Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
// Bits and pieces used in algorithms -*- C++ -*-

// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996-1998
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_algobase.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _ALGOBASE_H
#define _ALGOBASE_H 1

#include <bits/c++config.h>
#include <cstring>
#include <climits>
#include <cstdlib>
#include <cstddef>
#include <iosfwd>
#include <bits/stl_pair.h>
#include <bits/cpp_type_traits.h>
#include <ext/type_traits.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>
#include <bits/stl_iterator.h>
#include <bits/concept_check.h>
#include <debug/debug.h>

_GLIBCXX_BEGIN_NAMESPACE(std)

  /**
   *  @brief Swaps two values.
   *  @param  a  A thing of arbitrary type.
   *  @param  b  Another thing of arbitrary type.
   *  @return   Nothing.
   *
   *  This is the simple classic generic implementation.  It will work on
   *  any type which has a copy constructor and an assignment operator.
  */
  template<typename _Tp>
    inline void
    swap(_Tp& __a, _Tp& __b)
    {
      // concept requirements
      __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)

      _Tp __tmp = __a;
      __a = __b;
      __b = __tmp;
    }

  // See http://gcc.gnu.org/ml/libstdc++/2004-08/msg00167.html: in a
  // nutshell, we are partially implementing the resolution of DR 187,
  // when it's safe, i.e., the value_types are equal.
  template<bool _BoolType>
    struct __iter_swap
    {
      template<typename _ForwardIterator1, typename _ForwardIterator2>
        static void
        iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
        {
          typedef typename iterator_traits<_ForwardIterator1>::value_type
            _ValueType1;
          _ValueType1 __tmp = *__a;
          *__a = *__b;
          *__b = __tmp; 
	}
    };

  template<>
    struct __iter_swap<true>
    {
      template<typename _ForwardIterator1, typename _ForwardIterator2>
        static void 
        iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
        {
          swap(*__a, *__b);
        }
    };

  /**
   *  @brief Swaps the contents of two iterators.
   *  @param  a  An iterator.
   *  @param  b  Another iterator.
   *  @return   Nothing.
   *
   *  This function swaps the values pointed to by two iterators, not the
   *  iterators themselves.
  */
  template<typename _ForwardIterator1, typename _ForwardIterator2>
    inline void
    iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
    {
      typedef typename iterator_traits<_ForwardIterator1>::value_type
	_ValueType1;
      typedef typename iterator_traits<_ForwardIterator2>::value_type
	_ValueType2;

      // concept requirements
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
				  _ForwardIterator1>)
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
				  _ForwardIterator2>)
      __glibcxx_function_requires(_ConvertibleConcept<_ValueType1,
				  _ValueType2>)
      __glibcxx_function_requires(_ConvertibleConcept<_ValueType2,
				  _ValueType1>)

      typedef typename iterator_traits<_ForwardIterator1>::reference
	_ReferenceType1;
      typedef typename iterator_traits<_ForwardIterator2>::reference
	_ReferenceType2;
      std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value &&
	__are_same<_ValueType1 &, _ReferenceType1>::__value &&
	__are_same<_ValueType2 &, _ReferenceType2>::__value>::
	iter_swap(__a, __b);
    }

  /**
   *  @brief This does what you think it does.
   *  @param  a  A thing of arbitrary type.
   *  @param  b  Another thing of arbitrary type.
   *  @return   The lesser of the parameters.
   *
   *  This is the simple classic generic implementation.  It will work on
   *  temporary expressions, since they are only evaluated once, unlike a
   *  preprocessor macro.
  */
  template<typename _Tp>
    inline const _Tp&
    min(const _Tp& __a, const _Tp& __b)
    {
      // concept requirements
      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
      //return __b < __a ? __b : __a;
      if (__b < __a)
	return __b;
      return __a;
    }

  /**
   *  @brief This does what you think it does.
   *  @param  a  A thing of arbitrary type.
   *  @param  b  Another thing of arbitrary type.
   *  @return   The greater of the parameters.
   *
   *  This is the simple classic generic implementation.  It will work on
   *  temporary expressions, since they are only evaluated once, unlike a
   *  preprocessor macro.
  */
  template<typename _Tp>
    inline const _Tp&
    max(const _Tp& __a, const _Tp& __b)
    {
      // concept requirements
      __glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
      //return  __a < __b ? __b : __a;
      if (__a < __b)
	return __b;
      return __a;
    }

  /**
   *  @brief This does what you think it does.
   *  @param  a  A thing of arbitrary type.
   *  @param  b  Another thing of arbitrary type.
   *  @param  comp  A @link s20_3_3_comparisons comparison functor@endlink.
   *  @return   The lesser of the parameters.
   *
   *  This will work on temporary expressions, since they are only evaluated
   *  once, unlike a preprocessor macro.
  */
  template<typename _Tp, typename _Compare>
    inline const _Tp&
    min(const _Tp& __a, const _Tp& __b, _Compare __comp)
    {
      //return __comp(__b, __a) ? __b : __a;
      if (__comp(__b, __a))
	return __b;
      return __a;
    }

  /**
   *  @brief This does what you think it does.
   *  @param  a  A thing of arbitrary type.
   *  @param  b  Another thing of arbitrary type.
   *  @param  comp  A @link s20_3_3_comparisons comparison functor@endlink.
   *  @return   The greater of the parameters.
   *
   *  This will work on temporary expressions, since they are only evaluated
   *  once, unlike a preprocessor macro.
  */
  template<typename _Tp, typename _Compare>
    inline const _Tp&
    max(const _Tp& __a, const _Tp& __b, _Compare __comp)
    {
      //return __comp(__a, __b) ? __b : __a;
      if (__comp(__a, __b))
	return __b;
      return __a;
    }

  // All of these auxiliary structs serve two purposes.  (1) Replace
  // calls to copy with memmove whenever possible.  (Memmove, not memcpy,
  // because the input and output ranges are permitted to overlap.)
  // (2) If we're using random access iterators, then write the loop as
  // a for loop with an explicit count.

  template<bool, typename>
    struct __copy
    {
      template<typename _II, typename _OI>
        static _OI
        copy(_II __first, _II __last, _OI __result)
        {
	  for (; __first != __last; ++__result, ++__first)
	    *__result = *__first;
	  return __result;
	}
    };

  template<bool _BoolType>
    struct __copy<_BoolType, random_access_iterator_tag>
    {
      template<typename _II, typename _OI>
        static _OI
        copy(_II __first, _II __last, _OI __result)
        { 
	  typedef typename iterator_traits<_II>::difference_type _Distance;
	  for(_Distance __n = __last - __first; __n > 0; --__n)
	    {
	      *__result = *__first;
	      ++__first;
	      ++__result;
	    }
	  return __result;
	}
    };

  template<>
    struct __copy<true, random_access_iterator_tag>
    {
      template<typename _Tp>
        static _Tp*
        copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
        { 
	  std::memmove(__result, __first, sizeof(_Tp) * (__last - __first));
	  return __result + (__last - __first);
	}
    };

  template<typename _II, typename _OI>
    inline _OI
    __copy_aux(_II __first, _II __last, _OI __result)
    {
      typedef typename iterator_traits<_II>::value_type _ValueTypeI;
      typedef typename iterator_traits<_OI>::value_type _ValueTypeO;
      typedef typename iterator_traits<_II>::iterator_category _Category;
      const bool __simple = (__is_scalar<_ValueTypeI>::__value
	                     && __is_pointer<_II>::__value
	                     && __is_pointer<_OI>::__value
			     && __are_same<_ValueTypeI, _ValueTypeO>::__value);

      return std::__copy<__simple, _Category>::copy(__first, __last, __result);
    }

  // Helpers for streambuf iterators (either istream or ostream).
  template<typename _CharT>
  typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, 
				  ostreambuf_iterator<_CharT> >::__type
    __copy_aux(_CharT*, _CharT*, ostreambuf_iterator<_CharT>);

  template<typename _CharT>
    typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, 
				    ostreambuf_iterator<_CharT> >::__type
    __copy_aux(const _CharT*, const _CharT*, ostreambuf_iterator<_CharT>);

  template<typename _CharT>
  typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, _CharT*>::__type
    __copy_aux(istreambuf_iterator<_CharT>, istreambuf_iterator<_CharT>,
	       _CharT*);

  template<bool, bool>
    struct __copy_normal
    {
      template<typename _II, typename _OI>
        static _OI
        __copy_n(_II __first, _II __last, _OI __result)
        { return std::__copy_aux(__first, __last, __result); }
    };

  template<>
    struct __copy_normal<true, false>
    {
      template<typename _II, typename _OI>
        static _OI
        __copy_n(_II __first, _II __last, _OI __result)
        { return std::__copy_aux(__first.base(), __last.base(), __result); }
    };

  template<>
    struct __copy_normal<false, true>
    {
      template<typename _II, typename _OI>
        static _OI
        __copy_n(_II __first, _II __last, _OI __result)
        { return _OI(std::__copy_aux(__first, __last, __result.base())); }
    };

  template<>
    struct __copy_normal<true, true>
    {
      template<typename _II, typename _OI>
        static _OI
        __copy_n(_II __first, _II __last, _OI __result)
        { return _OI(std::__copy_aux(__first.base(), __last.base(),
				     __result.base())); }
    };

  /**
   *  @brief Copies the range [first,last) into result.
   *  @param  first  An input iterator.
   *  @param  last   An input iterator.
   *  @param  result An output iterator.
   *  @return   result + (last - first)
   *
   *  This inline function will boil down to a call to @c memmove whenever
   *  possible.  Failing that, if random access iterators are passed, then the
   *  loop count will be known (and therefore a candidate for compiler
   *  optimizations such as unrolling).  Result may not be contained within
   *  [first,last); the copy_backward function should be used instead.
   *
   *  Note that the end of the output range is permitted to be contained
   *  within [first,last).
  */
  template<typename _InputIterator, typename _OutputIterator>
    inline _OutputIterator
    copy(_InputIterator __first, _InputIterator __last,
	 _OutputIterator __result)
    {
      // concept requirements
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
	    typename iterator_traits<_InputIterator>::value_type>)
      __glibcxx_requires_valid_range(__first, __last);

       const bool __in = __is_normal_iterator<_InputIterator>::__value;
       const bool __out = __is_normal_iterator<_OutputIterator>::__value;
       return std::__copy_normal<__in, __out>::__copy_n(__first, __last,
							__result);
    }

  // Overload for streambuf iterators.
  template<typename _CharT>
    typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, 
  	       			    ostreambuf_iterator<_CharT> >::__type
    copy(istreambuf_iterator<_CharT>, istreambuf_iterator<_CharT>,
	 ostreambuf_iterator<_CharT>);

  template<bool, typename>
    struct __copy_backward
    {
      template<typename _BI1, typename _BI2>
        static _BI2
        __copy_b(_BI1 __first, _BI1 __last, _BI2 __result)
        { 
	  while (__first != __last)
	    *--__result = *--__last;
	  return __result;
	}
    };

  template<bool _BoolType>
    struct __copy_backward<_BoolType, random_access_iterator_tag>
    {
      template<typename _BI1, typename _BI2>
        static _BI2
        __copy_b(_BI1 __first, _BI1 __last, _BI2 __result)
        { 
	  typename iterator_traits<_BI1>::difference_type __n;
	  for (__n = __last - __first; __n > 0; --__n)
	    *--__result = *--__last;
	  return __result;
	}
    };

  template<>
    struct __copy_backward<true, random_access_iterator_tag>
    {
      template<typename _Tp>
        static _Tp*
        __copy_b(const _Tp* __first, const _Tp* __last, _Tp* __result)
        { 
	  const ptrdiff_t _Num = __last - __first;
	  std::memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
	  return __result - _Num;
	}
    };

  template<typename _BI1, typename _BI2>
    inline _BI2
    __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result)
    {
      typedef typename iterator_traits<_BI1>::value_type _ValueType1;
      typedef typename iterator_traits<_BI2>::value_type _ValueType2;
      typedef typename iterator_traits<_BI1>::iterator_category _Category;
      const bool __simple = (__is_scalar<_ValueType1>::__value
	                     && __is_pointer<_BI1>::__value
	                     && __is_pointer<_BI2>::__value
			     && __are_same<_ValueType1, _ValueType2>::__value);

      return std::__copy_backward<__simple, _Category>::__copy_b(__first,
								 __last,
								 __result);
    }

  template<bool, bool>
    struct __copy_backward_normal
    {
      template<typename _BI1, typename _BI2>
        static _BI2
        __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
        { return std::__copy_backward_aux(__first, __last, __result); }
    };

  template<>
    struct __copy_backward_normal<true, false>
    {
      template<typename _BI1, typename _BI2>
        static _BI2
        __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
        { return std::__copy_backward_aux(__first.base(), __last.base(),
					  __result); }
    };

  template<>
    struct __copy_backward_normal<false, true>
    {
      template<typename _BI1, typename _BI2>
        static _BI2
        __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
        { return _BI2(std::__copy_backward_aux(__first, __last,
					       __result.base())); }
    };

  template<>
    struct __copy_backward_normal<true, true>
    {
      template<typename _BI1, typename _BI2>
        static _BI2
        __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result)
        { return _BI2(std::__copy_backward_aux(__first.base(), __last.base(),
					       __result.base())); }
    };

  /**
   *  @brief Copies the range [first,last) into result.
   *  @param  first  A bidirectional iterator.
   *  @param  last   A bidirectional iterator.
   *  @param  result A bidirectional iterator.
   *  @return   result - (first - last)
   *
   *  The function has the same effect as copy, but starts at the end of the
   *  range and works its way to the start, returning the start of the result.
   *  This inline function will boil down to a call to @c memmove whenever
   *  possible.  Failing that, if random access iterators are passed, then the
   *  loop count will be known (and therefore a candidate for compiler
   *  optimizations such as unrolling).
   *
   *  Result may not be in the range [first,last).  Use copy instead.  Note
   *  that the start of the output range may overlap [first,last).
  */
  template <typename _BI1, typename _BI2>
    inline _BI2
    copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
    {
      // concept requirements
      __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>)
      __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>)
      __glibcxx_function_requires(_ConvertibleConcept<
	    typename iterator_traits<_BI1>::value_type,
	    typename iterator_traits<_BI2>::value_type>)
      __glibcxx_requires_valid_range(__first, __last);

      const bool __bi1 = __is_normal_iterator<_BI1>::__value;
      const bool __bi2 = __is_normal_iterator<_BI2>::__value;
      return std::__copy_backward_normal<__bi1, __bi2>::__copy_b_n(__first,
								   __last,
								   __result);
    }

  template<bool>
    struct __fill
    {
      template<typename _ForwardIterator, typename _Tp>
        static void
        fill(_ForwardIterator __first, _ForwardIterator __last,
	     const _Tp& __value)
        {
	  for (; __first != __last; ++__first)
	    *__first = __value;
	}
    };

  template<>
    struct __fill<true>
    {
      template<typename _ForwardIterator, typename _Tp>
        static void
        fill(_ForwardIterator __first, _ForwardIterator __last,
	     const _Tp& __value)
        {
	  const _Tp __tmp = __value;
	  for (; __first != __last; ++__first)
	    *__first = __tmp;
	}
    };

  /**
   *  @brief Fills the range [first,last) with copies of value.
   *  @param  first  A forward iterator.
   *  @param  last   A forward iterator.
   *  @param  value  A reference-to-const of arbitrary type.
   *  @return   Nothing.
   *
   *  This function fills a range with copies of the same value.  For one-byte
   *  types filling contiguous areas of memory, this becomes an inline call to
   *  @c memset.
  */
  template<typename _ForwardIterator, typename _Tp>
    void
    fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
    {
      // concept requirements
      __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
				  _ForwardIterator>)
      __glibcxx_requires_valid_range(__first, __last);

      const bool __scalar = __is_scalar<_Tp>::__value;
      std::__fill<__scalar>::fill(__first, __last, __value);
    }

  // Specialization: for one-byte types we can use memset.
  inline void
  fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c)
  {
    __glibcxx_requires_valid_range(__first, __last);
    const unsigned char __tmp = __c;
    std::memset(__first, __tmp, __last - __first);
  }

  inline void
  fill(signed char* __first, signed char* __last, const signed char& __c)
  {
    __glibcxx_requires_valid_range(__first, __last);
    const signed char __tmp = __c;
    std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
  }

  inline void
  fill(char* __first, char* __last, const char& __c)
  {
    __glibcxx_requires_valid_range(__first, __last);
    const char __tmp = __c;
    std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
  }

  template<bool>
    struct __fill_n
    {
      template<typename _OutputIterator, typename _Size, typename _Tp>
        static _OutputIterator
        fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
        {
	  for (; __n > 0; --__n, ++__first)
	    *__first = __value;
	  return __first;
	}
    };

  template<>
    struct __fill_n<true>
    {
      template<typename _OutputIterator, typename _Size, typename _Tp>
        static _OutputIterator
        fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
        {
	  const _Tp __tmp = __value;
	  for (; __n > 0; --__n, ++__first)
	    *__first = __tmp;
	  return __first;	  
	}
    };

  /**
   *  @brief Fills the range [first,first+n) with copies of value.
   *  @param  first  An output iterator.
   *  @param  n      The count of copies to perform.
   *  @param  value  A reference-to-const of arbitrary type.
   *  @return   The iterator at first+n.
   *
   *  This function fills a range with copies of the same value.  For one-byte
   *  types filling contiguous areas of memory, this becomes an inline call to
   *  @c memset.
  */
  template<typename _OutputIterator, typename _Size, typename _Tp>
    _OutputIterator
    fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
    {
      // concept requirements
      __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _Tp>)

      const bool __scalar = __is_scalar<_Tp>::__value;
      return std::__fill_n<__scalar>::fill_n(__first, __n, __value);
    }

  template<typename _Size>
    inline unsigned char*
    fill_n(unsigned char* __first, _Size __n, const unsigned char& __c)
    {
      std::fill(__first, __first + __n, __c);
      return __first + __n;
    }

  template<typename _Size>
    inline signed char*
    fill_n(signed char* __first, _Size __n, const signed char& __c)
    {
      std::fill(__first, __first + __n, __c);
      return __first + __n;
    }

  template<typename _Size>
    inline char*
    fill_n(char* __first, _Size __n, const char& __c)
    {
      std::fill(__first, __first + __n, __c);
      return __first + __n;
    }

  /**
   *  @brief Finds the places in ranges which don't match.
   *  @param  first1  An input iterator.
   *  @param  last1   An input iterator.
   *  @param  first2  An input iterator.
   *  @return   A pair of iterators pointing to the first mismatch.
   *
   *  This compares the elements of two ranges using @c == and returns a pair
   *  of iterators.  The first iterator points into the first range, the
   *  second iterator points into the second range, and the elements pointed
   *  to by the iterators are not equal.
  */
  template<typename _InputIterator1, typename _InputIterator2>
    pair<_InputIterator1, _InputIterator2>
    mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
	     _InputIterator2 __first2)
    {
      // concept requirements
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
      __glibcxx_function_requires(_EqualOpConcept<
	    typename iterator_traits<_InputIterator1>::value_type,
	    typename iterator_traits<_InputIterator2>::value_type>)
      __glibcxx_requires_valid_range(__first1, __last1);

      while (__first1 != __last1 && *__first1 == *__first2)
        {
	  ++__first1;
	  ++__first2;
        }
      return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
    }

  /**
   *  @brief Finds the places in ranges which don't match.
   *  @param  first1  An input iterator.
   *  @param  last1   An input iterator.
   *  @param  first2  An input iterator.
   *  @param  binary_pred  A binary predicate @link s20_3_1_base functor@endlink.
   *  @return   A pair of iterators pointing to the first mismatch.
   *
   *  This compares the elements of two ranges using the binary_pred
   *  parameter, and returns a pair
   *  of iterators.  The first iterator points into the first range, the
   *  second iterator points into the second range, and the elements pointed
   *  to by the iterators are not equal.
  */
  template<typename _InputIterator1, typename _InputIterator2,
	   typename _BinaryPredicate>
    pair<_InputIterator1, _InputIterator2>
    mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
	     _InputIterator2 __first2, _BinaryPredicate __binary_pred)
    {
      // concept requirements
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
      __glibcxx_requires_valid_range(__first1, __last1);

      while (__first1 != __last1 && __binary_pred(*__first1, *__first2))
        {
	  ++__first1;
	  ++__first2;
        }
      return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
    }

  /**
   *  @brief Tests a range for element-wise equality.
   *  @param  first1  An input iterator.
   *  @param  last1   An input iterator.
   *  @param  first2  An input iterator.
   *  @return   A boolean true or false.
   *
   *  This compares the elements of two ranges using @c == and returns true or
   *  false depending on whether all of the corresponding elements of the
   *  ranges are equal.
  */
  template<typename _InputIterator1, typename _InputIterator2>
    inline bool
    equal(_InputIterator1 __first1, _InputIterator1 __last1,
	  _InputIterator2 __first2)
    {
      // concept requirements
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
      __glibcxx_function_requires(_EqualOpConcept<
	    typename iterator_traits<_InputIterator1>::value_type,
	    typename iterator_traits<_InputIterator2>::value_type>)
      __glibcxx_requires_valid_range(__first1, __last1);
      
      for (; __first1 != __last1; ++__first1, ++__first2)
	if (!(*__first1 == *__first2))
	  return false;
      return true;
    }

  /**
   *  @brief Tests a range for element-wise equality.
   *  @param  first1  An input iterator.
   *  @param  last1   An input iterator.
   *  @param  first2  An input iterator.
   *  @param  binary_pred  A binary predicate @link s20_3_1_base functor@endlink.
   *  @return   A boolean true or false.
   *
   *  This compares the elements of two ranges using the binary_pred
   *  parameter, and returns true or
   *  false depending on whether all of the corresponding elements of the
   *  ranges are equal.
  */
  template<typename _InputIterator1, typename _InputIterator2,
	   typename _BinaryPredicate>
    inline bool
    equal(_InputIterator1 __first1, _InputIterator1 __last1,
	  _InputIterator2 __first2,
	  _BinaryPredicate __binary_pred)
    {
      // concept requirements
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
      __glibcxx_requires_valid_range(__first1, __last1);

      for (; __first1 != __last1; ++__first1, ++__first2)
	if (!__binary_pred(*__first1, *__first2))
	  return false;
      return true;
    }

  /**
   *  @brief Performs "dictionary" comparison on ranges.
   *  @param  first1  An input iterator.
   *  @param  last1   An input iterator.
   *  @param  first2  An input iterator.
   *  @param  last2   An input iterator.
   *  @return   A boolean true or false.
   *
   *  "Returns true if the sequence of elements defined by the range
   *  [first1,last1) is lexicographically less than the sequence of elements
   *  defined by the range [first2,last2).  Returns false otherwise."
   *  (Quoted from [25.3.8]/1.)  If the iterators are all character pointers,
   *  then this is an inline call to @c memcmp.
  */
  template<typename _InputIterator1, typename _InputIterator2>
    bool
    lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
			    _InputIterator2 __first2, _InputIterator2 __last2)
    {
      // concept requirements
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
      __glibcxx_function_requires(_LessThanOpConcept<
	    typename iterator_traits<_InputIterator1>::value_type,
	    typename iterator_traits<_InputIterator2>::value_type>)
      __glibcxx_function_requires(_LessThanOpConcept<
	    typename iterator_traits<_InputIterator2>::value_type,
	    typename iterator_traits<_InputIterator1>::value_type>)
      __glibcxx_requires_valid_range(__first1, __last1);
      __glibcxx_requires_valid_range(__first2, __last2);

      for (; __first1 != __last1 && __first2 != __last2;
	   ++__first1, ++__first2)
	{
	  if (*__first1 < *__first2)
	    return true;
	  if (*__first2 < *__first1)
	    return false;
	}
      return __first1 == __last1 && __first2 != __last2;
    }

  /**
   *  @brief Performs "dictionary" comparison on ranges.
   *  @param  first1  An input iterator.
   *  @param  last1   An input iterator.
   *  @param  first2  An input iterator.
   *  @param  last2   An input iterator.
   *  @param  comp  A @link s20_3_3_comparisons comparison functor@endlink.
   *  @return   A boolean true or false.
   *
   *  The same as the four-parameter @c lexigraphical_compare, but uses the
   *  comp parameter instead of @c <.
  */
  template<typename _InputIterator1, typename _InputIterator2,
	   typename _Compare>
    bool
    lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
			    _InputIterator2 __first2, _InputIterator2 __last2,
			    _Compare __comp)
    {
      // concept requirements
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
      __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
      __glibcxx_requires_valid_range(__first1, __last1);
      __glibcxx_requires_valid_range(__first2, __last2);

      for (; __first1 != __last1 && __first2 != __last2;
	   ++__first1, ++__first2)
	{
	  if (__comp(*__first1, *__first2))
	    return true;
	  if (__comp(*__first2, *__first1))
	    return false;
	}
      return __first1 == __last1 && __first2 != __last2;
    }

  inline bool
  lexicographical_compare(const unsigned char* __first1,
			  const unsigned char* __last1,
			  const unsigned char* __first2,
			  const unsigned char* __last2)
  {
    __glibcxx_requires_valid_range(__first1, __last1);
    __glibcxx_requires_valid_range(__first2, __last2);

    const size_t __len1 = __last1 - __first1;
    const size_t __len2 = __last2 - __first2;
    const int __result = std::memcmp(__first1, __first2,
				     std::min(__len1, __len2));
    return __result != 0 ? __result < 0 : __len1 < __len2;
  }

  inline bool
  lexicographical_compare(const char* __first1, const char* __last1,
			  const char* __first2, const char* __last2)
  {
    __glibcxx_requires_valid_range(__first1, __last1);
    __glibcxx_requires_valid_range(__first2, __last2);

#if CHAR_MAX == SCHAR_MAX
    return std::lexicographical_compare((const signed char*) __first1,
					(const signed char*) __last1,
					(const signed char*) __first2,
					(const signed char*) __last2);
#else /* CHAR_MAX == SCHAR_MAX */
    return std::lexicographical_compare((const unsigned char*) __first1,
					(const unsigned char*) __last1,
					(const unsigned char*) __first2,
					(const unsigned char*) __last2);
#endif /* CHAR_MAX == SCHAR_MAX */
  }

_GLIBCXX_END_NAMESPACE

#endif