//===-- SIFormMemoryClauses.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass creates bundles of SMEM and VMEM instructions forming memory
/// clauses if XNACK is enabled. Def operands of clauses are marked as early
/// clobber to make sure we will not override any source within a clause.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "GCNRegPressure.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
using namespace llvm;
#define DEBUG_TYPE "si-form-memory-clauses"
// Clauses longer then 15 instructions would overflow one of the counters
// and stall. They can stall even earlier if there are outstanding counters.
static cl::opt<unsigned>
MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15),
cl::desc("Maximum length of a memory clause, instructions"));
namespace {
class SIFormMemoryClauses : public MachineFunctionPass {
typedef DenseMap<unsigned, std::pair<unsigned, LaneBitmask>> RegUse;
public:
static char ID;
public:
SIFormMemoryClauses() : MachineFunctionPass(ID) {
initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI Form memory clauses";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
template <typename Callable>
void forAllLanes(unsigned Reg, LaneBitmask LaneMask, Callable Func) const;
bool canBundle(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const;
bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT);
void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const;
bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses,
GCNDownwardRPTracker &RPT);
const GCNSubtarget *ST;
const SIRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
SIMachineFunctionInfo *MFI;
unsigned LastRecordedOccupancy;
unsigned MaxVGPRs;
unsigned MaxSGPRs;
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE,
"SI Form memory clauses", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE,
"SI Form memory clauses", false, false)
char SIFormMemoryClauses::ID = 0;
char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID;
FunctionPass *llvm::createSIFormMemoryClausesPass() {
return new SIFormMemoryClauses();
}
static bool isVMEMClauseInst(const MachineInstr &MI) {
return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI);
}
static bool isSMEMClauseInst(const MachineInstr &MI) {
return SIInstrInfo::isSMRD(MI);
}
// There no sense to create store clauses, they do not define anything,
// thus there is nothing to set early-clobber.
static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) {
if (MI.isDebugValue() || MI.isBundled())
return false;
if (!MI.mayLoad() || MI.mayStore())
return false;
if (AMDGPU::getAtomicNoRetOp(MI.getOpcode()) != -1 ||
AMDGPU::getAtomicRetOp(MI.getOpcode()) != -1)
return false;
if (IsVMEMClause && !isVMEMClauseInst(MI))
return false;
if (!IsVMEMClause && !isSMEMClauseInst(MI))
return false;
return true;
}
static unsigned getMopState(const MachineOperand &MO) {
unsigned S = 0;
if (MO.isImplicit())
S |= RegState::Implicit;
if (MO.isDead())
S |= RegState::Dead;
if (MO.isUndef())
S |= RegState::Undef;
if (MO.isKill())
S |= RegState::Kill;
if (MO.isEarlyClobber())
S |= RegState::EarlyClobber;
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && MO.isRenamable())
S |= RegState::Renamable;
return S;
}
template <typename Callable>
void SIFormMemoryClauses::forAllLanes(unsigned Reg, LaneBitmask LaneMask,
Callable Func) const {
if (LaneMask.all() || TargetRegisterInfo::isPhysicalRegister(Reg) ||
LaneMask == MRI->getMaxLaneMaskForVReg(Reg)) {
Func(0);
return;
}
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
unsigned E = TRI->getNumSubRegIndices();
SmallVector<unsigned, AMDGPU::NUM_TARGET_SUBREGS> CoveringSubregs;
for (unsigned Idx = 1; Idx < E; ++Idx) {
// Is this index even compatible with the given class?
if (TRI->getSubClassWithSubReg(RC, Idx) != RC)
continue;
LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx);
// Early exit if we found a perfect match.
if (SubRegMask == LaneMask) {
Func(Idx);
return;
}
if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none())
continue;
CoveringSubregs.push_back(Idx);
}
llvm::sort(CoveringSubregs, [this](unsigned A, unsigned B) {
LaneBitmask MaskA = TRI->getSubRegIndexLaneMask(A);
LaneBitmask MaskB = TRI->getSubRegIndexLaneMask(B);
unsigned NA = MaskA.getNumLanes();
unsigned NB = MaskB.getNumLanes();
if (NA != NB)
return NA > NB;
return MaskA.getHighestLane() > MaskB.getHighestLane();
});
for (unsigned Idx : CoveringSubregs) {
LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx);
if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none())
continue;
Func(Idx);
LaneMask &= ~SubRegMask;
if (LaneMask.none())
return;
}
llvm_unreachable("Failed to find all subregs to cover lane mask");
}
// Returns false if there is a use of a def already in the map.
// In this case we must break the clause.
bool SIFormMemoryClauses::canBundle(const MachineInstr &MI,
RegUse &Defs, RegUse &Uses) const {
// Check interference with defs.
for (const MachineOperand &MO : MI.operands()) {
// TODO: Prologue/Epilogue Insertion pass does not process bundled
// instructions.
if (MO.isFI())
return false;
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
// If it is tied we will need to write same register as we read.
if (MO.isTied())
return false;
RegUse &Map = MO.isDef() ? Uses : Defs;
auto Conflict = Map.find(Reg);
if (Conflict == Map.end())
continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return false;
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
if ((Conflict->second.second & Mask).any())
return false;
}
return true;
}
// Since all defs in the clause are early clobber we can run out of registers.
// Function returns false if pressure would hit the limit if instruction is
// bundled into a memory clause.
bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI,
GCNDownwardRPTracker &RPT) {
// NB: skip advanceBeforeNext() call. Since all defs will be marked
// early-clobber they will all stay alive at least to the end of the
// clause. Therefor we should not decrease pressure even if load
// pointer becomes dead and could otherwise be reused for destination.
RPT.advanceToNext();
GCNRegPressure MaxPressure = RPT.moveMaxPressure();
unsigned Occupancy = MaxPressure.getOccupancy(*ST);
if (Occupancy >= MFI->getMinAllowedOccupancy() &&
MaxPressure.getVGPRNum() <= MaxVGPRs &&
MaxPressure.getSGPRNum() <= MaxSGPRs) {
LastRecordedOccupancy = Occupancy;
return true;
}
return false;
}
// Collect register defs and uses along with their lane masks and states.
void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI,
RegUse &Defs, RegUse &Uses) const {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
LaneBitmask Mask = TargetRegisterInfo::isVirtualRegister(Reg) ?
TRI->getSubRegIndexLaneMask(MO.getSubReg()) :
LaneBitmask::getAll();
RegUse &Map = MO.isDef() ? Defs : Uses;
auto Loc = Map.find(Reg);
unsigned State = getMopState(MO);
if (Loc == Map.end()) {
Map[Reg] = std::make_pair(State, Mask);
} else {
Loc->second.first |= State;
Loc->second.second |= Mask;
}
}
}
// Check register def/use conflicts, occupancy limits and collect def/use maps.
// Return true if instruction can be bundled with previous. It it cannot
// def/use maps are not updated.
bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI,
RegUse &Defs, RegUse &Uses,
GCNDownwardRPTracker &RPT) {
if (!canBundle(MI, Defs, Uses))
return false;
if (!checkPressure(MI, RPT))
return false;
collectRegUses(MI, Defs, Uses);
return true;
}
bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
ST = &MF.getSubtarget<GCNSubtarget>();
if (!ST->isXNACKEnabled())
return false;
const SIInstrInfo *TII = ST->getInstrInfo();
TRI = ST->getRegisterInfo();
MRI = &MF.getRegInfo();
MFI = MF.getInfo<SIMachineFunctionInfo>();
LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
SlotIndexes *Ind = LIS->getSlotIndexes();
bool Changed = false;
MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count();
MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count();
for (MachineBasicBlock &MBB : MF) {
MachineBasicBlock::instr_iterator Next;
for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) {
MachineInstr &MI = *I;
Next = std::next(I);
bool IsVMEM = isVMEMClauseInst(MI);
if (!isValidClauseInst(MI, IsVMEM))
continue;
RegUse Defs, Uses;
GCNDownwardRPTracker RPT(*LIS);
RPT.reset(MI);
if (!processRegUses(MI, Defs, Uses, RPT))
continue;
unsigned Length = 1;
for ( ; Next != E && Length < MaxClause; ++Next) {
if (!isValidClauseInst(*Next, IsVMEM))
break;
// A load from pointer which was loaded inside the same bundle is an
// impossible clause because we will need to write and read the same
// register inside. In this case processRegUses will return false.
if (!processRegUses(*Next, Defs, Uses, RPT))
break;
++Length;
}
if (Length < 2)
continue;
Changed = true;
MFI->limitOccupancy(LastRecordedOccupancy);
auto B = BuildMI(MBB, I, DebugLoc(), TII->get(TargetOpcode::BUNDLE));
Ind->insertMachineInstrInMaps(*B);
for (auto BI = I; BI != Next; ++BI) {
BI->bundleWithPred();
Ind->removeSingleMachineInstrFromMaps(*BI);
for (MachineOperand &MO : BI->defs())
if (MO.readsReg())
MO.setIsInternalRead(true);
}
for (auto &&R : Defs) {
forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) {
unsigned S = R.second.first | RegState::EarlyClobber;
if (!SubReg)
S &= ~(RegState::Undef | RegState::Dead);
B.addDef(R.first, S, SubReg);
});
}
for (auto &&R : Uses) {
forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) {
B.addUse(R.first, R.second.first & ~RegState::Kill, SubReg);
});
}
for (auto &&R : Defs) {
unsigned Reg = R.first;
Uses.erase(Reg);
if (TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
for (auto &&R : Uses) {
unsigned Reg = R.first;
if (TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
LIS->removeInterval(Reg);
LIS->createAndComputeVirtRegInterval(Reg);
}
}
}
return Changed;
}