Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/*
 * Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

#if BR_INT128 || BR_UMUL128

#if BR_INT128

#define MUL128(hi, lo, x, y)   do { \
		unsigned __int128 mul128tmp; \
		mul128tmp = (unsigned __int128)(x) * (unsigned __int128)(y); \
		(hi) = (uint64_t)(mul128tmp >> 64); \
		(lo) = (uint64_t)mul128tmp; \
	} while (0)

#elif BR_UMUL128

#include <intrin.h>

#define MUL128(hi, lo, x, y)   do { \
		(lo) = _umul128((x), (y), &(hi)); \
	} while (0)

#endif

#define MASK42   ((uint64_t)0x000003FFFFFFFFFF)
#define MASK44   ((uint64_t)0x00000FFFFFFFFFFF)

/*
 * The "accumulator" word is nominally a 130-bit value. We split it into
 * words of 44 bits, each held in a 64-bit variable.
 *
 * If the current accumulator is a = a0 + a1*W + a2*W^2 (where W = 2^44)
 * and r = r0 + r1*W + r2*W^2, then:
 *
 *   a*r = (a0*r0)
 *       + (a0*r1 + a1*r0) * W
 *       + (a0*r2 + a1*r1 + a2*r0) * W^2
 *       + (a1*r2 + a2*r1) * W^3
 *       + (a2*r2) * W^4
 *
 * We want to reduce that value modulo p = 2^130-5, so W^3 = 20 mod p,
 * and W^4 = 20*W mod p. Thus, if we define u1 = 20*r1 and u2 = 20*r2,
 * then the equations above become:
 *
 *  b0 = a0*r0 + a1*u2 + a2*u1
 *  b1 = a0*r1 + a1*r0 + a2*u2
 *  b2 = a0*r2 + a1*r1 + a2*r0
 *
 * In order to make u1 fit in 44 bits, we can change these equations
 * into:
 *
 *  b0 = a0*r0 + a1*u2 + a2*t1
 *  b1 = a0*r1 + a1*r0 + a2*t2
 *  b2 = a0*r2 + a1*r1 + a2*r0
 *
 * Where t1 is u1 truncated to 44 bits, and t2 is u2 added to the extra
 * bits of u1. Note that since r is clamped down to a 124-bit value, the
 * values u2 and t2 fit on 44 bits too.
 *
 * The bx values are larger than 44 bits, so we may split them into a
 * lower half (cx, 44 bits) and an upper half (dx). The new values for
 * the accumulator are then:
 *
 *  e0 = c0 + 20*d2
 *  e1 = c1 + d0
 *  e2 = c2 + d1
 *
 * The equations allow for some room, i.e. the ax values may be larger
 * than 44 bits. Similarly, the ex values will usually be larger than
 * the ax. Thus, some sort of carry propagation must be done regularly,
 * though not necessarily at each iteration. In particular, we do not
 * need to compute the additions (for the bx values) over 128-bit
 * quantities; we can stick to 64-bit computations.
 *
 *
 * Since the 128-bit result of a 64x64 multiplication is actually
 * represented over two 64-bit registers, it is cheaper to arrange for
 * any split that happens between the "high" and "low" halves to be on
 * that 64-bit boundary. This is done by left shifting the rx, ux and tx
 * by 20 bits (since they all fit on 44 bits each, this shift is
 * always possible).
 */

static void
poly1305_inner_big(uint64_t *acc, uint64_t *r, const void *data, size_t len)
{

#define MX(hi, lo, m0, m1, m2)   do { \
		uint64_t mxhi, mxlo; \
		MUL128(mxhi, mxlo, a0, m0); \
		(hi) = mxhi; \
		(lo) = mxlo >> 20; \
		MUL128(mxhi, mxlo, a1, m1); \
		(hi) += mxhi; \
		(lo) += mxlo >> 20; \
		MUL128(mxhi, mxlo, a2, m2); \
		(hi) += mxhi; \
		(lo) += mxlo >> 20; \
	} while (0)

	const unsigned char *buf;
	uint64_t a0, a1, a2;
	uint64_t r0, r1, r2, t1, t2, u2;

	r0 = r[0];
	r1 = r[1];
	r2 = r[2];
	t1 = r[3];
	t2 = r[4];
	u2 = r[5];
	a0 = acc[0];
	a1 = acc[1];
	a2 = acc[2];
	buf = data;

	while (len > 0) {
		uint64_t v0, v1, v2;
		uint64_t c0, c1, c2, d0, d1, d2;

		v0 = br_dec64le(buf + 0);
		v1 = br_dec64le(buf + 8);
		v2 = v1 >> 24;
		v1 = ((v0 >> 44) | (v1 << 20)) & MASK44;
		v0 &= MASK44;
		a0 += v0;
		a1 += v1;
		a2 += v2 + ((uint64_t)1 << 40);
		MX(d0, c0, r0, u2, t1);
		MX(d1, c1, r1, r0, t2);
		MX(d2, c2, r2, r1, r0);
		a0 = c0 + 20 * d2;
		a1 = c1 + d0;
		a2 = c2 + d1;

		v0 = br_dec64le(buf + 16);
		v1 = br_dec64le(buf + 24);
		v2 = v1 >> 24;
		v1 = ((v0 >> 44) | (v1 << 20)) & MASK44;
		v0 &= MASK44;
		a0 += v0;
		a1 += v1;
		a2 += v2 + ((uint64_t)1 << 40);
		MX(d0, c0, r0, u2, t1);
		MX(d1, c1, r1, r0, t2);
		MX(d2, c2, r2, r1, r0);
		a0 = c0 + 20 * d2;
		a1 = c1 + d0;
		a2 = c2 + d1;

		v0 = br_dec64le(buf + 32);
		v1 = br_dec64le(buf + 40);
		v2 = v1 >> 24;
		v1 = ((v0 >> 44) | (v1 << 20)) & MASK44;
		v0 &= MASK44;
		a0 += v0;
		a1 += v1;
		a2 += v2 + ((uint64_t)1 << 40);
		MX(d0, c0, r0, u2, t1);
		MX(d1, c1, r1, r0, t2);
		MX(d2, c2, r2, r1, r0);
		a0 = c0 + 20 * d2;
		a1 = c1 + d0;
		a2 = c2 + d1;

		v0 = br_dec64le(buf + 48);
		v1 = br_dec64le(buf + 56);
		v2 = v1 >> 24;
		v1 = ((v0 >> 44) | (v1 << 20)) & MASK44;
		v0 &= MASK44;
		a0 += v0;
		a1 += v1;
		a2 += v2 + ((uint64_t)1 << 40);
		MX(d0, c0, r0, u2, t1);
		MX(d1, c1, r1, r0, t2);
		MX(d2, c2, r2, r1, r0);
		a0 = c0 + 20 * d2;
		a1 = c1 + d0;
		a2 = c2 + d1;

		a1 += a0 >> 44;
		a0 &= MASK44;
		a2 += a1 >> 44;
		a1 &= MASK44;
		a0 += 20 * (a2 >> 44);
		a2 &= MASK44;

		buf += 64;
		len -= 64;
	}
	acc[0] = a0;
	acc[1] = a1;
	acc[2] = a2;

#undef MX
}

static void
poly1305_inner_small(uint64_t *acc, uint64_t *r, const void *data, size_t len)
{
	const unsigned char *buf;
	uint64_t a0, a1, a2;
	uint64_t r0, r1, r2, t1, t2, u2;

	r0 = r[0];
	r1 = r[1];
	r2 = r[2];
	t1 = r[3];
	t2 = r[4];
	u2 = r[5];
	a0 = acc[0];
	a1 = acc[1];
	a2 = acc[2];
	buf = data;

	while (len > 0) {
		uint64_t v0, v1, v2;
		uint64_t c0, c1, c2, d0, d1, d2;
		unsigned char tmp[16];

		if (len < 16) {
			memcpy(tmp, buf, len);
			memset(tmp + len, 0, (sizeof tmp) - len);
			buf = tmp;
			len = 16;
		}
		v0 = br_dec64le(buf + 0);
		v1 = br_dec64le(buf + 8);

		v2 = v1 >> 24;
		v1 = ((v0 >> 44) | (v1 << 20)) & MASK44;
		v0 &= MASK44;

		a0 += v0;
		a1 += v1;
		a2 += v2 + ((uint64_t)1 << 40);

#define MX(hi, lo, m0, m1, m2)   do { \
		uint64_t mxhi, mxlo; \
		MUL128(mxhi, mxlo, a0, m0); \
		(hi) = mxhi; \
		(lo) = mxlo >> 20; \
		MUL128(mxhi, mxlo, a1, m1); \
		(hi) += mxhi; \
		(lo) += mxlo >> 20; \
		MUL128(mxhi, mxlo, a2, m2); \
		(hi) += mxhi; \
		(lo) += mxlo >> 20; \
	} while (0)

		MX(d0, c0, r0, u2, t1);
		MX(d1, c1, r1, r0, t2);
		MX(d2, c2, r2, r1, r0);

#undef MX

		a0 = c0 + 20 * d2;
		a1 = c1 + d0;
		a2 = c2 + d1;

		a1 += a0 >> 44;
		a0 &= MASK44;
		a2 += a1 >> 44;
		a1 &= MASK44;
		a0 += 20 * (a2 >> 44);
		a2 &= MASK44;

		buf += 16;
		len -= 16;
	}
	acc[0] = a0;
	acc[1] = a1;
	acc[2] = a2;
}

static inline void
poly1305_inner(uint64_t *acc, uint64_t *r, const void *data, size_t len)
{
	if (len >= 64) {
		size_t len2;

		len2 = len & ~(size_t)63;
		poly1305_inner_big(acc, r, data, len2);
		data = (const unsigned char *)data + len2;
		len -= len2;
	}
	if (len > 0) {
		poly1305_inner_small(acc, r, data, len);
	}
}

/* see bearssl_block.h */
void
br_poly1305_ctmulq_run(const void *key, const void *iv,
	void *data, size_t len, const void *aad, size_t aad_len,
	void *tag, br_chacha20_run ichacha, int encrypt)
{
	unsigned char pkey[32], foot[16];
	uint64_t r[6], acc[3], r0, r1;
	uint32_t v0, v1, v2, v3, v4;
	uint64_t w0, w1, w2, w3;
	uint32_t ctl;

	/*
	 * Compute the MAC key. The 'r' value is the first 16 bytes of
	 * pkey[].
	 */
	memset(pkey, 0, sizeof pkey);
	ichacha(key, iv, 0, pkey, sizeof pkey);

	/*
	 * If encrypting, ChaCha20 must run first, followed by Poly1305.
	 * When decrypting, the operations are reversed.
	 */
	if (encrypt) {
		ichacha(key, iv, 1, data, len);
	}

	/*
	 * Run Poly1305. We must process the AAD, then ciphertext, then
	 * the footer (with the lengths). Note that the AAD and ciphertext
	 * are meant to be padded with zeros up to the next multiple of 16,
	 * and the length of the footer is 16 bytes as well.
	 */

	/*
	 * Apply the "clamping" on r.
	 */
	pkey[ 3] &= 0x0F;
	pkey[ 4] &= 0xFC;
	pkey[ 7] &= 0x0F;
	pkey[ 8] &= 0xFC;
	pkey[11] &= 0x0F;
	pkey[12] &= 0xFC;
	pkey[15] &= 0x0F;

	/*
	 * Decode the 'r' value into 44-bit words, left-shifted by 20 bits.
	 * Also compute the u1 and u2 values.
	 */
	r0 = br_dec64le(pkey +  0);
	r1 = br_dec64le(pkey +  8);
	r[0] = r0 << 20;
	r[1] = ((r0 >> 24) | (r1 << 40)) & ~(uint64_t)0xFFFFF;
	r[2] = (r1 >> 4) & ~(uint64_t)0xFFFFF;
	r1 = 20 * (r[1] >> 20);
	r[3] = r1 << 20;
	r[5] = 20 * r[2];
	r[4] = (r[5] + (r1 >> 24)) & ~(uint64_t)0xFFFFF;

	/*
	 * Accumulator is 0.
	 */
	acc[0] = 0;
	acc[1] = 0;
	acc[2] = 0;

	/*
	 * Process the additional authenticated data, ciphertext, and
	 * footer in due order.
	 */
	br_enc64le(foot, (uint64_t)aad_len);
	br_enc64le(foot + 8, (uint64_t)len);
	poly1305_inner(acc, r, aad, aad_len);
	poly1305_inner(acc, r, data, len);
	poly1305_inner_small(acc, r, foot, sizeof foot);

	/*
	 * Finalise modular reduction. At that point, the value consists
	 * in three 44-bit values (the lowest one might be slightly above
	 * 2^44). Two loops shall be sufficient.
	 */
	acc[1] += (acc[0] >> 44);
	acc[0] &= MASK44;
	acc[2] += (acc[1] >> 44);
	acc[1] &= MASK44;
	acc[0] += 5 * (acc[2] >> 42);
	acc[2] &= MASK42;
	acc[1] += (acc[0] >> 44);
	acc[0] &= MASK44;
	acc[2] += (acc[1] >> 44);
	acc[1] &= MASK44;
	acc[0] += 5 * (acc[2] >> 42);
	acc[2] &= MASK42;

	/*
	 * The value may still fall in the 2^130-5..2^130-1 range, in
	 * which case we must reduce it again. The code below selects,
	 * in constant-time, between 'acc' and 'acc-p'. We encode the
	 * value over four 32-bit integers to finish the operation.
	 */
	v0 = (uint32_t)acc[0];
	v1 = (uint32_t)(acc[0] >> 32) | ((uint32_t)acc[1] << 12);
	v2 = (uint32_t)(acc[1] >> 20) | ((uint32_t)acc[2] << 24);
	v3 = (uint32_t)(acc[2] >> 8);
	v4 = (uint32_t)(acc[2] >> 40);

	ctl = GT(v0, 0xFFFFFFFA);
	ctl &= EQ(v1, 0xFFFFFFFF);
	ctl &= EQ(v2, 0xFFFFFFFF);
	ctl &= EQ(v3, 0xFFFFFFFF);
	ctl &= EQ(v4, 0x00000003);
	v0 = MUX(ctl, v0 + 5, v0);
	v1 = MUX(ctl, 0, v1);
	v2 = MUX(ctl, 0, v2);
	v3 = MUX(ctl, 0, v3);

	/*
	 * Add the "s" value. This is done modulo 2^128. Don't forget
	 * carry propagation...
	 */
	w0 = (uint64_t)v0 + (uint64_t)br_dec32le(pkey + 16);
	w1 = (uint64_t)v1 + (uint64_t)br_dec32le(pkey + 20) + (w0 >> 32);
	w2 = (uint64_t)v2 + (uint64_t)br_dec32le(pkey + 24) + (w1 >> 32);
	w3 = (uint64_t)v3 + (uint64_t)br_dec32le(pkey + 28) + (w2 >> 32);
	v0 = (uint32_t)w0;
	v1 = (uint32_t)w1;
	v2 = (uint32_t)w2;
	v3 = (uint32_t)w3;

	/*
	 * Encode the tag.
	 */
	br_enc32le((unsigned char *)tag +  0, v0);
	br_enc32le((unsigned char *)tag +  4, v1);
	br_enc32le((unsigned char *)tag +  8, v2);
	br_enc32le((unsigned char *)tag + 12, v3);

	/*
	 * If decrypting, then ChaCha20 runs _after_ Poly1305.
	 */
	if (!encrypt) {
		ichacha(key, iv, 1, data, len);
	}
}

/* see bearssl_block.h */
br_poly1305_run
br_poly1305_ctmulq_get(void)
{
	return &br_poly1305_ctmulq_run;
}

#else

/* see bearssl_block.h */
br_poly1305_run
br_poly1305_ctmulq_get(void)
{
	return 0;
}

#endif