Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//===-------------------------- hash.cpp ----------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "__hash_table"
#include "algorithm"
#include "stdexcept"
#include "type_traits"

#ifdef __clang__
#pragma clang diagnostic ignored "-Wtautological-constant-out-of-range-compare"
#endif

_LIBCPP_BEGIN_NAMESPACE_STD

namespace {

// handle all next_prime(i) for i in [1, 210), special case 0
const unsigned small_primes[] =
{
    0,
    2,
    3,
    5,
    7,
    11,
    13,
    17,
    19,
    23,
    29,
    31,
    37,
    41,
    43,
    47,
    53,
    59,
    61,
    67,
    71,
    73,
    79,
    83,
    89,
    97,
    101,
    103,
    107,
    109,
    113,
    127,
    131,
    137,
    139,
    149,
    151,
    157,
    163,
    167,
    173,
    179,
    181,
    191,
    193,
    197,
    199,
    211
};

// potential primes = 210*k + indices[i], k >= 1
//   these numbers are not divisible by 2, 3, 5 or 7
//   (or any integer 2 <= j <= 10 for that matter).
const unsigned indices[] =
{
    1,
    11,
    13,
    17,
    19,
    23,
    29,
    31,
    37,
    41,
    43,
    47,
    53,
    59,
    61,
    67,
    71,
    73,
    79,
    83,
    89,
    97,
    101,
    103,
    107,
    109,
    113,
    121,
    127,
    131,
    137,
    139,
    143,
    149,
    151,
    157,
    163,
    167,
    169,
    173,
    179,
    181,
    187,
    191,
    193,
    197,
    199,
    209
};

}

// Returns:  If n == 0, returns 0.  Else returns the lowest prime number that
// is greater than or equal to n.
//
// The algorithm creates a list of small primes, plus an open-ended list of
// potential primes.  All prime numbers are potential prime numbers.  However
// some potential prime numbers are not prime.  In an ideal world, all potential
// prime numbers would be prime.  Candidate prime numbers are chosen as the next
// highest potential prime.  Then this number is tested for prime by dividing it
// by all potential prime numbers less than the sqrt of the candidate.
//
// This implementation defines potential primes as those numbers not divisible
// by 2, 3, 5, and 7.  Other (common) implementations define potential primes
// as those not divisible by 2.  A few other implementations define potential
// primes as those not divisible by 2 or 3.  By raising the number of small
// primes which the potential prime is not divisible by, the set of potential
// primes more closely approximates the set of prime numbers.  And thus there
// are fewer potential primes to search, and fewer potential primes to divide
// against.

template <size_t _Sz = sizeof(size_t)>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if<_Sz == 4, void>::type
__check_for_overflow(size_t N)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
    if (N > 0xFFFFFFFB)
        throw overflow_error("__next_prime overflow");
#else
    (void)N;
#endif
}

template <size_t _Sz = sizeof(size_t)>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if<_Sz == 8, void>::type
__check_for_overflow(size_t N)
{
#ifndef _LIBCPP_NO_EXCEPTIONS
    if (N > 0xFFFFFFFFFFFFFFC5ull)
        throw overflow_error("__next_prime overflow");
#else
    (void)N;
#endif
}

size_t
__next_prime(size_t n)
{
    const size_t L = 210;
    const size_t N = sizeof(small_primes) / sizeof(small_primes[0]);
    // If n is small enough, search in small_primes
    if (n <= small_primes[N-1])
        return *std::lower_bound(small_primes, small_primes + N, n);
    // Else n > largest small_primes
    // Check for overflow
    __check_for_overflow(n);
    // Start searching list of potential primes: L * k0 + indices[in]
    const size_t M = sizeof(indices) / sizeof(indices[0]);
    // Select first potential prime >= n
    //   Known a-priori n >= L
    size_t k0 = n / L;
    size_t in = static_cast<size_t>(std::lower_bound(indices, indices + M, n - k0 * L)
                                    - indices);
    n = L * k0 + indices[in];
    while (true)
    {
        // Divide n by all primes or potential primes (i) until:
        //    1.  The division is even, so try next potential prime.
        //    2.  The i > sqrt(n), in which case n is prime.
        // It is known a-priori that n is not divisible by 2, 3, 5 or 7,
        //    so don't test those (j == 5 ->  divide by 11 first).  And the
        //    potential primes start with 211, so don't test against the last
        //    small prime.
        for (size_t j = 5; j < N - 1; ++j)
        {
            const std::size_t p = small_primes[j];
            const std::size_t q = n / p;
            if (q < p)
                return n;
            if (n == q * p)
                goto next;
        }
        // n wasn't divisible by small primes, try potential primes
        {
            size_t i = 211;
            while (true)
            {
                std::size_t q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 10;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 8;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 8;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 6;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 4;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 2;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                i += 10;
                q = n / i;
                if (q < i)
                    return n;
                if (n == q * i)
                    break;

                // This will loop i to the next "plane" of potential primes
                i += 2;
            }
        }
next:
        // n is not prime.  Increment n to next potential prime.
        if (++in == M)
        {
            ++k0;
            in = 0;
        }
        n = L * k0 + indices[in];
    }
}

_LIBCPP_END_NAMESPACE_STD