Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*-
 * Copyright (c) 2001 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Matt Thomas <matt@3am-software.com>.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * Based on: NetBSD: rb.c,v 1.6 2010/04/30 13:58:09 joerg Exp
 */

#include "archive_platform.h"

#include <stddef.h>

#include "archive_rb.h"

/* Keep in sync with archive_rb.h */
#define	RB_DIR_LEFT		0
#define	RB_DIR_RIGHT		1
#define	RB_DIR_OTHER		1
#define	rb_left			rb_nodes[RB_DIR_LEFT]
#define	rb_right		rb_nodes[RB_DIR_RIGHT]

#define	RB_FLAG_POSITION	0x2
#define	RB_FLAG_RED		0x1
#define	RB_FLAG_MASK		(RB_FLAG_POSITION|RB_FLAG_RED)
#define	RB_FATHER(rb) \
    ((struct archive_rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
#define	RB_SET_FATHER(rb, father) \
    ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))

#define	RB_SENTINEL_P(rb)	((rb) == NULL)
#define	RB_LEFT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_left)
#define	RB_RIGHT_SENTINEL_P(rb)	RB_SENTINEL_P((rb)->rb_right)
#define	RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
#define	RB_CHILDLESS_P(rb) \
    (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
#define	RB_TWOCHILDREN_P(rb) \
    (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))

#define	RB_POSITION(rb)	\
    (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
#define	RB_RIGHT_P(rb)		(RB_POSITION(rb) == RB_DIR_RIGHT)
#define	RB_LEFT_P(rb)		(RB_POSITION(rb) == RB_DIR_LEFT)
#define	RB_RED_P(rb) 		(!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
#define	RB_BLACK_P(rb) 		(RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
#define	RB_MARK_RED(rb) 	((void)((rb)->rb_info |= RB_FLAG_RED))
#define	RB_MARK_BLACK(rb) 	((void)((rb)->rb_info &= ~RB_FLAG_RED))
#define	RB_INVERT_COLOR(rb) 	((void)((rb)->rb_info ^= RB_FLAG_RED))
#define	RB_ROOT_P(rbt, rb)	((rbt)->rbt_root == (rb))
#define	RB_SET_POSITION(rb, position) \
    ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
    ((rb)->rb_info &= ~RB_FLAG_POSITION)))
#define	RB_ZERO_PROPERTIES(rb)	((void)((rb)->rb_info &= ~RB_FLAG_MASK))
#define	RB_COPY_PROPERTIES(dst, src) \
    ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
#define RB_SWAP_PROPERTIES(a, b) do { \
    uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
    (a)->rb_info ^= xorinfo; \
    (b)->rb_info ^= xorinfo; \
  } while (/*CONSTCOND*/ 0)

static void __archive_rb_tree_insert_rebalance(struct archive_rb_tree *,
    struct archive_rb_node *);
static void __archive_rb_tree_removal_rebalance(struct archive_rb_tree *,
    struct archive_rb_node *, unsigned int);

#define	RB_SENTINEL_NODE	NULL

#define T	1
#define	F	0

void
__archive_rb_tree_init(struct archive_rb_tree *rbt,
    const struct archive_rb_tree_ops *ops)
{
	rbt->rbt_ops = ops;
	*((struct archive_rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
}

struct archive_rb_node *
__archive_rb_tree_find_node(struct archive_rb_tree *rbt, const void *key)
{
	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
	struct archive_rb_node *parent = rbt->rbt_root;

	while (!RB_SENTINEL_P(parent)) {
		const signed int diff = (*compare_key)(parent, key);
		if (diff == 0)
			return parent;
		parent = parent->rb_nodes[diff > 0];
	}

	return NULL;
}
 
struct archive_rb_node *
__archive_rb_tree_find_node_geq(struct archive_rb_tree *rbt, const void *key)
{
	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
	struct archive_rb_node *parent = rbt->rbt_root;
	struct archive_rb_node *last = NULL;

	while (!RB_SENTINEL_P(parent)) {
		const signed int diff = (*compare_key)(parent, key);
		if (diff == 0)
			return parent;
		if (diff < 0)
			last = parent;
		parent = parent->rb_nodes[diff > 0];
	}

	return last;
}
 
struct archive_rb_node *
__archive_rb_tree_find_node_leq(struct archive_rb_tree *rbt, const void *key)
{
	archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
	struct archive_rb_node *parent = rbt->rbt_root;
	struct archive_rb_node *last = NULL;

	while (!RB_SENTINEL_P(parent)) {
		const signed int diff = (*compare_key)(parent, key);
		if (diff == 0)
			return parent;
		if (diff > 0)
			last = parent;
		parent = parent->rb_nodes[diff > 0];
	}

	return last;
}

int
__archive_rb_tree_insert_node(struct archive_rb_tree *rbt,
    struct archive_rb_node *self)
{
	archive_rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
	struct archive_rb_node *parent, *tmp;
	unsigned int position;
	int rebalance;

	tmp = rbt->rbt_root;
	/*
	 * This is a hack.  Because rbt->rbt_root is just a
	 * struct archive_rb_node *, just like rb_node->rb_nodes[RB_DIR_LEFT],
	 * we can use this fact to avoid a lot of tests for root and know
	 * that even at root, updating
	 * RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
	 * update rbt->rbt_root.
	 */
	parent = (struct archive_rb_node *)(void *)&rbt->rbt_root;
	position = RB_DIR_LEFT;

	/*
	 * Find out where to place this new leaf.
	 */
	while (!RB_SENTINEL_P(tmp)) {
		const signed int diff = (*compare_nodes)(tmp, self);
		if (diff == 0) {
			/*
			 * Node already exists; don't insert.
			 */
			return F;
		}
		parent = tmp;
		position = (diff > 0);
		tmp = parent->rb_nodes[position];
	}

	/*
	 * Initialize the node and insert as a leaf into the tree.
	 */
	RB_SET_FATHER(self, parent);
	RB_SET_POSITION(self, position);
	if (parent == (struct archive_rb_node *)(void *)&rbt->rbt_root) {
		RB_MARK_BLACK(self);		/* root is always black */
		rebalance = F;
	} else {
		/*
		 * All new nodes are colored red.  We only need to rebalance
		 * if our parent is also red.
		 */
		RB_MARK_RED(self);
		rebalance = RB_RED_P(parent);
	}
	self->rb_left = parent->rb_nodes[position];
	self->rb_right = parent->rb_nodes[position];
	parent->rb_nodes[position] = self;

	/*
	 * Rebalance tree after insertion
	 */
	if (rebalance)
		__archive_rb_tree_insert_rebalance(rbt, self);

	return T;
}

/*
 * Swap the location and colors of 'self' and its child @ which.  The child
 * can not be a sentinel node.  This is our rotation function.  However,
 * since it preserves coloring, it great simplifies both insertion and
 * removal since rotation almost always involves the exchanging of colors
 * as a separate step.
 */
/*ARGSUSED*/
static void
__archive_rb_tree_reparent_nodes(
    struct archive_rb_node *old_father, const unsigned int which)
{
	const unsigned int other = which ^ RB_DIR_OTHER;
	struct archive_rb_node * const grandpa = RB_FATHER(old_father);
	struct archive_rb_node * const old_child = old_father->rb_nodes[which];
	struct archive_rb_node * const new_father = old_child;
	struct archive_rb_node * const new_child = old_father;

	if (new_father == NULL)
		return;
	/*
	 * Exchange descendant linkages.
	 */
	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
	new_child->rb_nodes[which] = old_child->rb_nodes[other];
	new_father->rb_nodes[other] = new_child;

	/*
	 * Update ancestor linkages
	 */
	RB_SET_FATHER(new_father, grandpa);
	RB_SET_FATHER(new_child, new_father);

	/*
	 * Exchange properties between new_father and new_child.  The only
	 * change is that new_child's position is now on the other side.
	 */
	RB_SWAP_PROPERTIES(new_father, new_child);
	RB_SET_POSITION(new_child, other);

	/*
	 * Make sure to reparent the new child to ourself.
	 */
	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
		RB_SET_POSITION(new_child->rb_nodes[which], which);
	}

}

static void
__archive_rb_tree_insert_rebalance(struct archive_rb_tree *rbt,
    struct archive_rb_node *self)
{
	struct archive_rb_node * father = RB_FATHER(self);
	struct archive_rb_node * grandpa;
	struct archive_rb_node * uncle;
	unsigned int which;
	unsigned int other;

	for (;;) {
		/*
		 * We are red and our parent is red, therefore we must have a
		 * grandfather and he must be black.
		 */
		grandpa = RB_FATHER(father);
		which = (father == grandpa->rb_right);
		other = which ^ RB_DIR_OTHER;
		uncle = grandpa->rb_nodes[other];

		if (RB_BLACK_P(uncle))
			break;

		/*
		 * Case 1: our uncle is red
		 *   Simply invert the colors of our parent and
		 *   uncle and make our grandparent red.  And
		 *   then solve the problem up at his level.
		 */
		RB_MARK_BLACK(uncle);
		RB_MARK_BLACK(father);
		if (RB_ROOT_P(rbt, grandpa)) {
			/*
			 * If our grandpa is root, don't bother
			 * setting him to red, just return.
			 */
			return;
		}
		RB_MARK_RED(grandpa);
		self = grandpa;
		father = RB_FATHER(self);
		if (RB_BLACK_P(father)) {
			/*
			 * If our great-grandpa is black, we're done.
			 */
			return;
		}
	}

	/*
	 * Case 2&3: our uncle is black.
	 */
	if (self == father->rb_nodes[other]) {
		/*
		 * Case 2: we are on the same side as our uncle
		 *   Swap ourselves with our parent so this case
		 *   becomes case 3.  Basically our parent becomes our
		 *   child.
		 */
		__archive_rb_tree_reparent_nodes(father, other);
	}
	/*
	 * Case 3: we are opposite a child of a black uncle.
	 *   Swap our parent and grandparent.  Since our grandfather
	 *   is black, our father will become black and our new sibling
	 *   (former grandparent) will become red.
	 */
	__archive_rb_tree_reparent_nodes(grandpa, which);

	/*
	 * Final step: Set the root to black.
	 */
	RB_MARK_BLACK(rbt->rbt_root);
}

static void
__archive_rb_tree_prune_node(struct archive_rb_tree *rbt,
    struct archive_rb_node *self, int rebalance)
{
	const unsigned int which = RB_POSITION(self);
	struct archive_rb_node *father = RB_FATHER(self);

	/*
	 * Since we are childless, we know that self->rb_left is pointing
	 * to the sentinel node.
	 */
	father->rb_nodes[which] = self->rb_left;

	/*
	 * Rebalance if requested.
	 */
	if (rebalance)
		__archive_rb_tree_removal_rebalance(rbt, father, which);
}

/*
 * When deleting an interior node
 */
static void
__archive_rb_tree_swap_prune_and_rebalance(struct archive_rb_tree *rbt,
    struct archive_rb_node *self, struct archive_rb_node *standin)
{
	const unsigned int standin_which = RB_POSITION(standin);
	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
	struct archive_rb_node *standin_son;
	struct archive_rb_node *standin_father = RB_FATHER(standin);
	int rebalance = RB_BLACK_P(standin);

	if (standin_father == self) {
		/*
		 * As a child of self, any children would be opposite of
		 * our parent.
		 */
		standin_son = standin->rb_nodes[standin_which];
	} else {
		/*
		 * Since we aren't a child of self, any children would be
		 * on the same side as our parent.
		 */
		standin_son = standin->rb_nodes[standin_other];
	}

	if (RB_RED_P(standin_son)) {
		/*
		 * We know we have a red child so if we flip it to black
		 * we don't have to rebalance.
		 */
		RB_MARK_BLACK(standin_son);
		rebalance = F;

		if (standin_father != self) {
			/*
			 * Change the son's parentage to point to his grandpa.
			 */
			RB_SET_FATHER(standin_son, standin_father);
			RB_SET_POSITION(standin_son, standin_which);
		}
	}

	if (standin_father == self) {
		/*
		 * If we are about to delete the standin's father, then when
		 * we call rebalance, we need to use ourselves as our father.
		 * Otherwise remember our original father.  Also, since we are
		 * our standin's father we only need to reparent the standin's
		 * brother.
		 *
		 * |    R      -->     S    |
		 * |  Q   S    -->   Q   T  |
		 * |        t  -->          |
		 *
		 * Have our son/standin adopt his brother as his new son.
		 */
		standin_father = standin;
	} else {
		/*
		 * |    R          -->    S       .  |
		 * |   / \  |   T  -->   / \  |  /   |
		 * |  ..... | S    -->  ..... | T    |
		 *
		 * Sever standin's connection to his father.
		 */
		standin_father->rb_nodes[standin_which] = standin_son;
		/*
		 * Adopt the far son.
		 */
		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
		/*
		 * Use standin_other because we need to preserve standin_which
		 * for the removal_rebalance.
		 */
		standin_other = standin_which;
	}

	/*
	 * Move the only remaining son to our standin.  If our standin is our
	 * son, this will be the only son needed to be moved.
	 */
	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);

	/*
	 * Now copy the result of self to standin and then replace
	 * self with standin in the tree.
	 */
	RB_COPY_PROPERTIES(standin, self);
	RB_SET_FATHER(standin, RB_FATHER(self));
	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;

	if (rebalance)
		__archive_rb_tree_removal_rebalance(rbt, standin_father, standin_which);
}

/*
 * We could do this by doing
 *	__archive_rb_tree_node_swap(rbt, self, which);
 *	__archive_rb_tree_prune_node(rbt, self, F);
 *
 * But it's more efficient to just evaluate and recolor the child.
 */
static void
__archive_rb_tree_prune_blackred_branch(
    struct archive_rb_node *self, unsigned int which)
{
	struct archive_rb_node *father = RB_FATHER(self);
	struct archive_rb_node *son = self->rb_nodes[which];

	/*
	 * Remove ourselves from the tree and give our former child our
	 * properties (position, color, root).
	 */
	RB_COPY_PROPERTIES(son, self);
	father->rb_nodes[RB_POSITION(son)] = son;
	RB_SET_FATHER(son, father);
}
/*
 *
 */
void
__archive_rb_tree_remove_node(struct archive_rb_tree *rbt,
    struct archive_rb_node *self)
{
	struct archive_rb_node *standin;
	unsigned int which;

	/*
	 * In the following diagrams, we (the node to be removed) are S.  Red
	 * nodes are lowercase.  T could be either red or black.
	 *
	 * Remember the major axiom of the red-black tree: the number of
	 * black nodes from the root to each leaf is constant across all
	 * leaves, only the number of red nodes varies.
	 *
	 * Thus removing a red leaf doesn't require any other changes to a
	 * red-black tree.  So if we must remove a node, attempt to rearrange
	 * the tree so we can remove a red node.
	 *
	 * The simplest case is a childless red node or a childless root node:
	 *
	 * |    T  -->    T  |    or    |  R  -->  *  |
	 * |  s    -->  *    |
	 */
	if (RB_CHILDLESS_P(self)) {
		const int rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
		__archive_rb_tree_prune_node(rbt, self, rebalance);
		return;
	}
	if (!RB_TWOCHILDREN_P(self)) {
		/*
		 * The next simplest case is the node we are deleting is
		 * black and has one red child.
		 *
		 * |      T  -->      T  -->      T  |
		 * |    S    -->  R      -->  R      |
		 * |  r      -->    s    -->    *    |
		 */
		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
		__archive_rb_tree_prune_blackred_branch(self, which);
		return;
	}

	/*
	 * We invert these because we prefer to remove from the inside of
	 * the tree.
	 */
	which = RB_POSITION(self) ^ RB_DIR_OTHER;

	/*
	 * Let's find the node closes to us opposite of our parent
	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
	 */
	standin = __archive_rb_tree_iterate(rbt, self, which);
	__archive_rb_tree_swap_prune_and_rebalance(rbt, self, standin);
}

static void
__archive_rb_tree_removal_rebalance(struct archive_rb_tree *rbt,
    struct archive_rb_node *parent, unsigned int which)
{

	while (RB_BLACK_P(parent->rb_nodes[which])) {
		unsigned int other = which ^ RB_DIR_OTHER;
		struct archive_rb_node *brother = parent->rb_nodes[other];

		if (brother == NULL)
			return;/* The tree may be broken. */
		/*
		 * For cases 1, 2a, and 2b, our brother's children must
		 * be black and our father must be black
		 */
		if (RB_BLACK_P(parent)
		    && RB_BLACK_P(brother->rb_left)
		    && RB_BLACK_P(brother->rb_right)) {
			if (RB_RED_P(brother)) {
				/*
				 * Case 1: Our brother is red, swap its
				 * position (and colors) with our parent. 
				 * This should now be case 2b (unless C or E
				 * has a red child which is case 3; thus no
				 * explicit branch to case 2b).
				 *
				 *    B         ->        D
				 *  A     d     ->    b     E
				 *      C   E   ->  A   C
				 */
				__archive_rb_tree_reparent_nodes(parent, other);
				brother = parent->rb_nodes[other];
				if (brother == NULL)
					return;/* The tree may be broken. */
			} else {
				/*
				 * Both our parent and brother are black.
				 * Change our brother to red, advance up rank
				 * and go through the loop again.
				 *
				 *    B         ->   *B
				 * *A     D     ->  A     d
				 *      C   E   ->      C   E
				 */
				RB_MARK_RED(brother);
				if (RB_ROOT_P(rbt, parent))
					return;	/* root == parent == black */
				which = RB_POSITION(parent);
				parent = RB_FATHER(parent);
				continue;
			}
		}
		/*
		 * Avoid an else here so that case 2a above can hit either
		 * case 2b, 3, or 4.
		 */
		if (RB_RED_P(parent)
		    && RB_BLACK_P(brother)
		    && RB_BLACK_P(brother->rb_left)
		    && RB_BLACK_P(brother->rb_right)) {
			/*
			 * We are black, our father is red, our brother and
			 * both nephews are black.  Simply invert/exchange the
			 * colors of our father and brother (to black and red
			 * respectively).
			 *
			 *	|    f        -->    F        |
			 *	|  *     B    -->  *     b    |
			 *	|      N   N  -->      N   N  |
			 */
			RB_MARK_BLACK(parent);
			RB_MARK_RED(brother);
			break;		/* We're done! */
		} else {
			/*
			 * Our brother must be black and have at least one
			 * red child (it may have two).
			 */
			if (RB_BLACK_P(brother->rb_nodes[other])) {
				/*
				 * Case 3: our brother is black, our near
				 * nephew is red, and our far nephew is black.
				 * Swap our brother with our near nephew.  
				 * This result in a tree that matches case 4.
				 * (Our father could be red or black).
				 *
				 *	|    F      -->    F      |
				 *	|  x     B  -->  x   B    |
				 *	|      n    -->        n  |
				 */
				__archive_rb_tree_reparent_nodes(brother, which);
				brother = parent->rb_nodes[other];
			}
			/*
			 * Case 4: our brother is black and our far nephew
			 * is red.  Swap our father and brother locations and
			 * change our far nephew to black.  (these can be
			 * done in either order so we change the color first).
			 * The result is a valid red-black tree and is a
			 * terminal case.  (again we don't care about the
			 * father's color)
			 *
			 * If the father is red, we will get a red-black-black
			 * tree:
			 *	|  f      ->  f      -->    b    |
			 *	|    B    ->    B    -->  F   N  |
			 *	|      n  ->      N  -->         |
			 *
			 * If the father is black, we will get an all black
			 * tree:
			 *	|  F      ->  F      -->    B    |
			 *	|    B    ->    B    -->  F   N  |
			 *	|      n  ->      N  -->         |
			 *
			 * If we had two red nephews, then after the swap,
			 * our former father would have a red grandson. 
			 */
			if (brother->rb_nodes[other] == NULL)
				return;/* The tree may be broken. */
			RB_MARK_BLACK(brother->rb_nodes[other]);
			__archive_rb_tree_reparent_nodes(parent, other);
			break;		/* We're done! */
		}
	}
}

struct archive_rb_node *
__archive_rb_tree_iterate(struct archive_rb_tree *rbt,
    struct archive_rb_node *self, const unsigned int direction)
{
	const unsigned int other = direction ^ RB_DIR_OTHER;

	if (self == NULL) {
		self = rbt->rbt_root;
		if (RB_SENTINEL_P(self))
			return NULL;
		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
			self = self->rb_nodes[direction];
		return self;
	}
	/*
	 * We can't go any further in this direction.  We proceed up in the
	 * opposite direction until our parent is in direction we want to go.
	 */
	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
		while (!RB_ROOT_P(rbt, self)) {
			if (other == (unsigned int)RB_POSITION(self))
				return RB_FATHER(self);
			self = RB_FATHER(self);
		}
		return NULL;
	}

	/*
	 * Advance down one in current direction and go down as far as possible
	 * in the opposite direction.
	 */
	self = self->rb_nodes[direction];
	while (!RB_SENTINEL_P(self->rb_nodes[other]))
		self = self->rb_nodes[other];
	return self;
}