Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/******************************************************************************
  SPDX-License-Identifier: BSD-3-Clause

  Copyright (c) 2001-2015, Intel Corporation 
  All rights reserved.
  
  Redistribution and use in source and binary forms, with or without 
  modification, are permitted provided that the following conditions are met:
  
   1. Redistributions of source code must retain the above copyright notice, 
      this list of conditions and the following disclaimer.
  
   2. Redistributions in binary form must reproduce the above copyright 
      notice, this list of conditions and the following disclaimer in the 
      documentation and/or other materials provided with the distribution.
  
   3. Neither the name of the Intel Corporation nor the names of its 
      contributors may be used to endorse or promote products derived from 
      this software without specific prior written permission.
  
  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.

******************************************************************************/
/*$FreeBSD$*/

/*
 * 82542 Gigabit Ethernet Controller
 */

#include "e1000_api.h"

static s32  e1000_init_phy_params_82542(struct e1000_hw *hw);
static s32  e1000_init_nvm_params_82542(struct e1000_hw *hw);
static s32  e1000_init_mac_params_82542(struct e1000_hw *hw);
static s32  e1000_get_bus_info_82542(struct e1000_hw *hw);
static s32  e1000_reset_hw_82542(struct e1000_hw *hw);
static s32  e1000_init_hw_82542(struct e1000_hw *hw);
static s32  e1000_setup_link_82542(struct e1000_hw *hw);
static s32  e1000_led_on_82542(struct e1000_hw *hw);
static s32  e1000_led_off_82542(struct e1000_hw *hw);
static int  e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index);
static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
static s32  e1000_read_mac_addr_82542(struct e1000_hw *hw);

/**
 *  e1000_init_phy_params_82542 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = E1000_SUCCESS;

	DEBUGFUNC("e1000_init_phy_params_82542");

	phy->type = e1000_phy_none;

	return ret_val;
}

/**
 *  e1000_init_nvm_params_82542 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;

	DEBUGFUNC("e1000_init_nvm_params_82542");

	nvm->address_bits	=  6;
	nvm->delay_usec		= 50;
	nvm->opcode_bits	=  3;
	nvm->type		= e1000_nvm_eeprom_microwire;
	nvm->word_size		= 64;

	/* Function Pointers */
	nvm->ops.read		= e1000_read_nvm_microwire;
	nvm->ops.release	= e1000_stop_nvm;
	nvm->ops.write		= e1000_write_nvm_microwire;
	nvm->ops.update		= e1000_update_nvm_checksum_generic;
	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;

	return E1000_SUCCESS;
}

/**
 *  e1000_init_mac_params_82542 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	DEBUGFUNC("e1000_init_mac_params_82542");

	/* Set media type */
	hw->phy.media_type = e1000_media_type_fiber;

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;

	/* Function pointers */

	/* bus type/speed/width */
	mac->ops.get_bus_info = e1000_get_bus_info_82542;
	/* function id */
	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
	/* reset */
	mac->ops.reset_hw = e1000_reset_hw_82542;
	/* hw initialization */
	mac->ops.init_hw = e1000_init_hw_82542;
	/* link setup */
	mac->ops.setup_link = e1000_setup_link_82542;
	/* phy/fiber/serdes setup */
	mac->ops.setup_physical_interface =
					e1000_setup_fiber_serdes_link_generic;
	/* check for link */
	mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
	/* multicast address update */
	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
	/* writing VFTA */
	mac->ops.write_vfta = e1000_write_vfta_generic;
	/* clearing VFTA */
	mac->ops.clear_vfta = e1000_clear_vfta_generic;
	/* read mac address */
	mac->ops.read_mac_addr = e1000_read_mac_addr_82542;
	/* set RAR */
	mac->ops.rar_set = e1000_rar_set_82542;
	/* turn on/off LED */
	mac->ops.led_on = e1000_led_on_82542;
	mac->ops.led_off = e1000_led_off_82542;
	/* clear hardware counters */
	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
	/* link info */
	mac->ops.get_link_up_info =
				e1000_get_speed_and_duplex_fiber_serdes_generic;

	return E1000_SUCCESS;
}

/**
 *  e1000_init_function_pointers_82542 - Init func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  Called to initialize all function pointers and parameters.
 **/
void e1000_init_function_pointers_82542(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_82542");

	hw->mac.ops.init_params = e1000_init_mac_params_82542;
	hw->nvm.ops.init_params = e1000_init_nvm_params_82542;
	hw->phy.ops.init_params = e1000_init_phy_params_82542;
}

/**
 *  e1000_get_bus_info_82542 - Obtain bus information for adapter
 *  @hw: pointer to the HW structure
 *
 *  This will obtain information about the HW bus for which the
 *  adapter is attached and stores it in the hw structure.
 **/
static s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_get_bus_info_82542");

	hw->bus.type = e1000_bus_type_pci;
	hw->bus.speed = e1000_bus_speed_unknown;
	hw->bus.width = e1000_bus_width_unknown;

	return E1000_SUCCESS;
}

/**
 *  e1000_reset_hw_82542 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.
 **/
static s32 e1000_reset_hw_82542(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val = E1000_SUCCESS;
	u32 ctrl;

	DEBUGFUNC("e1000_reset_hw_82542");

	if (hw->revision_id == E1000_REVISION_2) {
		DEBUGOUT("Disabling MWI on 82542 rev 2\n");
		e1000_pci_clear_mwi(hw);
	}

	DEBUGOUT("Masking off all interrupts\n");
	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);

	E1000_WRITE_REG(hw, E1000_RCTL, 0);
	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	/*
	 * Delay to allow any outstanding PCI transactions to complete before
	 * resetting the device
	 */
	msec_delay(10);

	ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);

	hw->nvm.ops.reload(hw);
	msec_delay(2);

	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
	E1000_READ_REG(hw, E1000_ICR);

	if (hw->revision_id == E1000_REVISION_2) {
		if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
			e1000_pci_set_mwi(hw);
	}

	return ret_val;
}

/**
 *  e1000_init_hw_82542 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82542(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542;
	s32 ret_val = E1000_SUCCESS;
	u32 ctrl;
	u16 i;

	DEBUGFUNC("e1000_init_hw_82542");

	/* Disabling VLAN filtering */
	E1000_WRITE_REG(hw, E1000_VET, 0);
	mac->ops.clear_vfta(hw);

	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
	if (hw->revision_id == E1000_REVISION_2) {
		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
		e1000_pci_clear_mwi(hw);
		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
		E1000_WRITE_FLUSH(hw);
		msec_delay(5);
	}

	/* Setup the receive address. */
	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);

	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
	if (hw->revision_id == E1000_REVISION_2) {
		E1000_WRITE_REG(hw, E1000_RCTL, 0);
		E1000_WRITE_FLUSH(hw);
		msec_delay(1);
		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
			e1000_pci_set_mwi(hw);
	}

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/*
	 * Set the PCI priority bit correctly in the CTRL register.  This
	 * determines if the adapter gives priority to receives, or if it
	 * gives equal priority to transmits and receives.
	 */
	if (dev_spec->dma_fairness) {
		ctrl = E1000_READ_REG(hw, E1000_CTRL);
		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
	}

	/* Setup link and flow control */
	ret_val = e1000_setup_link_82542(hw);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82542(hw);

	return ret_val;
}

/**
 *  e1000_setup_link_82542 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82542(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;

	DEBUGFUNC("e1000_setup_link_82542");

	ret_val = e1000_set_default_fc_generic(hw);
	if (ret_val)
		goto out;

	hw->fc.requested_mode &= ~e1000_fc_tx_pause;

	if (mac->report_tx_early)
		hw->fc.requested_mode &= ~e1000_fc_rx_pause;

	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;

	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
		  hw->fc.current_mode);

	/* Call the necessary subroutine to configure the link. */
	ret_val = mac->ops.setup_physical_interface(hw);
	if (ret_val)
		goto out;

	/*
	 * Initialize the flow control address, type, and PAUSE timer
	 * registers to their default values.  This is done even if flow
	 * control is disabled, because it does not hurt anything to
	 * initialize these registers.
	 */
	DEBUGOUT("Initializing Flow Control address, type and timer regs\n");

	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);

	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);

	ret_val = e1000_set_fc_watermarks_generic(hw);

out:
	return ret_val;
}

/**
 *  e1000_led_on_82542 - Turn on SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  Turns the SW defined LED on.
 **/
static s32 e1000_led_on_82542(struct e1000_hw *hw)
{
	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGFUNC("e1000_led_on_82542");

	ctrl |= E1000_CTRL_SWDPIN0;
	ctrl |= E1000_CTRL_SWDPIO0;
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	return E1000_SUCCESS;
}

/**
 *  e1000_led_off_82542 - Turn off SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  Turns the SW defined LED off.
 **/
static s32 e1000_led_off_82542(struct e1000_hw *hw)
{
	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);

	DEBUGFUNC("e1000_led_off_82542");

	ctrl &= ~E1000_CTRL_SWDPIN0;
	ctrl |= E1000_CTRL_SWDPIO0;
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);

	return E1000_SUCCESS;
}

/**
 *  e1000_rar_set_82542 - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.
 **/
static int e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	DEBUGFUNC("e1000_rar_set_82542");

	/*
	 * HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));

	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);

	return E1000_SUCCESS;
}

/**
 *  e1000_translate_register_82542 - Translate the proper register offset
 *  @reg: e1000 register to be read
 *
 *  Registers in 82542 are located in different offsets than other adapters
 *  even though they function in the same manner.  This function takes in
 *  the name of the register to read and returns the correct offset for
 *  82542 silicon.
 **/
u32 e1000_translate_register_82542(u32 reg)
{
	/*
	 * Some of the 82542 registers are located at different
	 * offsets than they are in newer adapters.
	 * Despite the difference in location, the registers
	 * function in the same manner.
	 */
	switch (reg) {
	case E1000_RA:
		reg = 0x00040;
		break;
	case E1000_RDTR:
		reg = 0x00108;
		break;
	case E1000_RDBAL(0):
		reg = 0x00110;
		break;
	case E1000_RDBAH(0):
		reg = 0x00114;
		break;
	case E1000_RDLEN(0):
		reg = 0x00118;
		break;
	case E1000_RDH(0):
		reg = 0x00120;
		break;
	case E1000_RDT(0):
		reg = 0x00128;
		break;
	case E1000_RDBAL(1):
		reg = 0x00138;
		break;
	case E1000_RDBAH(1):
		reg = 0x0013C;
		break;
	case E1000_RDLEN(1):
		reg = 0x00140;
		break;
	case E1000_RDH(1):
		reg = 0x00148;
		break;
	case E1000_RDT(1):
		reg = 0x00150;
		break;
	case E1000_FCRTH:
		reg = 0x00160;
		break;
	case E1000_FCRTL:
		reg = 0x00168;
		break;
	case E1000_MTA:
		reg = 0x00200;
		break;
	case E1000_TDBAL(0):
		reg = 0x00420;
		break;
	case E1000_TDBAH(0):
		reg = 0x00424;
		break;
	case E1000_TDLEN(0):
		reg = 0x00428;
		break;
	case E1000_TDH(0):
		reg = 0x00430;
		break;
	case E1000_TDT(0):
		reg = 0x00438;
		break;
	case E1000_TIDV:
		reg = 0x00440;
		break;
	case E1000_VFTA:
		reg = 0x00600;
		break;
	case E1000_TDFH:
		reg = 0x08010;
		break;
	case E1000_TDFT:
		reg = 0x08018;
		break;
	default:
		break;
	}

	return reg;
}

/**
 *  e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_clear_hw_cntrs_82542");

	e1000_clear_hw_cntrs_base_generic(hw);

	E1000_READ_REG(hw, E1000_PRC64);
	E1000_READ_REG(hw, E1000_PRC127);
	E1000_READ_REG(hw, E1000_PRC255);
	E1000_READ_REG(hw, E1000_PRC511);
	E1000_READ_REG(hw, E1000_PRC1023);
	E1000_READ_REG(hw, E1000_PRC1522);
	E1000_READ_REG(hw, E1000_PTC64);
	E1000_READ_REG(hw, E1000_PTC127);
	E1000_READ_REG(hw, E1000_PTC255);
	E1000_READ_REG(hw, E1000_PTC511);
	E1000_READ_REG(hw, E1000_PTC1023);
	E1000_READ_REG(hw, E1000_PTC1522);
}

/**
 *  e1000_read_mac_addr_82542 - Read device MAC address
 *  @hw: pointer to the HW structure
 *
 *  Reads the device MAC address from the EEPROM and stores the value.
 **/
s32 e1000_read_mac_addr_82542(struct e1000_hw *hw)
{
	s32  ret_val = E1000_SUCCESS;
	u16 offset, nvm_data, i;

	DEBUGFUNC("e1000_read_mac_addr");

	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
		offset = i >> 1;
		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
		if (ret_val) {
			DEBUGOUT("NVM Read Error\n");
			goto out;
		}
		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
	}

	for (i = 0; i < ETH_ADDR_LEN; i++)
		hw->mac.addr[i] = hw->mac.perm_addr[i];

out:
	return ret_val;
}