE(tp->t_flags & TF_NODELAY ? 0 : 1),
0, 0);
break;
default:
break;
}
}
static inline uint64_t
get_tcb_tflags(const uint64_t *tcb)
{
return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32));
}
static inline uint32_t
get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift)
{
#define LAST_WORD ((TCB_SIZE / 4) - 1)
uint64_t t1, t2;
int flit_idx;
MPASS(mask != 0);
MPASS(word <= LAST_WORD);
MPASS(shift < 32);
flit_idx = (LAST_WORD - word) / 2;
if (word & 0x1)
shift += 32;
t1 = be64toh(tcb[flit_idx]) >> shift;
t2 = 0;
if (fls(mask) > 64 - shift) {
/*
* Will spill over into the next logical flit, which is the flit
* before this one. The flit_idx before this one must be valid.
*/
MPASS(flit_idx > 0);
t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift);
}
return ((t2 | t1) & mask);
#undef LAST_WORD
}
#define GET_TCB_FIELD(tcb, F) \
get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F)
/*
* Issues a CPL_GET_TCB to read the entire TCB for the tid.
*/
static int
send_get_tcb(struct adapter *sc, u_int tid)
{
struct cpl_get_tcb *cpl;
struct wrq_cookie cookie;
MPASS(tid < sc->tids.ntids);
cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16),
&cookie);
if (__predict_false(cpl == NULL))
return (ENOMEM);
bzero(cpl, sizeof(*cpl));
INIT_TP_WR(cpl, tid);
OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid));
cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) |
V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id));
cpl->cookie = 0xff;
commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie);
return (0);
}
static struct tcb_histent *
alloc_tcb_histent(struct adapter *sc, u_int tid, int flags)
{
struct tcb_histent *te;
MPASS(flags == M_NOWAIT || flags == M_WAITOK);
te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags);
if (te == NULL)
return (NULL);
mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF);
callout_init_mtx(&te->te_callout, &te->te_lock, 0);
te->te_adapter = sc;
te->te_tid = tid;
return (te);
}
static void
free_tcb_histent(struct tcb_histent *te)
{
mtx_destroy(&te->te_lock);
free(te, M_CXGBE);
}
/*
* Start tracking the tid in the TCB history.
*/
int
add_tid_to_history(struct adapter *sc, u_int tid)
{
struct tcb_histent *te = NULL;
struct tom_data *td = sc->tom_softc;
int rc;
MPASS(tid < sc->tids.ntids);
if (td->tcb_history == NULL)
return (ENXIO);
rw_wlock(&td->tcb_history_lock);
if (td->tcb_history[tid] != NULL) {
rc = EEXIST;
goto done;
}
te = alloc_tcb_histent(sc, tid, M_NOWAIT);
if (te == NULL) {
rc = ENOMEM;
goto done;
}
mtx_lock(&te->te_lock);
rc = send_get_tcb(sc, tid);
if (rc == 0) {
te->te_flags |= TE_RPL_PENDING;
td->tcb_history[tid] = te;
} else {
free(te, M_CXGBE);
}
mtx_unlock(&te->te_lock);
done:
rw_wunlock(&td->tcb_history_lock);
return (rc);
}
static void
remove_tcb_histent(struct tcb_histent *te)
{
struct adapter *sc = te->te_adapter;
struct tom_data *td = sc->tom_softc;
rw_assert(&td->tcb_history_lock, RA_WLOCKED);
mtx_assert(&te->te_lock, MA_OWNED);
MPASS(td->tcb_history[te->te_tid] == te);
td->tcb_history[te->te_tid] = NULL;
free_tcb_histent(te);
rw_wunlock(&td->tcb_history_lock);
}
static inline struct tcb_histent *
lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem)
{
struct tcb_histent *te;
struct tom_data *td = sc->tom_softc;
MPASS(tid < sc->tids.ntids);
if (addrem)
rw_wlock(&td->tcb_history_lock);
else
rw_rlock(&td->tcb_history_lock);
te = td->tcb_history[tid];
if (te != NULL) {
mtx_lock(&te->te_lock);
return (te); /* with both locks held */
}
if (addrem)
rw_wunlock(&td->tcb_history_lock);
else
rw_runlock(&td->tcb_history_lock);
return (te);
}
static inline void
release_tcb_histent(struct tcb_histent *te)
{
struct adapter *sc = te->te_adapter;
struct tom_data *td = sc->tom_softc;
mtx_assert(&te->te_lock, MA_OWNED);
mtx_unlock(&te->te_lock);
rw_assert(&td->tcb_history_lock, RA_RLOCKED);
rw_runlock(&td->tcb_history_lock);
}
static void
request_tcb(void *arg)
{
struct tcb_histent *te = arg;
mtx_assert(&te->te_lock, MA_OWNED);
/* Noone else is supposed to update the histent. */
MPASS(!(te->te_flags & TE_RPL_PENDING));
if (send_get_tcb(te->te_adapter, te->te_tid) == 0)
te->te_flags |= TE_RPL_PENDING;
else
callout_schedule(&te->te_callout, hz / 100);
}
static void
update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb)
{
struct tom_data *td = te->te_adapter->tom_softc;
uint64_t tflags = get_tcb_tflags(tcb);
uint8_t sample = 0;
if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) {
if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0)
sample |= TS_RTO;
if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0)
sample |= TS_DUPACKS;
if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold)
sample |= TS_FASTREXMT;
}
if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) {
uint32_t snd_wnd;
sample |= TS_SND_BACKLOGGED; /* for whatever reason. */
snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
if (tflags & V_TF_RECV_SCALE(1))
snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE);
if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd)
sample |= TS_CWND_LIMITED; /* maybe due to CWND */
}
if (tflags & V_TF_CCTRL_ECN(1)) {
/*
* CE marker on incoming IP hdr, echoing ECE back in the TCP
* hdr. Indicates congestion somewhere on the way from the peer
* to this node.
*/
if (tflags & V_TF_CCTRL_ECE(1))
sample |= TS_ECN_ECE;
/*
* ECE seen and CWR sent (or about to be sent). Might indicate
* congestion on the way to the peer. This node is reducing its
* congestion window in response.
*/
if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1)))
sample |= TS_ECN_CWR;
}
te->te_sample[te->te_pidx] = sample;
if (++te->te_pidx == nitems(te->te_sample))
te->te_pidx = 0;
memcpy(te->te_tcb, tcb, TCB_SIZE);
te->te_flags |= TE_ACTIVE;
}
static int
do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *);
const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1);
struct tcb_histent *te;
const u_int tid = GET_TID(cpl);
bool remove;
remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED;
te = lookup_tcb_histent(sc, tid, remove);
if (te == NULL) {
/* Not in the history. Who issued the GET_TCB for this? */
device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, "
"srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid,
(uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE),
GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE),
GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie);
goto done;
}
MPASS(te->te_flags & TE_RPL_PENDING);
te->te_flags &= ~TE_RPL_PENDING;
if (remove) {
remove_tcb_histent(te);
} else {
update_tcb_histent(te, tcb);
callout_reset(&te->te_callout, hz / 10, request_tcb, te);
release_tcb_histent(te);
}
done:
m_freem(m);
return (0);
}
static void
fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti)
{
uint32_t v;
ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE);
v = GET_TCB_FIELD(tcb, T_SRTT);
ti->tcpi_rtt = tcp_ticks_to_us(sc, v);
v = GET_TCB_FIELD(tcb, T_RTTVAR);
ti->tcpi_rttvar = tcp_ticks_to_us(sc, v);
ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH);
ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND);
ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT);
v = GET_TCB_FIELD(tcb, TX_MAX);
ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW);
/* Receive window being advertised by us. */
ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */
ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND);
/* Send window */
ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */
ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1))
ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale;
else
ti->tcpi_snd_wscale = 0;
}
static void
fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te,
struct tcp_info *ti)
{
fill_tcp_info_from_tcb(sc, te->te_tcb, ti);
}
/*
* Reads the TCB for the given tid using a memory window and copies it to 'buf'
* in the same format as CPL_GET_TCB_RPL.
*/
static void
read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf)
{
int i, j, k, rc;
uint32_t addr;
u_char *tcb, tmp;
MPASS(tid < sc->tids.ntids);
addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE;
rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE);
if (rc != 0)
return;
tcb = (u_char *)buf;
for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) {
for (k = 0; k < 16; k++) {
tmp = tcb[i + k];
tcb[i + k] = tcb[j + k];
tcb[j + k] = tmp;
}
}
}
static void
fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti)
{
uint64_t tcb[TCB_SIZE / sizeof(uint64_t)];
struct tcb_histent *te;
ti->tcpi_toe_tid = tid;
te = lookup_tcb_histent(sc, tid, false);
if (te != NULL) {
fill_tcp_info_from_history(sc, te, ti);
release_tcb_histent(te);
} else {
if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) {
/* XXX: tell firmware to flush TCB cache. */
}
read_tcb_using_memwin(sc, tid, tcb);
fill_tcp_info_from_tcb(sc, tcb, ti);
}
}
/*
* Called by the kernel to allow the TOE driver to "refine" values filled up in
* the tcp_info for an offloaded connection.
*/
static void
t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti)
{
struct adapter *sc = tod->tod_softc;
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(tp->t_inpcb);
MPASS(ti != NULL);
fill_tcp_info(sc, toep->tid, ti);
}
/*
* The TOE driver will not receive any more CPLs for the tid associated with the
* toepcb; release the hold on the inpcb.
*/
void
final_cpl_received(struct toepcb *toep)
{
struct inpcb *inp = toep->inp;
KASSERT(inp != NULL, ("%s: inp is NULL", __func__));
INP_WLOCK_ASSERT(inp);
KASSERT(toep->flags & TPF_CPL_PENDING,
("%s: CPL not pending already?", __func__));
CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)",
__func__, toep->tid, toep, toep->flags, inp, inp->inp_flags);
if (toep->ulp_mode == ULP_MODE_TCPDDP)
release_ddp_resources(toep);
toep->inp = NULL;
toep->flags &= ~TPF_CPL_PENDING;
mbufq_drain(&toep->ulp_pdu_reclaimq);
if (!(toep->flags & TPF_ATTACHED))
release_offload_resources(toep);
if (!in_pcbrele_wlocked(inp))
INP_WUNLOCK(inp);
}
void
insert_tid(struct adapter *sc, int tid, void *ctx, int ntids)
{
struct tid_info *t = &sc->tids;
MPASS(tid >= t->tid_base);
MPASS(tid - t->tid_base < t->ntids);
t->tid_tab[tid - t->tid_base] = ctx;
atomic_add_int(&t->tids_in_use, ntids);
}
void *
lookup_tid(struct adapter *sc, int tid)
{
struct tid_info *t = &sc->tids;
return (t->tid_tab[tid - t->tid_base]);
}
void
update_tid(struct adapter *sc, int tid, void *ctx)
{
struct tid_info *t = &sc->tids;
t->tid_tab[tid - t->tid_base] = ctx;
}
void
remove_tid(struct adapter *sc, int tid, int ntids)
{
struct tid_info *t = &sc->tids;
t->tid_tab[tid - t->tid_base] = NULL;
atomic_subtract_int(&t->tids_in_use, ntids);
}
/*
* What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt
* have the MSS that we should advertise in our SYN. Advertised MSS doesn't
* account for any TCP options so the effective MSS (only payload, no headers or
* options) could be different. We fill up tp->t_maxseg with the effective MSS
* at the end of the 3-way handshake.
*/
int
find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc,
struct offload_settings *s)
{
unsigned short *mtus = &sc->params.mtus[0];
int i, mss, mtu;
MPASS(inc != NULL);
mss = s->mss > 0 ? s->mss : tcp_mssopt(inc);
if (inc->inc_flags & INC_ISIPV6)
mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
else
mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr);
for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++)
continue;
return (i);
}
/*
* Determine the receive window size for a socket.
*/
u_long
select_rcv_wnd(struct socket *so)
{
unsigned long wnd;
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
wnd = sbspace(&so->so_rcv);
if (wnd < MIN_RCV_WND)
wnd = MIN_RCV_WND;
return min(wnd, MAX_RCV_WND);
}
int
select_rcv_wscale(void)
{
int wscale = 0;
unsigned long space = sb_max;
if (space > MAX_RCV_WND)
space = MAX_RCV_WND;
while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space)
wscale++;
return (wscale);
}
/*
* socket so could be a listening socket too.
*/
uint64_t
calc_opt0(struct socket *so, struct vi_info *vi, struct l2t_entry *e,
int mtu_idx, int rscale, int rx_credits, int ulp_mode,
struct offload_settings *s)
{
int keepalive;
uint64_t opt0;
MPASS(so != NULL);
MPASS(vi != NULL);
KASSERT(rx_credits <= M_RCV_BUFSIZ,
("%s: rcv_bufsiz too high", __func__));
opt0 = F_TCAM_BYPASS | V_WND_SCALE(rscale) | V_MSS_IDX(mtu_idx) |
V_ULP_MODE(ulp_mode) | V_RCV_BUFSIZ(rx_credits) |
V_L2T_IDX(e->idx) | V_SMAC_SEL(vi->smt_idx) |
V_TX_CHAN(vi->pi->tx_chan);
keepalive = tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE;
opt0 |= V_KEEP_ALIVE(keepalive != 0);
if (s->nagle < 0) {
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp = intotcpcb(inp);
opt0 |= V_NAGLE((tp->t_flags & TF_NODELAY) == 0);
} else
opt0 |= V_NAGLE(s->nagle != 0);
return htobe64(opt0);
}
uint64_t
select_ntuple(struct vi_info *vi, struct l2t_entry *e)
{
struct adapter *sc = vi->pi->adapter;
struct tp_params *tp = &sc->params.tp;
uint64_t ntuple = 0;
/*
* Initialize each of the fields which we care about which are present
* in the Compressed Filter Tuple.
*/
if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE)
ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift;
if (tp->port_shift >= 0)
ntuple |= (uint64_t)e->lport << tp->port_shift;
if (tp->protocol_shift >= 0)
ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift;
if (tp->vnic_shift >= 0 && tp->ingress_config & F_VNIC) {
ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) |
V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) <<
tp->vnic_shift;
}
if (is_t4(sc))
return (htobe32((uint32_t)ntuple));
else
return (htobe64(V_FILTER_TUPLE(ntuple)));
}
static int
is_tls_sock(struct socket *so, struct adapter *sc)
{
struct inpcb *inp = sotoinpcb(so);
int i, rc;
/* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */
rc = 0;
ADAPTER_LOCK(sc);
for (i = 0; i < sc->tt.num_tls_rx_ports; i++) {
if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) ||
inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) {
rc = 1;
break;
}
}
ADAPTER_UNLOCK(sc);
return (rc);
}
int
select_ulp_mode(struct socket *so, struct adapter *sc,
struct offload_settings *s)
{
if (can_tls_offload(sc) &&
(s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc))))
return (ULP_MODE_TLS);
else if (s->ddp > 0 ||
(s->ddp < 0 && sc->tt.ddp && (so->so_options & SO_NO_DDP) == 0))
return (ULP_MODE_TCPDDP);
else
return (ULP_MODE_NONE);
}
void
set_ulp_mode(struct toepcb *toep, int ulp_mode)
{
CTR4(KTR_CXGBE, "%s: toep %p (tid %d) ulp_mode %d",
__func__, toep, toep->tid, ulp_mode);
toep->ulp_mode = ulp_mode;
tls_init_toep(toep);
if (toep->ulp_mode == ULP_MODE_TCPDDP)
ddp_init_toep(toep);
}
int
negative_advice(int status)
{
return (status == CPL_ERR_RTX_NEG_ADVICE ||
status == CPL_ERR_PERSIST_NEG_ADVICE ||
status == CPL_ERR_KEEPALV_NEG_ADVICE);
}
static int
alloc_tid_tab(struct tid_info *t, int flags)
{
MPASS(t->ntids > 0);
MPASS(t->tid_tab == NULL);
t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE,
M_ZERO | flags);
if (t->tid_tab == NULL)
return (ENOMEM);
atomic_store_rel_int(&t->tids_in_use, 0);
return (0);
}
static void
free_tid_tab(struct tid_info *t)
{
KASSERT(t->tids_in_use == 0,
("%s: %d tids still in use.", __func__, t->tids_in_use));
free(t->tid_tab, M_CXGBE);
t->tid_tab = NULL;
}
static int
alloc_stid_tab(struct tid_info *t, int flags)
{
MPASS(t->nstids > 0);
MPASS(t->stid_tab == NULL);
t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE,
M_ZERO | flags);
if (t->stid_tab == NULL)
return (ENOMEM);
mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF);
t->stids_in_use = 0;
TAILQ_INIT(&t->stids);
t->nstids_free_head = t->nstids;
return (0);
}
static void
free_stid_tab(struct tid_info *t)
{
KASSERT(t->stids_in_use == 0,
("%s: %d tids still in use.", __func__, t->stids_in_use));
if (mtx_initialized(&t->stid_lock))
mtx_destroy(&t->stid_lock);
free(t->stid_tab, M_CXGBE);
t->stid_tab = NULL;
}
static void
free_tid_tabs(struct tid_info *t)
{
free_tid_tab(t);
free_atid_tab(t);
free_stid_tab(t);
}
static int
alloc_tid_tabs(struct tid_info *t)
{
int rc;
rc = alloc_tid_tab(t, M_NOWAIT);
if (rc != 0)
goto failed;
rc = alloc_atid_tab(t, M_NOWAIT);
if (rc != 0)
goto failed;
rc = alloc_stid_tab(t, M_NOWAIT);
if (rc != 0)
goto failed;
return (0);
failed:
free_tid_tabs(t);
return (rc);
}
static inline void
alloc_tcb_history(struct adapter *sc, struct tom_data *td)
{
if (sc->tids.ntids == 0 || sc->tids.ntids > 1024)
return;
rw_init(&td->tcb_history_lock, "TCB history");
td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history),
M_CXGBE, M_ZERO | M_NOWAIT);
td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0));
}
static inline void
free_tcb_history(struct adapter *sc, struct tom_data *td)
{
#ifdef INVARIANTS
int i;
if (td->tcb_history != NULL) {
for (i = 0; i < sc->tids.ntids; i++) {
MPASS(td->tcb_history[i] == NULL);
}
}
#endif
free(td->tcb_history, M_CXGBE);
if (rw_initialized(&td->tcb_history_lock))
rw_destroy(&td->tcb_history_lock);
}
static void
free_tom_data(struct adapter *sc, struct tom_data *td)
{
ASSERT_SYNCHRONIZED_OP(sc);
KASSERT(TAILQ_EMPTY(&td->toep_list),
("%s: TOE PCB list is not empty.", __func__));
KASSERT(td->lctx_count == 0,
("%s: lctx hash table is not empty.", __func__));
t4_free_ppod_region(&td->pr);
if (td->listen_mask != 0)
hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask);
if (mtx_initialized(&td->unsent_wr_lock))
mtx_destroy(&td->unsent_wr_lock);
if (mtx_initialized(&td->lctx_hash_lock))
mtx_destroy(&td->lctx_hash_lock);
if (mtx_initialized(&td->toep_list_lock))
mtx_destroy(&td->toep_list_lock);
free_tcb_history(sc, td);
free_tid_tabs(&sc->tids);
free(td, M_CXGBE);
}
static char *
prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen,
int *buflen)
{
char *pkt;
struct tcphdr *th;
int ipv6, len;
const int maxlen =
max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) +
max(sizeof(struct ip), sizeof(struct ip6_hdr)) +
sizeof(struct tcphdr);
MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN);
pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT);
if (pkt == NULL)
return (NULL);
ipv6 = inp->inp_vflag & INP_IPV6;
len = 0;
if (EVL_VLANOFTAG(vtag) == 0xfff) {
struct ether_header *eh = (void *)pkt;
if (ipv6)
eh->ether_type = htons(ETHERTYPE_IPV6);
else
eh->ether_type = htons(ETHERTYPE_IP);
len += sizeof(*eh);
} else {
struct ether_vlan_header *evh = (void *)pkt;
evh->evl_encap_proto = htons(ETHERTYPE_VLAN);
evh->evl_tag = htons(vtag);
if (ipv6)
evh->evl_proto = htons(ETHERTYPE_IPV6);
else
evh->evl_proto = htons(ETHERTYPE_IP);
len += sizeof(*evh);
}
if (ipv6) {
struct ip6_hdr *ip6 = (void *)&pkt[len];
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_plen = htons(sizeof(struct tcphdr));
ip6->ip6_nxt = IPPROTO_TCP;
if (open_type == OPEN_TYPE_ACTIVE) {
ip6->ip6_src = inp->in6p_laddr;
ip6->ip6_dst = inp->in6p_faddr;
} else if (open_type == OPEN_TYPE_LISTEN) {
ip6->ip6_src = inp->in6p_laddr;
ip6->ip6_dst = ip6->ip6_src;
}
len += sizeof(*ip6);
} else {
struct ip *ip = (void *)&pkt[len];
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_tos = inp->inp_ip_tos;
ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
ip->ip_ttl = inp->inp_ip_ttl;
ip->ip_p = IPPROTO_TCP;
if (open_type == OPEN_TYPE_ACTIVE) {
ip->ip_src = inp->inp_laddr;
ip->ip_dst = inp->inp_faddr;
} else if (open_type == OPEN_TYPE_LISTEN) {
ip->ip_src = inp->inp_laddr;
ip->ip_dst = ip->ip_src;
}
len += sizeof(*ip);
}
th = (void *)&pkt[len];
if (open_type == OPEN_TYPE_ACTIVE) {
th->th_sport = inp->inp_lport; /* network byte order already */
th->th_dport = inp->inp_fport; /* ditto */
} else if (open_type == OPEN_TYPE_LISTEN) {
th->th_sport = inp->inp_lport; /* network byte order already */
th->th_dport = th->th_sport;
}
len += sizeof(th);
*pktlen = *buflen = len;
return (pkt);
}
const struct offload_settings *
lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m,
uint16_t vtag, struct inpcb *inp)
{
const struct t4_offload_policy *op;
char *pkt;
struct offload_rule *r;
int i, matched, pktlen, buflen;
static const struct offload_settings allow_offloading_settings = {
.offload = 1,
.rx_coalesce = -1,
.cong_algo = -1,
.sched_class = -1,
.tstamp = -1,
.sack = -1,
.nagle = -1,
.ecn = -1,
.ddp = -1,
.tls = -1,
.txq = -1,
.rxq = -1,
.mss = -1,
};
static const struct offload_settings disallow_offloading_settings = {
.offload = 0,
/* rest is irrelevant when offload is off. */
};
rw_assert(&sc->policy_lock, RA_LOCKED);
/*
* If there's no Connection Offloading Policy attached to the device
* then we need to return a default static policy. If
* "cop_managed_offloading" is true, then we need to disallow
* offloading until a COP is attached to the device. Otherwise we
* allow offloading ...
*/
op = sc->policy;
if (op == NULL) {
if (sc->tt.cop_managed_offloading)
return (&disallow_offloading_settings);
else
return (&allow_offloading_settings);
}
switch (open_type) {
case OPEN_TYPE_ACTIVE:
case OPEN_TYPE_LISTEN:
pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen);
break;
case OPEN_TYPE_PASSIVE:
MPASS(m != NULL);
pkt = mtod(m, char *);
MPASS(*pkt == CPL_PASS_ACCEPT_REQ);
pkt += sizeof(struct cpl_pass_accept_req);
pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req);
buflen = m->m_len - sizeof(struct cpl_pass_accept_req);
break;
default:
MPASS(0);
return (&disallow_offloading_settings);
}
if (pkt == NULL || pktlen == 0 || buflen == 0)
return (&disallow_offloading_settings);
matched = 0;
r = &op->rule[0];
for (i = 0; i < op->nrules; i++, r++) {
if (r->open_type != open_type &&
r->open_type != OPEN_TYPE_DONTCARE) {
continue;
}
matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen);
if (matched)
break;
}
if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN)
free(pkt, M_CXGBE);
return (matched ? &r->settings : &disallow_offloading_settings);
}
static void
reclaim_wr_resources(void *arg, int count)
{
struct tom_data *td = arg;
STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list);
struct cpl_act_open_req *cpl;
u_int opcode, atid, tid;
struct wrqe *wr;
struct adapter *sc = td_adapter(td);
mtx_lock(&td->unsent_wr_lock);
STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe);
mtx_unlock(&td->unsent_wr_lock);
while ((wr = STAILQ_FIRST(&twr_list)) != NULL) {
STAILQ_REMOVE_HEAD(&twr_list, link);
cpl = wrtod(wr);
opcode = GET_OPCODE(cpl);
switch (opcode) {
case CPL_ACT_OPEN_REQ:
case CPL_ACT_OPEN_REQ6:
atid = G_TID_TID(be32toh(OPCODE_TID(cpl)));
CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid);
act_open_failure_cleanup(sc, atid, EHOSTUNREACH);
free(wr, M_CXGBE);
break;
case CPL_PASS_ACCEPT_RPL:
tid = GET_TID(cpl);
CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid);
synack_failure_cleanup(sc, tid);
free(wr, M_CXGBE);
break;
default:
log(LOG_ERR, "%s: leaked work request %p, wr_len %d, "
"opcode %x\n", __func__, wr, wr->wr_len, opcode);
/* WR not freed here; go look at it with a debugger. */
}
}
}
/*
* Ground control to Major TOM
* Commencing countdown, engines on
*/
static int
t4_tom_activate(struct adapter *sc)
{
struct tom_data *td;
struct toedev *tod;
struct vi_info *vi;
int i, rc, v;
ASSERT_SYNCHRONIZED_OP(sc);
/* per-adapter softc for TOM */
td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT);
if (td == NULL)
return (ENOMEM);
/* List of TOE PCBs and associated lock */
mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF);
TAILQ_INIT(&td->toep_list);
/* Listen context */
mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF);
td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE,
&td->listen_mask, HASH_NOWAIT);
/* List of WRs for which L2 resolution failed */
mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF);
STAILQ_INIT(&td->unsent_wr_list);
TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td);
/* TID tables */
rc = alloc_tid_tabs(&sc->tids);
if (rc != 0)
goto done;
rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp,
t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods");
if (rc != 0)
goto done;
t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK,
V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask);
alloc_tcb_history(sc, td);
/* toedev ops */
tod = &td->tod;
init_toedev(tod);
tod->tod_softc = sc;
tod->tod_connect = t4_connect;
tod->tod_listen_start = t4_listen_start;
tod->tod_listen_stop = t4_listen_stop;
tod->tod_rcvd = t4_rcvd;
tod->tod_output = t4_tod_output;
tod->tod_send_rst = t4_send_rst;
tod->tod_send_fin = t4_send_fin;
tod->tod_pcb_detach = t4_pcb_detach;
tod->tod_l2_update = t4_l2_update;
tod->tod_syncache_added = t4_syncache_added;
tod->tod_syncache_removed = t4_syncache_removed;
tod->tod_syncache_respond = t4_syncache_respond;
tod->tod_offload_socket = t4_offload_socket;
tod->tod_ctloutput = t4_ctloutput;
tod->tod_tcp_info = t4_tcp_info;
for_each_port(sc, i) {
for_each_vi(sc->port[i], v, vi) {
TOEDEV(vi->ifp) = &td->tod;
}
}
sc->tom_softc = td;
register_toedev(sc->tom_softc);
done:
if (rc != 0)
free_tom_data(sc, td);
return (rc);
}
static int
t4_tom_deactivate(struct adapter *sc)
{
int rc = 0;
struct tom_data *td = sc->tom_softc;
ASSERT_SYNCHRONIZED_OP(sc);
if (td == NULL)
return (0); /* XXX. KASSERT? */
if (sc->offload_map != 0)
return (EBUSY); /* at least one port has IFCAP_TOE enabled */
if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI))
return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */
mtx_lock(&td->toep_list_lock);
if (!TAILQ_EMPTY(&td->toep_list))
rc = EBUSY;
mtx_unlock(&td->toep_list_lock);
mtx_lock(&td->lctx_hash_lock);
if (td->lctx_count > 0)
rc = EBUSY;
mtx_unlock(&td->lctx_hash_lock);
taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources);
mtx_lock(&td->unsent_wr_lock);
if (!STAILQ_EMPTY(&td->unsent_wr_list))
rc = EBUSY;
mtx_unlock(&td->unsent_wr_lock);
if (rc == 0) {
unregister_toedev(sc->tom_softc);
free_tom_data(sc, td);
sc->tom_softc = NULL;
}
return (rc);
}
static int
t4_aio_queue_tom(struct socket *so, struct kaiocb *job)
{
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
int error;
if (toep->ulp_mode == ULP_MODE_TCPDDP) {
error = t4_aio_queue_ddp(so, job);
if (error != EOPNOTSUPP)
return (error);
}
return (t4_aio_queue_aiotx(so, job));
}
static int
t4_ctloutput_tom(struct socket *so, struct sockopt *sopt)
{
if (sopt->sopt_level != IPPROTO_TCP)
return (tcp_ctloutput(so, sopt));
switch (sopt->sopt_name) {
case TCP_TLSOM_SET_TLS_CONTEXT:
case TCP_TLSOM_GET_TLS_TOM:
case TCP_TLSOM_CLR_TLS_TOM:
case TCP_TLSOM_CLR_QUIES:
return (t4_ctloutput_tls(so, sopt));
default:
return (tcp_ctloutput(so, sopt));
}
}
static int
t4_tom_mod_load(void)
{
struct protosw *tcp_protosw, *tcp6_protosw;
/* CPL handlers */
t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl);
t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2,
CPL_COOKIE_TOM);
t4_init_connect_cpl_handlers();
t4_init_listen_cpl_handlers();
t4_init_cpl_io_handlers();
t4_ddp_mod_load();
t4_tls_mod_load();
tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM);
if (tcp_protosw == NULL)
return (ENOPROTOOPT);
bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw));
bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs));
toe_usrreqs.pru_aio_queue = t4_aio_queue_tom;
toe_protosw.pr_ctloutput = t4_ctloutput_tom;
toe_protosw.pr_usrreqs = &toe_usrreqs;
tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM);
if (tcp6_protosw == NULL)
return (ENOPROTOOPT);
bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw));
bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs));
toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom;
toe6_protosw.pr_ctloutput = t4_ctloutput_tom;
toe6_protosw.pr_usrreqs = &toe6_usrreqs;
return (t4_register_uld(&tom_uld_info));
}
static void
tom_uninit(struct adapter *sc, void *arg __unused)
{
if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun"))
return;
/* Try to free resources (works only if no port has IFCAP_TOE) */
if (uld_active(sc, ULD_TOM))
t4_deactivate_uld(sc, ULD_TOM);
end_synchronized_op(sc, 0);
}
static int
t4_tom_mod_unload(void)
{
t4_iterate(tom_uninit, NULL);
if (t4_unregister_uld(&tom_uld_info) == EBUSY)
return (EBUSY);
t4_tls_mod_unload();
t4_ddp_mod_unload();
t4_uninit_connect_cpl_handlers();
t4_uninit_listen_cpl_handlers();
t4_uninit_cpl_io_handlers();
t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM);
return (0);
}
#endif /* TCP_OFFLOAD */
static int
t4_tom_modevent(module_t mod, int cmd, void *arg)
{
int rc = 0;
#ifdef TCP_OFFLOAD
switch (cmd) {
case MOD_LOAD:
rc = t4_tom_mod_load();
break;
case MOD_UNLOAD:
rc = t4_tom_mod_unload();
break;
default:
rc = EINVAL;
}
#else
printf("t4_tom: compiled without TCP_OFFLOAD support.\n");
rc = EOPNOTSUPP;
#endif
return (rc);
}
static moduledata_t t4_tom_moddata= {
"t4_tom",
t4_tom_modevent,
0
};
MODULE_VERSION(t4_tom, 1);
MODULE_DEPEND(t4_tom, toecore, 1, 1, 1);
MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1);
DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);