Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*
 * Copyright (c) 2014 The DragonFly Project.  All rights reserved.
 *
 * This code is derived from software contributed to The DragonFly Project
 * by Matthew Dillon <dillon@backplane.com> and was subsequently ported
 * to FreeBSD by Michael Gmelin <freebsd@grem.de>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name of The DragonFly Project nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific, prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/*
 * Intel fourth generation mobile cpus integrated I2C device.
 *
 * See ig4_reg.h for datasheet reference and notes.
 * See ig4_var.h for locking semantics.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/errno.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sx.h>
#include <sys/syslog.h>
#include <sys/bus.h>
#include <sys/sysctl.h>

#include <machine/bus.h>
#include <sys/rman.h>

#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>

#include <dev/ichiic/ig4_reg.h>
#include <dev/ichiic/ig4_var.h>

#define TRANS_NORMAL	1
#define TRANS_PCALL	2
#define TRANS_BLOCK	3

static void ig4iic_start(void *xdev);
static void ig4iic_intr(void *cookie);
static void ig4iic_dump(ig4iic_softc_t *sc);

static int ig4_dump;
SYSCTL_INT(_debug, OID_AUTO, ig4_dump, CTLFLAG_RW,
	   &ig4_dump, 0, "Dump controller registers");

/*
 * Low-level inline support functions
 */
static __inline void
reg_write(ig4iic_softc_t *sc, uint32_t reg, uint32_t value)
{
	bus_write_4(sc->regs_res, reg, value);
	bus_barrier(sc->regs_res, reg, 4, BUS_SPACE_BARRIER_WRITE);
}

static __inline uint32_t
reg_read(ig4iic_softc_t *sc, uint32_t reg)
{
	uint32_t value;

	bus_barrier(sc->regs_res, reg, 4, BUS_SPACE_BARRIER_READ);
	value = bus_read_4(sc->regs_res, reg);
	return (value);
}

/*
 * Enable or disable the controller and wait for the controller to acknowledge
 * the state change.
 */
static int
set_controller(ig4iic_softc_t *sc, uint32_t ctl)
{
	int retry;
	int error;
	uint32_t v;

	/*
	 * When the controller is enabled, interrupt on STOP detect
	 * or receive character ready and clear pending interrupts.
	 */
	if (ctl & IG4_I2C_ENABLE) {
		reg_write(sc, IG4_REG_INTR_MASK, IG4_INTR_STOP_DET |
						 IG4_INTR_RX_FULL);
		reg_read(sc, IG4_REG_CLR_INTR);
	} else
		reg_write(sc, IG4_REG_INTR_MASK, 0);

	reg_write(sc, IG4_REG_I2C_EN, ctl);
	error = IIC_ETIMEOUT;

	for (retry = 100; retry > 0; --retry) {
		v = reg_read(sc, IG4_REG_ENABLE_STATUS);
		if (((v ^ ctl) & IG4_I2C_ENABLE) == 0) {
			error = 0;
			break;
		}
		if (cold)
			DELAY(1000);
		else
			mtx_sleep(sc, &sc->io_lock, 0, "i2cslv", 1);
	}
	return (error);
}

/*
 * Wait up to 25ms for the requested status using a 25uS polling loop.
 */
static int
wait_status(ig4iic_softc_t *sc, uint32_t status)
{
	uint32_t v;
	int error;
	int txlvl = -1;
	u_int count_us = 0;
	u_int limit_us = 25000; /* 25ms */

	error = IIC_ETIMEOUT;

	for (;;) {
		/*
		 * Check requested status
		 */
		v = reg_read(sc, IG4_REG_I2C_STA);
		if (v & status) {
			error = 0;
			break;
		}

		/*
		 * When waiting for receive data break-out if the interrupt
		 * loaded data into the FIFO.
		 */
		if (status & IG4_STATUS_RX_NOTEMPTY) {
			if (sc->rpos != sc->rnext) {
				error = 0;
				break;
			}
		}

		/*
		 * When waiting for the transmit FIFO to become empty,
		 * reset the timeout if we see a change in the transmit
		 * FIFO level as progress is being made.
		 */
		if (status & IG4_STATUS_TX_EMPTY) {
			v = reg_read(sc, IG4_REG_TXFLR) & IG4_FIFOLVL_MASK;
			if (txlvl != v) {
				txlvl = v;
				count_us = 0;
			}
		}

		/*
		 * Stop if we've run out of time.
		 */
		if (count_us >= limit_us)
			break;

		/*
		 * When waiting for receive data let the interrupt do its
		 * work, otherwise poll with the lock held.
		 */
		if (status & IG4_STATUS_RX_NOTEMPTY) {
			mtx_sleep(sc, &sc->io_lock, 0, "i2cwait",
				  (hz + 99) / 100); /* sleep up to 10ms */
			count_us += 10000;
		} else {
			DELAY(25);
			count_us += 25;
		}
	}

	return (error);
}

/*
 * Read I2C data.  The data might have already been read by
 * the interrupt code, otherwise it is sitting in the data
 * register.
 */
static uint8_t
data_read(ig4iic_softc_t *sc)
{
	uint8_t c;

	if (sc->rpos == sc->rnext) {
		c = (uint8_t)reg_read(sc, IG4_REG_DATA_CMD);
	} else {
		c = sc->rbuf[sc->rpos & IG4_RBUFMASK];
		++sc->rpos;
	}
	return (c);
}

/*
 * Set the slave address.  The controller must be disabled when
 * changing the address.
 *
 * This operation does not issue anything to the I2C bus but sets
 * the target address for when the controller later issues a START.
 */
static void
set_slave_addr(ig4iic_softc_t *sc, uint8_t slave)
{
	uint32_t tar;
	uint32_t ctl;
	int use_10bit;

	use_10bit = 0;
	if (sc->slave_valid && sc->last_slave == slave &&
	    sc->use_10bit == use_10bit) {
		return;
	}
	sc->use_10bit = use_10bit;

	/*
	 * Wait for TXFIFO to drain before disabling the controller.
	 *
	 * If a write message has not been completed it's really a
	 * programming error, but for now in that case issue an extra
	 * byte + STOP.
	 *
	 * If a read message has not been completed it's also a programming
	 * error, for now just ignore it.
	 */
	wait_status(sc, IG4_STATUS_TX_NOTFULL);
	if (sc->write_started) {
		reg_write(sc, IG4_REG_DATA_CMD, IG4_DATA_STOP);
		sc->write_started = 0;
	}
	if (sc->read_started)
		sc->read_started = 0;
	wait_status(sc, IG4_STATUS_TX_EMPTY);

	set_controller(sc, 0);
	ctl = reg_read(sc, IG4_REG_CTL);
	ctl &= ~IG4_CTL_10BIT;
	ctl |= IG4_CTL_RESTARTEN;

	tar = slave;
	if (sc->use_10bit) {
		tar |= IG4_TAR_10BIT;
		ctl |= IG4_CTL_10BIT;
	}
	reg_write(sc, IG4_REG_CTL, ctl);
	reg_write(sc, IG4_REG_TAR_ADD, tar);
	set_controller(sc, IG4_I2C_ENABLE);
	sc->slave_valid = 1;
	sc->last_slave = slave;
}

/*
 *				IICBUS API FUNCTIONS
 */
static int
ig4iic_xfer_start(ig4iic_softc_t *sc, uint16_t slave)
{
	set_slave_addr(sc, slave >> 1);
	return (0);
}

static int
ig4iic_read(ig4iic_softc_t *sc, uint8_t *buf, uint16_t len,
    bool repeated_start, bool stop)
{
	uint32_t cmd;
	uint16_t i;
	int error;

	if (len == 0)
		return (0);

	cmd = IG4_DATA_COMMAND_RD;
	cmd |= repeated_start ? IG4_DATA_RESTART : 0;
	cmd |= stop && len == 1 ? IG4_DATA_STOP : 0;

	/* Issue request for the first byte (could be last as well). */
	reg_write(sc, IG4_REG_DATA_CMD, cmd);

	for (i = 0; i < len; i++) {
		/*
		 * Maintain a pipeline by queueing the allowance for the next
		 * read before waiting for the current read.
		 */
		cmd = IG4_DATA_COMMAND_RD;
		if (i < len - 1) {
			cmd = IG4_DATA_COMMAND_RD;
			cmd |= stop && i == len - 2 ? IG4_DATA_STOP : 0;
			reg_write(sc, IG4_REG_DATA_CMD, cmd);
		}
		error = wait_status(sc, IG4_STATUS_RX_NOTEMPTY);
		if (error)
			break;
		buf[i] = data_read(sc);
	}

	(void)reg_read(sc, IG4_REG_TX_ABRT_SOURCE);
	return (error);
}

static int
ig4iic_write(ig4iic_softc_t *sc, uint8_t *buf, uint16_t len,
    bool repeated_start, bool stop)
{
	uint32_t cmd;
	uint16_t i;
	int error;

	if (len == 0)
		return (0);

	cmd = repeated_start ? IG4_DATA_RESTART : 0;
	for (i = 0; i < len; i++) {
		error = wait_status(sc, IG4_STATUS_TX_NOTFULL);
		if (error)
			break;
		cmd |= buf[i];
		cmd |= stop && i == len - 1 ? IG4_DATA_STOP : 0;
		reg_write(sc, IG4_REG_DATA_CMD, cmd);
		cmd = 0;
	}

	(void)reg_read(sc, IG4_REG_TX_ABRT_SOURCE);
	return (error);
}

int
ig4iic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
{
	ig4iic_softc_t *sc = device_get_softc(dev);
	const char *reason = NULL;
	uint32_t i;
	int error;
	int unit;
	bool rpstart;
	bool stop;

	/*
	 * The hardware interface imposes limits on allowed I2C messages.
	 * It is not possible to explicitly send a start or stop.
	 * They are automatically sent (or not sent, depending on the
	 * configuration) when a data byte is transferred.
	 * For this reason it's impossible to send a message with no data
	 * at all (like an SMBus quick message).
	 * The start condition is automatically generated after the stop
	 * condition, so it's impossible to not have a start after a stop.
	 * The repeated start condition is automatically sent if a change
	 * of the transfer direction happens, so it's impossible to have
	 * a change of direction without a (repeated) start.
	 * The repeated start can be forced even without the change of
	 * direction.
	 * Changing the target slave address requires resetting the hardware
	 * state, so it's impossible to do that without the stop followed
	 * by the start.
	 */
	for (i = 0; i < nmsgs; i++) {
#if 0
		if (i == 0 && (msgs[i].flags & IIC_M_NOSTART) != 0) {
			reason = "first message without start";
			break;
		}
		if (i == nmsgs - 1 && (msgs[i].flags & IIC_M_NOSTOP) != 0) {
			reason = "last message without stop";
			break;
		}
#endif
		if (msgs[i].len == 0) {
			reason = "message with no data";
			break;
		}
		if (i > 0) {
			if ((msgs[i].flags & IIC_M_NOSTART) != 0 &&
			    (msgs[i - 1].flags & IIC_M_NOSTOP) == 0) {
				reason = "stop not followed by start";
				break;
			}
			if ((msgs[i - 1].flags & IIC_M_NOSTOP) != 0 &&
			    msgs[i].slave != msgs[i - 1].slave) {
				reason = "change of slave without stop";
				break;
			}
			if ((msgs[i].flags & IIC_M_NOSTART) != 0 &&
			    (msgs[i].flags & IIC_M_RD) !=
			    (msgs[i - 1].flags & IIC_M_RD)) {
				reason = "change of direction without repeated"
				    " start";
				break;
			}
		}
	}
	if (reason != NULL) {
		if (bootverbose)
			device_printf(dev, "%s\n", reason);
		return (IIC_ENOTSUPP);
	}

	sx_xlock(&sc->call_lock);
	mtx_lock(&sc->io_lock);

	/* Debugging - dump registers. */
	if (ig4_dump) {
		unit = device_get_unit(dev);
		if (ig4_dump & (1 << unit)) {
			ig4_dump &= ~(1 << unit);
			ig4iic_dump(sc);
		}
	}

	/*
	 * Clear any previous abort condition that may have been holding
	 * the txfifo in reset.
	 */
	reg_read(sc, IG4_REG_CLR_TX_ABORT);

	/*
	 * Clean out any previously received data.
	 */
	if (sc->rpos != sc->rnext && bootverbose) {
		device_printf(sc->dev, "discarding %d bytes of spurious data\n",
		    sc->rnext - sc->rpos);
	}
	sc->rpos = 0;
	sc->rnext = 0;

	rpstart = false;
	error = 0;
	for (i = 0; i < nmsgs; i++) {
		if ((msgs[i].flags & IIC_M_NOSTART) == 0) {
			error = ig4iic_xfer_start(sc, msgs[i].slave);
		} else {
			if (!sc->slave_valid ||
			    (msgs[i].slave >> 1) != sc->last_slave) {
				device_printf(dev, "start condition suppressed"
				    "but slave address is not set up");
				error = EINVAL;
				break;
			}
			rpstart = false;
		}
		if (error != 0)
			break;

		stop = (msgs[i].flags & IIC_M_NOSTOP) == 0;
		if (msgs[i].flags & IIC_M_RD)
			error = ig4iic_read(sc, msgs[i].buf, msgs[i].len,
			    rpstart, stop);
		else
			error = ig4iic_write(sc, msgs[i].buf, msgs[i].len,
			    rpstart, stop);
		if (error != 0)
			break;

		rpstart = !stop;
	}

	mtx_unlock(&sc->io_lock);
	sx_unlock(&sc->call_lock);
	return (error);
}

int
ig4iic_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
{
	ig4iic_softc_t *sc = device_get_softc(dev);

	sx_xlock(&sc->call_lock);
	mtx_lock(&sc->io_lock);

	/* TODO handle speed configuration? */
	if (oldaddr != NULL)
		*oldaddr = sc->last_slave << 1;
	set_slave_addr(sc, addr >> 1);
	if (addr == IIC_UNKNOWN)
		sc->slave_valid = false;

	mtx_unlock(&sc->io_lock);
	sx_unlock(&sc->call_lock);
	return (0);
}

/*
 * Called from ig4iic_pci_attach/detach()
 */
int
ig4iic_attach(ig4iic_softc_t *sc)
{
	int error;
	uint32_t v;

	mtx_init(&sc->io_lock, "IG4 I/O lock", NULL, MTX_DEF);
	sx_init(&sc->call_lock, "IG4 call lock");

	v = reg_read(sc, IG4_REG_DEVIDLE_CTRL);
	if (sc->version == IG4_SKYLAKE && (v & IG4_RESTORE_REQUIRED) ) {
		reg_write(sc, IG4_REG_DEVIDLE_CTRL, IG4_DEVICE_IDLE | IG4_RESTORE_REQUIRED);
		reg_write(sc, IG4_REG_DEVIDLE_CTRL, 0);

		reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_ASSERT_SKL);
		reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_DEASSERT_SKL);
		DELAY(1000);
	}

	if (sc->version == IG4_ATOM)
		v = reg_read(sc, IG4_REG_COMP_TYPE);
	
	if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
		v = reg_read(sc, IG4_REG_COMP_PARAM1);
		v = reg_read(sc, IG4_REG_GENERAL);
		/*
		 * The content of IG4_REG_GENERAL is different for each
		 * controller version.
		 */
		if (sc->version == IG4_HASWELL &&
		    (v & IG4_GENERAL_SWMODE) == 0) {
			v |= IG4_GENERAL_SWMODE;
			reg_write(sc, IG4_REG_GENERAL, v);
			v = reg_read(sc, IG4_REG_GENERAL);
		}
	}

	if (sc->version == IG4_HASWELL) {
		v = reg_read(sc, IG4_REG_SW_LTR_VALUE);
		v = reg_read(sc, IG4_REG_AUTO_LTR_VALUE);
	} else if (sc->version == IG4_SKYLAKE) {
		v = reg_read(sc, IG4_REG_ACTIVE_LTR_VALUE);
		v = reg_read(sc, IG4_REG_IDLE_LTR_VALUE);
	}

	if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
		v = reg_read(sc, IG4_REG_COMP_VER);
		if (v < IG4_COMP_MIN_VER) {
			error = ENXIO;
			goto done;
		}
	}
	v = reg_read(sc, IG4_REG_SS_SCL_HCNT);
	v = reg_read(sc, IG4_REG_SS_SCL_LCNT);
	v = reg_read(sc, IG4_REG_FS_SCL_HCNT);
	v = reg_read(sc, IG4_REG_FS_SCL_LCNT);
	v = reg_read(sc, IG4_REG_SDA_HOLD);

	v = reg_read(sc, IG4_REG_SS_SCL_HCNT);
	reg_write(sc, IG4_REG_FS_SCL_HCNT, v);
	v = reg_read(sc, IG4_REG_SS_SCL_LCNT);
	reg_write(sc, IG4_REG_FS_SCL_LCNT, v);

	/*
	 * Program based on a 25000 Hz clock.  This is a bit of a
	 * hack (obviously).  The defaults are 400 and 470 for standard
	 * and 60 and 130 for fast.  The defaults for standard fail
	 * utterly (presumably cause an abort) because the clock time
	 * is ~18.8ms by default.  This brings it down to ~4ms (for now).
	 */
	reg_write(sc, IG4_REG_SS_SCL_HCNT, 100);
	reg_write(sc, IG4_REG_SS_SCL_LCNT, 125);
	reg_write(sc, IG4_REG_FS_SCL_HCNT, 100);
	reg_write(sc, IG4_REG_FS_SCL_LCNT, 125);

	/*
	 * Use a threshold of 1 so we get interrupted on each character,
	 * allowing us to use mtx_sleep() in our poll code.  Not perfect
	 * but this is better than using DELAY() for receiving data.
	 *
	 * See ig4_var.h for details on interrupt handler synchronization.
	 */
	reg_write(sc, IG4_REG_RX_TL, 1);

	reg_write(sc, IG4_REG_CTL,
		  IG4_CTL_MASTER |
		  IG4_CTL_SLAVE_DISABLE |
		  IG4_CTL_RESTARTEN |
		  IG4_CTL_SPEED_STD);

	sc->iicbus = device_add_child(sc->dev, "iicbus", -1);
	if (sc->iicbus == NULL) {
		device_printf(sc->dev, "iicbus driver not found\n");
		error = ENXIO;
		goto done;
	}

#if 0
	/*
	 * Don't do this, it blows up the PCI config
	 */
	if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
		reg_write(sc, IG4_REG_RESETS_HSW, IG4_RESETS_ASSERT_HSW);
		reg_write(sc, IG4_REG_RESETS_HSW, IG4_RESETS_DEASSERT_HSW);
	} else if (sc->version = IG4_SKYLAKE) {
		reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_ASSERT_SKL);
		reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_DEASSERT_SKL);
	}
#endif

	mtx_lock(&sc->io_lock);
	if (set_controller(sc, 0))
		device_printf(sc->dev, "controller error during attach-1\n");
	if (set_controller(sc, IG4_I2C_ENABLE))
		device_printf(sc->dev, "controller error during attach-2\n");
	mtx_unlock(&sc->io_lock);
	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_TYPE_MISC | INTR_MPSAFE,
			       NULL, ig4iic_intr, sc, &sc->intr_handle);
	if (error) {
		device_printf(sc->dev,
			      "Unable to setup irq: error %d\n", error);
	}

	sc->enum_hook.ich_func = ig4iic_start;
	sc->enum_hook.ich_arg = sc->dev;

	/*
	 * We have to wait until interrupts are enabled. I2C read and write
	 * only works if the interrupts are available.
	 */
	if (config_intrhook_establish(&sc->enum_hook) != 0)
		error = ENOMEM;
	else
		error = 0;

done:
	return (error);
}

void
ig4iic_start(void *xdev)
{
	int error;
	ig4iic_softc_t *sc;
	device_t dev = (device_t)xdev;

	sc = device_get_softc(dev);

	config_intrhook_disestablish(&sc->enum_hook);

	error = bus_generic_attach(sc->dev);
	if (error) {
		device_printf(sc->dev,
			      "failed to attach child: error %d\n", error);
	}
}

int
ig4iic_detach(ig4iic_softc_t *sc)
{
	int error;

	if (device_is_attached(sc->dev)) {
		error = bus_generic_detach(sc->dev);
		if (error)
			return (error);
	}
	if (sc->iicbus)
		device_delete_child(sc->dev, sc->iicbus);
	if (sc->intr_handle)
		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_handle);

	sx_xlock(&sc->call_lock);
	mtx_lock(&sc->io_lock);

	sc->iicbus = NULL;
	sc->intr_handle = NULL;
	reg_write(sc, IG4_REG_INTR_MASK, 0);
	set_controller(sc, 0);

	mtx_unlock(&sc->io_lock);
	sx_xunlock(&sc->call_lock);

	mtx_destroy(&sc->io_lock);
	sx_destroy(&sc->call_lock);

	return (0);
}

/*
 * Interrupt Operation, see ig4_var.h for locking semantics.
 */
static void
ig4iic_intr(void *cookie)
{
	ig4iic_softc_t *sc = cookie;
	uint32_t status;

	mtx_lock(&sc->io_lock);
/*	reg_write(sc, IG4_REG_INTR_MASK, IG4_INTR_STOP_DET);*/
	reg_read(sc, IG4_REG_CLR_INTR);
	status = reg_read(sc, IG4_REG_I2C_STA);
	while (status & IG4_STATUS_RX_NOTEMPTY) {
		sc->rbuf[sc->rnext & IG4_RBUFMASK] =
		    (uint8_t)reg_read(sc, IG4_REG_DATA_CMD);
		++sc->rnext;
		status = reg_read(sc, IG4_REG_I2C_STA);
	}

	/* 
	 * Workaround to trigger pending interrupt if IG4_REG_INTR_STAT
	 * is changed after clearing it
	 */
	if (sc->access_intr_mask != 0) {
		status = reg_read(sc, IG4_REG_INTR_MASK);
		if (status != 0) {
			reg_write(sc, IG4_REG_INTR_MASK, 0);
			reg_write(sc, IG4_REG_INTR_MASK, status);
		}
	}

	wakeup(sc);
	mtx_unlock(&sc->io_lock);
}

#define REGDUMP(sc, reg)	\
	device_printf(sc->dev, "  %-23s %08x\n", #reg, reg_read(sc, reg))

static void
ig4iic_dump(ig4iic_softc_t *sc)
{
	device_printf(sc->dev, "ig4iic register dump:\n");
	REGDUMP(sc, IG4_REG_CTL);
	REGDUMP(sc, IG4_REG_TAR_ADD);
	REGDUMP(sc, IG4_REG_SS_SCL_HCNT);
	REGDUMP(sc, IG4_REG_SS_SCL_LCNT);
	REGDUMP(sc, IG4_REG_FS_SCL_HCNT);
	REGDUMP(sc, IG4_REG_FS_SCL_LCNT);
	REGDUMP(sc, IG4_REG_INTR_STAT);
	REGDUMP(sc, IG4_REG_INTR_MASK);
	REGDUMP(sc, IG4_REG_RAW_INTR_STAT);
	REGDUMP(sc, IG4_REG_RX_TL);
	REGDUMP(sc, IG4_REG_TX_TL);
	REGDUMP(sc, IG4_REG_I2C_EN);
	REGDUMP(sc, IG4_REG_I2C_STA);
	REGDUMP(sc, IG4_REG_TXFLR);
	REGDUMP(sc, IG4_REG_RXFLR);
	REGDUMP(sc, IG4_REG_SDA_HOLD);
	REGDUMP(sc, IG4_REG_TX_ABRT_SOURCE);
	REGDUMP(sc, IG4_REG_SLV_DATA_NACK);
	REGDUMP(sc, IG4_REG_DMA_CTRL);
	REGDUMP(sc, IG4_REG_DMA_TDLR);
	REGDUMP(sc, IG4_REG_DMA_RDLR);
	REGDUMP(sc, IG4_REG_SDA_SETUP);
	REGDUMP(sc, IG4_REG_ENABLE_STATUS);
	if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
		REGDUMP(sc, IG4_REG_COMP_PARAM1);
		REGDUMP(sc, IG4_REG_COMP_VER);
	}
	if (sc->version == IG4_ATOM) {
		REGDUMP(sc, IG4_REG_COMP_TYPE);
		REGDUMP(sc, IG4_REG_CLK_PARMS);
	}
	if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
		REGDUMP(sc, IG4_REG_RESETS_HSW);
		REGDUMP(sc, IG4_REG_GENERAL);
	} else if (sc->version == IG4_SKYLAKE) {
		REGDUMP(sc, IG4_REG_RESETS_SKL);
	}
	if (sc->version == IG4_HASWELL) {
		REGDUMP(sc, IG4_REG_SW_LTR_VALUE);
		REGDUMP(sc, IG4_REG_AUTO_LTR_VALUE);
	} else if (sc->version == IG4_SKYLAKE) {
		REGDUMP(sc, IG4_REG_ACTIVE_LTR_VALUE);
		REGDUMP(sc, IG4_REG_IDLE_LTR_VALUE);
	}
}
#undef REGDUMP

DRIVER_MODULE(iicbus, ig4iic_acpi, iicbus_driver, iicbus_devclass, NULL, NULL);
DRIVER_MODULE(iicbus, ig4iic_pci, iicbus_driver, iicbus_devclass, NULL, NULL);