Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains instruction defs that are common to all hw codegen
// targets.
//
//===----------------------------------------------------------------------===//

class AMDGPUInst <dag outs, dag ins, string asm = "",
  list<dag> pattern = []> : Instruction {
  field bit isRegisterLoad = 0;
  field bit isRegisterStore = 0;

  let Namespace = "AMDGPU";
  let OutOperandList = outs;
  let InOperandList = ins;
  let AsmString = asm;
  let Pattern = pattern;
  let Itinerary = NullALU;

  // SoftFail is a field the disassembler can use to provide a way for
  // instructions to not match without killing the whole decode process. It is
  // mainly used for ARM, but Tablegen expects this field to exist or it fails
  // to build the decode table.
  field bits<64> SoftFail = 0;

  let DecoderNamespace = Namespace;

  let TSFlags{63} = isRegisterLoad;
  let TSFlags{62} = isRegisterStore;
}

class AMDGPUShaderInst <dag outs, dag ins, string asm = "",
  list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> {

  field bits<32> Inst = 0xffffffff;
}

//===---------------------------------------------------------------------===//
// Return instruction
//===---------------------------------------------------------------------===//

class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern>
: Instruction {

     let Namespace = "AMDGPU";
     dag OutOperandList = outs;
     dag InOperandList = ins;
     let Pattern = pattern;
     let AsmString = !strconcat(asmstr, "\n");
     let isPseudo = 1;
     let Itinerary = NullALU;
     bit hasIEEEFlag = 0;
     bit hasZeroOpFlag = 0;
     let mayLoad = 0;
     let mayStore = 0;
     let hasSideEffects = 0;
     let isCodeGenOnly = 1;
}

def TruePredicate : Predicate<"true">;

// Exists to help track down where SubtargetPredicate isn't set rather
// than letting tablegen crash with an unhelpful error.
def InvalidPred : Predicate<"predicate not set on instruction or pattern">;

class PredicateControl {
  Predicate SubtargetPredicate = InvalidPred;
  list<Predicate> AssemblerPredicates = [];
  Predicate AssemblerPredicate = TruePredicate;
  list<Predicate> OtherPredicates = [];
  list<Predicate> Predicates = !listconcat([SubtargetPredicate,
                                            AssemblerPredicate],
                                            AssemblerPredicates,
                                            OtherPredicates);
}
class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>,
      PredicateControl;

def FP16Denormals : Predicate<"Subtarget->hasFP16Denormals()">;
def FP32Denormals : Predicate<"Subtarget->hasFP32Denormals()">;
def FP64Denormals : Predicate<"Subtarget->hasFP64Denormals()">;
def NoFP16Denormals : Predicate<"!Subtarget->hasFP16Denormals()">;
def NoFP32Denormals : Predicate<"!Subtarget->hasFP32Denormals()">;
def NoFP64Denormals : Predicate<"!Subtarget->hasFP64Denormals()">;
def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">;
def FMA : Predicate<"Subtarget->hasFMA()">;

def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>;

def u16ImmTarget : AsmOperandClass {
  let Name = "U16Imm";
  let RenderMethod = "addImmOperands";
}

def s16ImmTarget : AsmOperandClass {
  let Name = "S16Imm";
  let RenderMethod = "addImmOperands";
}

let OperandType = "OPERAND_IMMEDIATE" in {

def u32imm : Operand<i32> {
  let PrintMethod = "printU32ImmOperand";
}

def u16imm : Operand<i16> {
  let PrintMethod = "printU16ImmOperand";
  let ParserMatchClass = u16ImmTarget;
}

def s16imm : Operand<i16> {
  let PrintMethod = "printU16ImmOperand";
  let ParserMatchClass = s16ImmTarget;
}

def u8imm : Operand<i8> {
  let PrintMethod = "printU8ImmOperand";
}

} // End OperandType = "OPERAND_IMMEDIATE"

//===--------------------------------------------------------------------===//
// Custom Operands
//===--------------------------------------------------------------------===//
def brtarget   : Operand<OtherVT>;

//===----------------------------------------------------------------------===//
// Misc. PatFrags
//===----------------------------------------------------------------------===//

class HasOneUseUnaryOp<SDPatternOperator op> : PatFrag<
  (ops node:$src0),
  (op $src0),
  [{ return N->hasOneUse(); }]
>;

class HasOneUseBinOp<SDPatternOperator op> : PatFrag<
  (ops node:$src0, node:$src1),
  (op $src0, $src1),
  [{ return N->hasOneUse(); }]
>;

class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag<
  (ops node:$src0, node:$src1, node:$src2),
  (op $src0, $src1, $src2),
  [{ return N->hasOneUse(); }]
>;

let Properties = [SDNPCommutative, SDNPAssociative] in {
def smax_oneuse : HasOneUseBinOp<smax>;
def smin_oneuse : HasOneUseBinOp<smin>;
def umax_oneuse : HasOneUseBinOp<umax>;
def umin_oneuse : HasOneUseBinOp<umin>;

def fminnum_oneuse : HasOneUseBinOp<fminnum>;
def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>;

def fminnum_ieee_oneuse : HasOneUseBinOp<fminnum_ieee>;
def fmaxnum_ieee_oneuse : HasOneUseBinOp<fmaxnum_ieee>;


def and_oneuse : HasOneUseBinOp<and>;
def or_oneuse : HasOneUseBinOp<or>;
def xor_oneuse : HasOneUseBinOp<xor>;
} // Properties = [SDNPCommutative, SDNPAssociative]

def not_oneuse : HasOneUseUnaryOp<not>;

def add_oneuse : HasOneUseBinOp<add>;
def sub_oneuse : HasOneUseBinOp<sub>;

def srl_oneuse : HasOneUseBinOp<srl>;
def shl_oneuse : HasOneUseBinOp<shl>;

def select_oneuse : HasOneUseTernaryOp<select>;

def AMDGPUmul_u24_oneuse : HasOneUseBinOp<AMDGPUmul_u24>;
def AMDGPUmul_i24_oneuse : HasOneUseBinOp<AMDGPUmul_i24>;

def srl_16 : PatFrag<
  (ops node:$src0), (srl_oneuse node:$src0, (i32 16))
>;


def hi_i16_elt : PatFrag<
  (ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0))))
>;


def hi_f16_elt : PatLeaf<
  (vt), [{
  if (N->getOpcode() != ISD::BITCAST)
    return false;
  SDValue Tmp = N->getOperand(0);

  if (Tmp.getOpcode() != ISD::SRL)
    return false;
    if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1))
      return RHS->getZExtValue() == 16;
    return false;
}]>;

//===----------------------------------------------------------------------===//
// PatLeafs for floating-point comparisons
//===----------------------------------------------------------------------===//

def COND_OEQ : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETOEQ || N->get() == ISD::SETEQ;}]
>;

def COND_ONE : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETONE || N->get() == ISD::SETNE;}]
>;

def COND_OGT : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETOGT || N->get() == ISD::SETGT;}]
>;

def COND_OGE : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETOGE || N->get() == ISD::SETGE;}]
>;

def COND_OLT : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETOLT || N->get() == ISD::SETLT;}]
>;

def COND_OLE : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETOLE || N->get() == ISD::SETLE;}]
>;

def COND_O : PatLeaf <(cond), [{return N->get() == ISD::SETO;}]>;
def COND_UO : PatLeaf <(cond), [{return N->get() == ISD::SETUO;}]>;

//===----------------------------------------------------------------------===//
// PatLeafs for unsigned / unordered comparisons
//===----------------------------------------------------------------------===//

def COND_UEQ : PatLeaf <(cond), [{return N->get() == ISD::SETUEQ;}]>;
def COND_UNE : PatLeaf <(cond), [{return N->get() == ISD::SETUNE;}]>;
def COND_UGT : PatLeaf <(cond), [{return N->get() == ISD::SETUGT;}]>;
def COND_UGE : PatLeaf <(cond), [{return N->get() == ISD::SETUGE;}]>;
def COND_ULT : PatLeaf <(cond), [{return N->get() == ISD::SETULT;}]>;
def COND_ULE : PatLeaf <(cond), [{return N->get() == ISD::SETULE;}]>;

// XXX - For some reason R600 version is preferring to use unordered
// for setne?
def COND_UNE_NE : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETUNE || N->get() == ISD::SETNE;}]
>;

//===----------------------------------------------------------------------===//
// PatLeafs for signed comparisons
//===----------------------------------------------------------------------===//

def COND_SGT : PatLeaf <(cond), [{return N->get() == ISD::SETGT;}]>;
def COND_SGE : PatLeaf <(cond), [{return N->get() == ISD::SETGE;}]>;
def COND_SLT : PatLeaf <(cond), [{return N->get() == ISD::SETLT;}]>;
def COND_SLE : PatLeaf <(cond), [{return N->get() == ISD::SETLE;}]>;

//===----------------------------------------------------------------------===//
// PatLeafs for integer equality
//===----------------------------------------------------------------------===//

def COND_EQ : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETEQ || N->get() == ISD::SETUEQ;}]
>;

def COND_NE : PatLeaf <
  (cond),
  [{return N->get() == ISD::SETNE || N->get() == ISD::SETUNE;}]
>;

def COND_NULL : PatLeaf <
  (cond),
  [{(void)N; return false;}]
>;

//===----------------------------------------------------------------------===//
// PatLeafs for Texture Constants
//===----------------------------------------------------------------------===//

def TEX_ARRAY : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return TType == 9 || TType == 10 || TType == 16;
  }]
>;

def TEX_RECT : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return TType == 5;
  }]
>;

def TEX_SHADOW : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return (TType >= 6 && TType <= 8) || TType == 13;
  }]
>;

def TEX_SHADOW_ARRAY : PatLeaf<
  (imm),
  [{uint32_t TType = (uint32_t)N->getZExtValue();
    return TType == 11 || TType == 12 || TType == 17;
  }]
>;

//===----------------------------------------------------------------------===//
// Load/Store Pattern Fragments
//===----------------------------------------------------------------------===//

class Aligned8Bytes <dag ops, dag frag> : PatFrag <ops, frag, [{
  return cast<MemSDNode>(N)->getAlignment() % 8 == 0;
}]>;

class Aligned16Bytes <dag ops, dag frag> : PatFrag <ops, frag, [{
  return cast<MemSDNode>(N)->getAlignment() >= 16;
}]>;

class LoadFrag <SDPatternOperator op> : PatFrag<(ops node:$ptr), (op node:$ptr)>;

class StoreFrag<SDPatternOperator op> : PatFrag <
  (ops node:$value, node:$ptr), (op node:$value, node:$ptr)
>;

class StoreHi16<SDPatternOperator op> : PatFrag <
  (ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr)
>;

class PrivateAddress : CodePatPred<[{
  return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
}]>;

class ConstantAddress : CodePatPred<[{
  return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS;
}]>;

class LocalAddress : CodePatPred<[{
  return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}]>;

class GlobalAddress : CodePatPred<[{
  return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}]>;

class GlobalLoadAddress : CodePatPred<[{
  auto AS = cast<MemSDNode>(N)->getAddressSpace();
  return AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS;
}]>;

class FlatLoadAddress : CodePatPred<[{
  const auto AS = cast<MemSDNode>(N)->getAddressSpace();
  return AS == AMDGPUAS::FLAT_ADDRESS ||
         AS == AMDGPUAS::GLOBAL_ADDRESS ||
         AS == AMDGPUAS::CONSTANT_ADDRESS;
}]>;

class FlatStoreAddress : CodePatPred<[{
  const auto AS = cast<MemSDNode>(N)->getAddressSpace();
  return AS == AMDGPUAS::FLAT_ADDRESS ||
         AS == AMDGPUAS::GLOBAL_ADDRESS;
}]>;

class AZExtLoadBase <SDPatternOperator ld_node>: PatFrag<(ops node:$ptr),
                                              (ld_node node:$ptr), [{
  LoadSDNode *L = cast<LoadSDNode>(N);
  return L->getExtensionType() == ISD::ZEXTLOAD ||
         L->getExtensionType() == ISD::EXTLOAD;
}]>;

def az_extload : AZExtLoadBase <unindexedload>;

def az_extloadi8 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;

def az_extloadi16 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;

def az_extloadi32 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{
  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;

class PrivateLoad <SDPatternOperator op> : LoadFrag <op>, PrivateAddress;
class PrivateStore <SDPatternOperator op> : StoreFrag <op>, PrivateAddress;

class LocalLoad <SDPatternOperator op> : LoadFrag <op>, LocalAddress;
class LocalStore <SDPatternOperator op> : StoreFrag <op>, LocalAddress;

class GlobalLoad <SDPatternOperator op> : LoadFrag<op>, GlobalLoadAddress;
class GlobalStore <SDPatternOperator op> : StoreFrag<op>, GlobalAddress;

class FlatLoad <SDPatternOperator op> : LoadFrag <op>, FlatLoadAddress;
class FlatStore <SDPatternOperator op> : StoreFrag <op>, FlatStoreAddress;

class ConstantLoad <SDPatternOperator op> : LoadFrag <op>, ConstantAddress;


def load_private : PrivateLoad <load>;
def az_extloadi8_private : PrivateLoad <az_extloadi8>;
def sextloadi8_private : PrivateLoad <sextloadi8>;
def az_extloadi16_private : PrivateLoad <az_extloadi16>;
def sextloadi16_private : PrivateLoad <sextloadi16>;

def store_private : PrivateStore <store>;
def truncstorei8_private : PrivateStore<truncstorei8>;
def truncstorei16_private : PrivateStore <truncstorei16>;
def store_hi16_private : StoreHi16 <truncstorei16>, PrivateAddress;
def truncstorei8_hi16_private : StoreHi16<truncstorei8>, PrivateAddress;


def load_global : GlobalLoad <load>;
def sextloadi8_global : GlobalLoad <sextloadi8>;
def az_extloadi8_global : GlobalLoad <az_extloadi8>;
def sextloadi16_global : GlobalLoad <sextloadi16>;
def az_extloadi16_global : GlobalLoad <az_extloadi16>;
def atomic_load_global : GlobalLoad<atomic_load>;

def store_global : GlobalStore <store>;
def truncstorei8_global : GlobalStore <truncstorei8>;
def truncstorei16_global : GlobalStore <truncstorei16>;
def store_atomic_global : GlobalStore<atomic_store>;
def truncstorei8_hi16_global : StoreHi16 <truncstorei8>, GlobalAddress;
def truncstorei16_hi16_global : StoreHi16 <truncstorei16>, GlobalAddress;

def load_local : LocalLoad <load>;
def az_extloadi8_local : LocalLoad <az_extloadi8>;
def sextloadi8_local : LocalLoad <sextloadi8>;
def az_extloadi16_local : LocalLoad <az_extloadi16>;
def sextloadi16_local : LocalLoad <sextloadi16>;
def atomic_load_32_local : LocalLoad<atomic_load_32>;
def atomic_load_64_local : LocalLoad<atomic_load_64>;

def store_local : LocalStore <store>;
def truncstorei8_local : LocalStore <truncstorei8>;
def truncstorei16_local : LocalStore <truncstorei16>;
def store_local_hi16 : StoreHi16 <truncstorei16>, LocalAddress;
def truncstorei8_local_hi16 : StoreHi16<truncstorei8>, LocalAddress;
def atomic_store_local : LocalStore <atomic_store>;

def load_align8_local : Aligned8Bytes <
  (ops node:$ptr), (load_local node:$ptr)
>;

def load_align16_local : Aligned16Bytes <
  (ops node:$ptr), (load_local node:$ptr)
>;

def store_align8_local : Aligned8Bytes <
  (ops node:$val, node:$ptr), (store_local node:$val, node:$ptr)
>;

def store_align16_local : Aligned16Bytes <
  (ops node:$val, node:$ptr), (store_local node:$val, node:$ptr)
>;

def load_flat          : FlatLoad <load>;
def az_extloadi8_flat  : FlatLoad <az_extloadi8>;
def sextloadi8_flat    : FlatLoad <sextloadi8>;
def az_extloadi16_flat : FlatLoad <az_extloadi16>;
def sextloadi16_flat   : FlatLoad <sextloadi16>;
def atomic_load_flat   : FlatLoad<atomic_load>;

def store_flat         : FlatStore <store>;
def truncstorei8_flat  : FlatStore <truncstorei8>;
def truncstorei16_flat : FlatStore <truncstorei16>;
def atomic_store_flat  : FlatStore <atomic_store>;
def truncstorei8_hi16_flat  : StoreHi16<truncstorei8>, FlatStoreAddress;
def truncstorei16_hi16_flat : StoreHi16<truncstorei16>, FlatStoreAddress;


def constant_load : ConstantLoad<load>;
def sextloadi8_constant : ConstantLoad <sextloadi8>;
def az_extloadi8_constant : ConstantLoad <az_extloadi8>;
def sextloadi16_constant : ConstantLoad <sextloadi16>;
def az_extloadi16_constant : ConstantLoad <az_extloadi16>;


class local_binary_atomic_op<SDNode atomic_op> :
  PatFrag<(ops node:$ptr, node:$value),
    (atomic_op node:$ptr, node:$value), [{
  return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}]>;

def atomic_swap_local : local_binary_atomic_op<atomic_swap>;
def atomic_load_add_local : local_binary_atomic_op<atomic_load_add>;
def atomic_load_sub_local : local_binary_atomic_op<atomic_load_sub>;
def atomic_load_and_local : local_binary_atomic_op<atomic_load_and>;
def atomic_load_or_local : local_binary_atomic_op<atomic_load_or>;
def atomic_load_xor_local : local_binary_atomic_op<atomic_load_xor>;
def atomic_load_nand_local : local_binary_atomic_op<atomic_load_nand>;
def atomic_load_min_local : local_binary_atomic_op<atomic_load_min>;
def atomic_load_max_local : local_binary_atomic_op<atomic_load_max>;
def atomic_load_umin_local : local_binary_atomic_op<atomic_load_umin>;
def atomic_load_umax_local : local_binary_atomic_op<atomic_load_umax>;

def mskor_global : PatFrag<(ops node:$val, node:$ptr),
                            (AMDGPUstore_mskor node:$val, node:$ptr), [{
  return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}]>;

class AtomicCmpSwapLocal <SDNode cmp_swap_node> : PatFrag<
    (ops node:$ptr, node:$cmp, node:$swap),
    (cmp_swap_node node:$ptr, node:$cmp, node:$swap), [{
      AtomicSDNode *AN = cast<AtomicSDNode>(N);
      return AN->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}]>;

def atomic_cmp_swap_local : AtomicCmpSwapLocal <atomic_cmp_swap>;

multiclass global_binary_atomic_op<SDNode atomic_op> {
  def "" : PatFrag<
        (ops node:$ptr, node:$value),
        (atomic_op node:$ptr, node:$value),
        [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;}]>;

  def _noret : PatFrag<
        (ops node:$ptr, node:$value),
        (atomic_op node:$ptr, node:$value),
        [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>;

  def _ret : PatFrag<
        (ops node:$ptr, node:$value),
        (atomic_op node:$ptr, node:$value),
        [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>;
}

defm atomic_swap_global : global_binary_atomic_op<atomic_swap>;
defm atomic_add_global : global_binary_atomic_op<atomic_load_add>;
defm atomic_and_global : global_binary_atomic_op<atomic_load_and>;
defm atomic_max_global : global_binary_atomic_op<atomic_load_max>;
defm atomic_min_global : global_binary_atomic_op<atomic_load_min>;
defm atomic_or_global : global_binary_atomic_op<atomic_load_or>;
defm atomic_sub_global : global_binary_atomic_op<atomic_load_sub>;
defm atomic_umax_global : global_binary_atomic_op<atomic_load_umax>;
defm atomic_umin_global : global_binary_atomic_op<atomic_load_umin>;
defm atomic_xor_global : global_binary_atomic_op<atomic_load_xor>;

// Legacy.
def AMDGPUatomic_cmp_swap_global : PatFrag<
  (ops node:$ptr, node:$value),
  (AMDGPUatomic_cmp_swap node:$ptr, node:$value)>, GlobalAddress;

def atomic_cmp_swap_global : PatFrag<
  (ops node:$ptr, node:$cmp, node:$value),
  (atomic_cmp_swap node:$ptr, node:$cmp, node:$value)>, GlobalAddress;


def atomic_cmp_swap_global_noret : PatFrag<
  (ops node:$ptr, node:$cmp, node:$value),
  (atomic_cmp_swap node:$ptr, node:$cmp, node:$value),
  [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>;

def atomic_cmp_swap_global_ret : PatFrag<
  (ops node:$ptr, node:$cmp, node:$value),
  (atomic_cmp_swap node:$ptr, node:$cmp, node:$value),
  [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>;

//===----------------------------------------------------------------------===//
// Misc Pattern Fragments
//===----------------------------------------------------------------------===//

class Constants {
int TWO_PI = 0x40c90fdb;
int PI = 0x40490fdb;
int TWO_PI_INV = 0x3e22f983;
int FP_UINT_MAX_PLUS_1 = 0x4f800000;    // 1 << 32 in floating point encoding
int FP16_ONE = 0x3C00;
int FP16_NEG_ONE = 0xBC00;
int V2FP16_ONE = 0x3C003C00;
int FP32_ONE = 0x3f800000;
int FP32_NEG_ONE = 0xbf800000;
int FP64_ONE = 0x3ff0000000000000;
int FP64_NEG_ONE = 0xbff0000000000000;
}
def CONST : Constants;

def FP_ZERO : PatLeaf <
  (fpimm),
  [{return N->getValueAPF().isZero();}]
>;

def FP_ONE : PatLeaf <
  (fpimm),
  [{return N->isExactlyValue(1.0);}]
>;

def FP_HALF : PatLeaf <
  (fpimm),
  [{return N->isExactlyValue(0.5);}]
>;

/* Generic helper patterns for intrinsics */
/* -------------------------------------- */

class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul>
  : AMDGPUPat <
  (fpow f32:$src0, f32:$src1),
  (exp_ieee (mul f32:$src1, (log_ieee f32:$src0)))
>;

/* Other helper patterns */
/* --------------------- */

/* Extract element pattern */
class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx,
                       SubRegIndex sub_reg>
  : AMDGPUPat<
  (sub_type (extractelt vec_type:$src, sub_idx)),
  (EXTRACT_SUBREG $src, sub_reg)
> {
  let SubtargetPredicate = TruePredicate;
}

/* Insert element pattern */
class Insert_Element <ValueType elem_type, ValueType vec_type,
                      int sub_idx, SubRegIndex sub_reg>
  : AMDGPUPat <
  (insertelt vec_type:$vec, elem_type:$elem, sub_idx),
  (INSERT_SUBREG $vec, $elem, sub_reg)
> {
  let SubtargetPredicate = TruePredicate;
}

// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
// can handle COPY instructions.
// bitconvert pattern
class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat <
  (dt (bitconvert (st rc:$src0))),
  (dt rc:$src0)
>;

// XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer
// can handle COPY instructions.
class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat <
  (vt (AMDGPUdwordaddr (vt rc:$addr))),
  (vt rc:$addr)
>;

// BFI_INT patterns

multiclass BFIPatterns <Instruction BFI_INT,
                        Instruction LoadImm32,
                        RegisterClass RC64> {
  // Definition from ISA doc:
  // (y & x) | (z & ~x)
  def : AMDGPUPat <
    (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
    (BFI_INT $x, $y, $z)
  >;

  // 64-bit version
  def : AMDGPUPat <
    (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
    (REG_SEQUENCE RC64,
      (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)),
               (i32 (EXTRACT_SUBREG $y, sub0)),
               (i32 (EXTRACT_SUBREG $z, sub0))), sub0,
      (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)),
               (i32 (EXTRACT_SUBREG $y, sub1)),
               (i32 (EXTRACT_SUBREG $z, sub1))), sub1)
  >;

  // SHA-256 Ch function
  // z ^ (x & (y ^ z))
  def : AMDGPUPat <
    (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
    (BFI_INT $x, $y, $z)
  >;

  // 64-bit version
  def : AMDGPUPat <
    (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
    (REG_SEQUENCE RC64,
      (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)),
               (i32 (EXTRACT_SUBREG $y, sub0)),
               (i32 (EXTRACT_SUBREG $z, sub0))), sub0,
      (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)),
               (i32 (EXTRACT_SUBREG $y, sub1)),
               (i32 (EXTRACT_SUBREG $z, sub1))), sub1)
  >;

  def : AMDGPUPat <
    (fcopysign f32:$src0, f32:$src1),
    (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, $src1)
  >;

  def : AMDGPUPat <
    (f32 (fcopysign f32:$src0, f64:$src1)),
    (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0,
             (i32 (EXTRACT_SUBREG $src1, sub1)))
  >;

  def : AMDGPUPat <
    (f64 (fcopysign f64:$src0, f64:$src1)),
    (REG_SEQUENCE RC64,
      (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
      (BFI_INT (LoadImm32 (i32 0x7fffffff)),
               (i32 (EXTRACT_SUBREG $src0, sub1)),
               (i32 (EXTRACT_SUBREG $src1, sub1))), sub1)
  >;

  def : AMDGPUPat <
    (f64 (fcopysign f64:$src0, f32:$src1)),
    (REG_SEQUENCE RC64,
      (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
      (BFI_INT (LoadImm32 (i32 0x7fffffff)),
               (i32 (EXTRACT_SUBREG $src0, sub1)),
               $src1), sub1)
  >;
}

// SHA-256 Ma patterns

// ((x & z) | (y & (x | z))) -> BFI_INT (XOR x, y), z, y
multiclass SHA256MaPattern <Instruction BFI_INT, Instruction XOR, RegisterClass RC64> {
  def : AMDGPUPat <
    (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))),
    (BFI_INT (XOR i32:$x, i32:$y), i32:$z, i32:$y)
  >;

  def : AMDGPUPat <
    (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))),
    (REG_SEQUENCE RC64,
      (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub0)),
                    (i32 (EXTRACT_SUBREG $y, sub0))),
               (i32 (EXTRACT_SUBREG $z, sub0)),
               (i32 (EXTRACT_SUBREG $y, sub0))), sub0,
      (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub1)),
                    (i32 (EXTRACT_SUBREG $y, sub1))),
               (i32 (EXTRACT_SUBREG $z, sub1)),
               (i32 (EXTRACT_SUBREG $y, sub1))), sub1)
  >;
}

// Bitfield extract patterns

def IMMZeroBasedBitfieldMask : PatLeaf <(imm), [{
  return isMask_32(N->getZExtValue());
}]>;

def IMMPopCount : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N),
                                   MVT::i32);
}]>;

multiclass BFEPattern <Instruction UBFE, Instruction SBFE, Instruction MOV> {
  def : AMDGPUPat <
    (i32 (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask)),
    (UBFE $src, $rshift, (MOV (i32 (IMMPopCount $mask))))
  >;

  // x & ((1 << y) - 1)
  def : AMDGPUPat <
    (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  // x & ~(-1 << y)
  def : AMDGPUPat <
    (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  // x & (-1 >> (bitwidth - y))
  def : AMDGPUPat <
    (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  // x << (bitwidth - y) >> (bitwidth - y)
  def : AMDGPUPat <
    (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
    (UBFE $src, (MOV (i32 0)), $width)
  >;

  def : AMDGPUPat <
    (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
    (SBFE $src, (MOV (i32 0)), $width)
  >;
}

// rotr pattern
class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat <
  (rotr i32:$src0, i32:$src1),
  (BIT_ALIGN $src0, $src0, $src1)
>;

multiclass IntMed3Pat<Instruction med3Inst,
                 SDPatternOperator min,
                 SDPatternOperator max,
                 SDPatternOperator min_oneuse,
                 SDPatternOperator max_oneuse,
                 ValueType vt = i32> {

  // This matches 16 permutations of 
  // min(max(a, b), max(min(a, b), c))
  def : AMDGPUPat <
  (min (max_oneuse vt:$src0, vt:$src1),
       (max_oneuse (min_oneuse vt:$src0, vt:$src1), vt:$src2)),
  (med3Inst vt:$src0, vt:$src1, vt:$src2)
>;

  // This matches 16 permutations of 
  // max(min(x, y), min(max(x, y), z))
  def : AMDGPUPat <
  (max (min_oneuse vt:$src0, vt:$src1),
       (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)),
  (med3Inst $src0, $src1, $src2)
>;
}
  
// Special conversion patterns

def cvt_rpi_i32_f32 : PatFrag <
  (ops node:$src),
  (fp_to_sint (ffloor (fadd $src, FP_HALF))),
  [{ (void) N; return TM.Options.NoNaNsFPMath; }]
>;

def cvt_flr_i32_f32 : PatFrag <
  (ops node:$src),
  (fp_to_sint (ffloor $src)),
  [{ (void)N; return TM.Options.NoNaNsFPMath; }]
>;

let AddedComplexity = 2 in {
class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat <
  (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2),
  !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)),
                (Inst $src0, $src1, $src2))
>;

class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat <
  (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2),
  !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)),
                (Inst $src0, $src1, $src2))
>;
} // AddedComplexity.

class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat <
  (fdiv FP_ONE, vt:$src),
  (RcpInst $src)
>;

class RsqPat<Instruction RsqInst, ValueType vt> : AMDGPUPat <
  (AMDGPUrcp (fsqrt vt:$src)),
  (RsqInst $src)
>;

// Instructions which select to the same v_min_f*
def fminnum_like : PatFrags<(ops node:$src0, node:$src1),
  [(fminnum_ieee node:$src0, node:$src1),
   (fminnum node:$src0, node:$src1)]
>;

// Instructions which select to the same v_max_f*
def fmaxnum_like : PatFrags<(ops node:$src0, node:$src1),
  [(fmaxnum_ieee node:$src0, node:$src1),
   (fmaxnum node:$src0, node:$src1)]
>;

def fminnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1),
  [(fminnum_ieee_oneuse node:$src0, node:$src1),
   (fminnum_oneuse node:$src0, node:$src1)]
>;

def fmaxnum_like_oneuse : PatFrags<(ops node:$src0, node:$src1),
  [(fmaxnum_ieee_oneuse node:$src0, node:$src1),
   (fmaxnum_oneuse node:$src0, node:$src1)]
>;