Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/* mips16 floating point support code
   Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
   Contributed by Cygnus Support

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file.  (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

/* As a special exception, if you link this library with other files,
   some of which are compiled with GCC, to produce an executable,
   this library does not by itself cause the resulting executable
   to be covered by the GNU General Public License.
   This exception does not however invalidate any other reasons why
   the executable file might be covered by the GNU General Public License.  */

/* This file contains mips16 floating point support functions.  These
   functions are called by mips16 code to handle floating point when
   -msoft-float is not used.  They accept the arguments and return
   values using the soft-float calling convention, but do the actual
   operation using the hard floating point instructions.  */

/* This file contains 32 bit assembly code.  */
	.set nomips16

/* Start a function.  */

#define STARTFN(NAME) .globl NAME; .ent NAME; NAME:

/* Finish a function.  */

#define ENDFN(NAME) .end NAME

/* Single precision math.  */

/* This macro defines a function which loads two single precision
   values, performs an operation, and returns the single precision
   result.  */

#define SFOP(NAME, OPCODE)	\
STARTFN (NAME);			\
	.set	noreorder;	\
	mtc1	$4,$f0;		\
	mtc1	$5,$f2;		\
	nop;			\
	OPCODE	$f0,$f0,$f2;	\
	mfc1	$2,$f0;		\
	j	$31;		\
	nop;			\
	.set	reorder;	\
	ENDFN (NAME)

#ifdef L_m16addsf3
SFOP(mips16_addsf3, __add.s)
#endif
#ifdef L_m16subsf3
SFOP(mips16_subsf3, __sub.s)
#endif
#ifdef L_m16mulsf3
SFOP(mips16_mulsf3, __mul.s)
#endif
#ifdef L_m16divsf3
SFOP(mips16_divsf3, __div.s)
#endif

#define SFOP2(NAME, OPCODE)	\
STARTFN (NAME);			\
	.set	noreorder;	\
	mtc1	$4,$f0;		\
	nop;			\
	OPCODE	$f0,$f0;	\
	mfc1	$2,$f0;		\
	j	$31;		\
	nop;			\
	.set	reorder;	\
	ENDFN (NAME)

#ifdef L_m16negsf2
SFOP2(mips16_negsf2, __neg.s)
#endif
#ifdef L_m16abssf2
SFOP2(mips16_abssf2, __abs.s)
#endif

/* Single precision comparisons.  */

/* This macro defines a function which loads two single precision
   values, performs a floating point comparison, and returns the
   specified values according to whether the comparison is true or
   false.  */

#define SFCMP(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	mtc1	$4,$f0;				\
	mtc1	$5,$f2;				\
	OPCODE	$f0,$f2;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

/* This macro is like SFCMP, but it reverses the comparison.  */

#define SFREVCMP(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	mtc1	$4,$f0;				\
	mtc1	$5,$f2;				\
	OPCODE	$f2,$f0;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

#ifdef L_m16eqsf2
SFCMP(__mips16_eqsf2, c.eq.s, 0, 1)
#endif
#ifdef L_m16nesf2
SFCMP(__mips16_nesf2, c.eq.s, 0, 1)
#endif
#ifdef L_m16gtsf2
SFREVCMP(__mips16_gtsf2, c.lt.s, 1, 0)
#endif
#ifdef L_m16gesf2
SFREVCMP(__mips16_gesf2, c.le.s, 0, -1)
#endif
#ifdef L_m16lesf2
SFCMP(__mips16_lesf2, c.le.s, 0, 1)
#endif
#ifdef L_m16ltsf2
SFCMP(__mips16_ltsf2, c.lt.s, -1, 0)
#endif

/* Single precision conversions.  */

#ifdef L_m16fltsisf
STARTFN (__mips16_floatsisf)
	.set	noreorder
	mtc1	$4,$f0
	nop
	cvt.s.w	$f0,$f0
	mfc1	$2,$f0
	j	$31
	nop
	.set	reorder
	ENDFN (__mips16_floatsisf)
#endif

#ifdef L_m16fix_truncsfsi
STARTFN (__mips16_fix_truncsfsi)
	.set	noreorder
	mtc1	$4,$f0
	nop
	trunc.w.s $f0,$f0,$4
	mfc1	$2,$f0
	j	$31
	nop
	.set	reorder
	ENDFN (__mips16_fix_truncsfsi)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)

/* The double precision operations.  We need to use different code
   based on the preprocessor symbol __mips64, because the way in which
   double precision values will change.  Without __mips64, the value
   is passed in two 32 bit registers.  With __mips64, the value is
   passed in a single 64 bit register.  */

/* Load the first double precision operand.  */

#if defined(__mips64)
#define LDDBL1 dmtc1 $4,$f12
#elif defined(__mipsfp64)
#define LDDBL1 sw $4,0($29); sw $5,4($29); l.d $f12,0($29)
#elif defined(__MIPSEB__)
#define LDDBL1 mtc1 $4,$f13; mtc1 $5,$f12
#else
#define LDDBL1 mtc1 $4,$f12; mtc1 $5,$f13
#endif

/* Load the second double precision operand.  */

#if defined(__mips64)
/* XXX this should be $6 for Algo arg passing model */
#define LDDBL2 dmtc1 $5,$f14
#elif defined(__mipsfp64)
#define LDDBL2 sw $6,8($29); sw $7,12($29); l.d $f14,8($29)
#elif defined(__MIPSEB__)
#define LDDBL2 mtc1 $6,$f15; mtc1 $7,$f14
#else
#define LDDBL2 mtc1 $6,$f14; mtc1 $7,$f15
#endif

/* Move the double precision return value to the right place.  */

#if defined(__mips64)
#define RETDBL dmfc1 $2,$f0
#elif defined(__mipsfp64)
#define RETDBL s.d $f0,0($29); lw $2,0($29); lw $3,4($29)
#elif defined(__MIPSEB__)
#define RETDBL mfc1 $2,$f1; mfc1 $3,$f0
#else
#define RETDBL mfc1 $2,$f0; mfc1 $3,$f1
#endif

/* Double precision math.  */

/* This macro defines a function which loads two double precision
   values, performs an operation, and returns the double precision
   result.  */

#define DFOP(NAME, OPCODE)	\
STARTFN (NAME);			\
	.set	noreorder;	\
	LDDBL1;			\
	LDDBL2;			\
	nop;			\
	OPCODE	$f0,$f12,$f14;	\
	RETDBL;			\
	j	$31;		\
	nop;			\
	.set	reorder;	\
	ENDFN (NAME)

#ifdef L_m16adddf3
DFOP(mips16_adddf3, __add.d)
#endif
#ifdef L_m16subdf3
DFOP(mips16_subdf3, __sub.d)
#endif
#ifdef L_m16muldf3
DFOP(mips16_muldf3, __mul.d)
#endif
#ifdef L_m16divdf3
DFOP(mips16_divdf3, __div.d)
#endif

#define DFOP2(NAME, OPCODE)	\
STARTFN (NAME);			\
	.set	noreorder;	\
	LDDBL1;			\
	nop;			\
	OPCODE	$f0,$f12;	\
	RETDBL;			\
	j	$31;		\
	nop;			\
	.set	reorder;	\
	ENDFN (NAME)

#ifdef L_m16negdf2
DFOP2(mips16_negdf2, __neg.d)
#endif
#ifdef L_m16absdf2
DFOP2(mips16_absdf2, __abs.d)
#endif


/* Conversions between single and double precision.  */

#ifdef L_m16extsfdf2
STARTFN (__mips16_extendsfdf2)
	.set	noreorder
	mtc1	$4,$f12
	nop
	cvt.d.s	$f0,$f12
	RETDBL
	j	$31
	nop
	.set	reorder
	ENDFN (__mips16_extendsfdf2)
#endif

#ifdef L_m16trdfsf2
STARTFN (__mips16_truncdfsf2)
	.set	noreorder
	LDDBL1
	nop
	cvt.s.d	$f0,$f12
	mfc1	$2,$f0
	j	$31
	nop
	.set	reorder
	ENDFN (__mips16_truncdfsf2)
#endif

/* Double precision comparisons.  */

/* This macro defines a function which loads two double precision
   values, performs a floating point comparison, and returns the
   specified values according to whether the comparison is true or
   false.  */

#define DFCMP(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	LDDBL1;					\
	LDDBL2;					\
	OPCODE	$f12,$f14;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

/* This macro is like DFCMP, but it reverses the comparison.  */

#define DFREVCMP(NAME, OPCODE, TRUE, FALSE)	\
STARTFN (NAME);					\
	LDDBL1;					\
	LDDBL2;					\
	OPCODE	$f14,$f12;			\
	li	$2,TRUE;			\
	bc1t	1f;				\
	li	$2,FALSE;			\
1:;						\
	j	$31;				\
	ENDFN (NAME)

#ifdef L_m16eqdf2
DFCMP(__mips16_eqdf2, c.eq.d, 0, 1)
#endif
#ifdef L_m16nedf2
DFCMP(__mips16_nedf2, c.eq.d, 0, 1)
#endif
#ifdef L_m16gtdf2
DFREVCMP(__mips16_gtdf2, c.lt.d, 1, 0)
#endif
#ifdef L_m16gedf2
DFREVCMP(__mips16_gedf2, c.le.d, 0, -1)
#endif
#ifdef L_m16ledf2
DFCMP(__mips16_ledf2, c.le.d, 0, 1)
#endif
#ifdef L_m16ltdf2
DFCMP(__mips16_ltdf2, c.lt.d, -1, 0)
#endif

/* Double precision conversions.  */

#ifdef L_m16fltsidf
STARTFN (__mips16_floatsidf)
	.set	noreorder
	mtc1	$4,$f12
	nop
	cvt.d.w	$f0,$f12
	RETDBL
	j	$31
	nop
	.set	reorder
	ENDFN (__mips16_floatsidf)
#endif

#ifdef L_m16fix_truncdfsi
STARTFN (__mips16_fix_truncdfsi)
	.set	noreorder
	LDDBL1
	nop
	trunc.w.d $f0,$f12,$4
	mfc1	$2,$f0
	j	$31
	nop
	.set	reorder
	ENDFN (__mips16_fix_truncdfsi)
#endif
#endif /* !__mips_single_float */

/* These functions are used to return floating point values from
   mips16 functions.  In this case we can put mtc1 in a jump delay slot,
   because we know that the next instruction will not refer to a floating
   point register.  */

#ifdef L_m16retsf
STARTFN (__mips16_ret_sf)
	.set	noreorder
	j	$31
	mtc1	$2,$f0
	.set	reorder
	ENDFN (__mips16_ret_sf)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
#ifdef L_m16retdf
STARTFN (__mips16_ret_df)
	.set	noreorder
#if defined(__mips64)
	j	$31
	dmtc1	$2,$f0
#elif defined(__mipsfp64)
	sw	$2,0($29)
	sw	$3,4($29)
	l.d	$f0,0($29)
#elif defined(__MIPSEB__)
	mtc1	$2,$f1
	j	$31
	mtc1	$3,$f0
#else
	mtc1	$2,$f0
	j	$31
	mtc1	$3,$f1
#endif
	.set	reorder
	ENDFN (__mips16_ret_df)
#endif
#endif /* !__mips_single_float */

/* These functions are used by 16 bit code when calling via a function
   pointer.  They must copy the floating point arguments from the gp
   regs into the fp regs.  The function to call will be in $2.  The
   exact set of floating point arguments to copy is encoded in the
   function name; the final number is an fp_code, as described in
   mips.h in the comment about CUMULATIVE_ARGS.  */

#ifdef L_m16stub1
/* (float) */
STARTFN (__mips16_call_stub_1)
	.set	noreorder
	mtc1	$4,$f12
	j	$2
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_1)
#endif

#ifdef L_m16stub5
/* (float, float) */
STARTFN (__mips16_call_stub_5)
	.set	noreorder
	mtc1	$4,$f12
	mtc1	$5,$f14
	j	$2
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_5)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)

#ifdef L_m16stub2
/* (double) */
STARTFN (__mips16_call_stub_2)
	.set	noreorder
	LDDBL1
	j	$2
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_2)
#endif

#ifdef L_m16stub6
/* (double, float) */
STARTFN (__mips16_call_stub_6)
	.set	noreorder
	LDDBL1
	mtc1	$6,$f14
	j	$2
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_6)
#endif

#ifdef L_m16stub9
/* (float, double) */
STARTFN (__mips16_call_stub_9)
	.set	noreorder
	mtc1	$4,$f12
	LDDBL2
	j	$2
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_9)
#endif

#ifdef L_m16stub10
/* (double, double) */
STARTFN (__mips16_call_stub_10)
	.set	noreorder
	LDDBL1
	LDDBL2
	j	$2
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_10)
#endif
#endif /* !__mips_single_float */

/* Now we have the same set of functions, except that this time the
   function being called returns an SFmode value.  The calling
   function will arrange to preserve $18, so these functions are free
   to use it to hold the return address.

   Note that we do not know whether the function we are calling is 16
   bit or 32 bit.  However, it does not matter, because 16 bit
   functions always return floating point values in both the gp and
   the fp regs.  It would be possible to check whether the function
   being called is 16 bits, in which case the copy is unnecessary;
   however, it's faster to always do the copy.  */

#ifdef L_m16stubsf0
/* () */
STARTFN (__mips16_call_stub_sf_0)
	.set	noreorder
	move	$18,$31
	jal	$2
	nop
	mfc1	$2,$f0
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_sf_0)
#endif

#ifdef L_m16stubsf1
/* (float) */
STARTFN (__mips16_call_stub_sf_1)
	.set	noreorder
	mtc1	$4,$f12
	move	$18,$31
	jal	$2
	nop
	mfc1	$2,$f0
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_sf_1)
#endif

#ifdef L_m16stubsf5
/* (float, float) */
STARTFN (__mips16_call_stub_sf_5)
	.set	noreorder
	mtc1	$4,$f12
	mtc1	$5,$f14
	move	$18,$31
	jal	$2
	nop
	mfc1	$2,$f0
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_sf_5)
#endif

#if !defined(__mips_single_float) && !defined(__SINGLE_FLOAT)
#ifdef L_m16stubsf2
/* (double) */
STARTFN (__mips16_call_stub_sf_2)
	.set	noreorder
	LDDBL1
	move	$18,$31
	jal	$2
	nop
	mfc1	$2,$f0
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_sf_2)
#endif

#ifdef L_m16stubsf6
/* (double, float) */
STARTFN (__mips16_call_stub_sf_6)
	.set	noreorder
	LDDBL1
	mtc1	$6,$f14
	move	$18,$31
	jal	$2
	nop
	mfc1	$2,$f0
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_sf_6)
#endif

#ifdef L_m16stubsf9
/* (float, double) */
STARTFN (__mips16_call_stub_sf_9)
	.set	noreorder
	mtc1	$4,$f12
	LDDBL2
	move	$18,$31
	jal	$2
	nop
	mfc1	$2,$f0
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_sf_9)
#endif

#ifdef L_m16stubsf10
/* (double, double) */
STARTFN (__mips16_call_stub_sf_10)
	.set	noreorder
	LDDBL1
	LDDBL2
	move	$18,$31
	jal	$2
	nop
	mfc1	$2,$f0
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_sf_10)
#endif

/* Now we have the same set of functions again, except that this time
   the function being called returns an DFmode value.  */

#ifdef L_m16stubdf0
/* () */
STARTFN (__mips16_call_stub_df_0)
	.set	noreorder
	move	$18,$31
	jal	$2
	nop
	RETDBL
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_df_0)
#endif

#ifdef L_m16stubdf1
/* (float) */
STARTFN (__mips16_call_stub_df_1)
	.set	noreorder
	mtc1	$4,$f12
	move	$18,$31
	jal	$2
	nop
	RETDBL
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_df_1)
#endif

#ifdef L_m16stubdf2
/* (double) */
STARTFN (__mips16_call_stub_df_2)
	.set	noreorder
	LDDBL1
	move	$18,$31
	jal	$2
	nop
	RETDBL
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_df_2)
#endif

#ifdef L_m16stubdf5
/* (float, float) */
STARTFN (__mips16_call_stub_df_5)
	.set	noreorder
	mtc1	$4,$f12
	mtc1	$5,$f14
	move	$18,$31
	jal	$2
	nop
	RETDBL
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_df_5)
#endif

#ifdef L_m16stubdf6
/* (double, float) */
STARTFN (__mips16_call_stub_df_6)
	.set	noreorder
	LDDBL1
	mtc1	$6,$f14
	move	$18,$31
	jal	$2
	nop
	RETDBL
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_df_6)
#endif

#ifdef L_m16stubdf9
/* (float, double) */
STARTFN (__mips16_call_stub_df_9)
	.set	noreorder
	mtc1	$4,$f12
	LDDBL2
	move	$18,$31
	jal	$2
	nop
	RETDBL
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_df_9)
#endif

#ifdef L_m16stubdf10
/* (double, double) */
STARTFN (__mips16_call_stub_df_10)
	.set	noreorder
	LDDBL1
	LDDBL2
	move	$18,$31
	jal	$2
	nop
	RETDBL
	j	$18
	nop
	.set	reorder
	ENDFN (__mips16_call_stub_df_10)
#endif
#endif /* !__mips_single_float */