Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
//===- LanaiInstrFormats.td - Lanai Instruction Formats ----*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

class InstLanai<dag outs, dag ins, string asmstr, list<dag> pattern>
    : Instruction {
  field bits<32> Inst;
  field bits<32> SoftFail = 0;
  let Size = 4;

  let Namespace = "Lanai";
  let DecoderNamespace = "Lanai";

  bits<4> Opcode;
  let Inst{31 - 28} = Opcode;

  dag OutOperandList = outs;
  dag InOperandList = ins;
  let AsmString = asmstr;
  let Pattern = pattern;
}

//------------------------------------------------------------------------------
// Register Immediate (RI)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |0.A.A.A| . . . . | . . . . |F.H| . . . . . . . . . . . . . . . |
//           -----------------------------------------------------------------
//            opcode     Rd        Rs1                constant (16)
//
// Action:
//           Rd <- Rs1 op constant
//
// Except for shift instructions, `H' determines whether the constant
// is in the high (1) or low (0) word.  The other halfword is 0x0000,
// except for the `AND' instruction (`AAA' = 100), for which the other
// halfword is 0xFFFF, and shifts (`AAA' = 111), for which the constant is
// sign extended.
//
// `F' determines whether the instruction modifies (1) or does not
// modify (0) the program flags.
//
// `AAA' specifies the operation: `add' (000), `addc' (001), `sub'
// (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or `shift'
// (111).  For the shift, `H' specifies a logical (0) or arithmetic (1)
// shift.  The amount and direction of the shift are determined by the
// sign extended constant interpreted as a two's complement number.  The
// shift operation is defined only for the range of:
//      31 ... 0 -1 ... -31
//      \      / \        /
//        left     right
//        shift    shift
//
// If and only if the `F' bit is 1, RI instructions modify the
// condition bits, `Z' (Zero), `N' (Negative), `V' (oVerflow), and `C'
// (Carry), according to the result.  If the flags are updated, they are
// updated as follows:
// `Z'
//      is set if the result is zero and cleared otherwise.
//
// `N'
//      is set to the most significant bit of the result.
//
// `V'
//      For arithmetic instructions (`add', `addc', `sub', `subb') `V' is
//      set if the sign (most significant) bits of the input operands are
//      the same but different from the sign bit of the result and cleared
//      otherwise.  For other RI instructions, `V' is cleared.
//
// `C'
//      For arithmetic instructions, `C' is set/cleared if there is/is_not
//      a carry generated out of the most significant when performing the
//      twos-complement addition (`sub(a,b) == a + ~b + 1', `subb(a,b) ==
//      a + ~b + `C'').  For left shifts, `C' is set to the least
//      significant bit discarded by the shift operation.  For all other
//      operations, `C' is cleared.
//
// A Jump is accomplished by `Rd' being `pc', and it has one shadow.
//
// The all-0s word is the instruction `R0 <- R0 + 0', which is a no-op.
class InstRI<bits<3> op, dag outs, dag ins, string asmstr,
             list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern>, Sched<[WriteALU]> {
  let Itinerary = IIC_ALU;
  bits<5> Rd;
  bits<5> Rs1;
  bit F;
  bit H;
  bits<16> imm16;

  let Opcode{3} = 0;
  let Opcode{2 - 0} = op;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = F;
  let Inst{16} = H;
  let Inst{15 - 0} = imm16;
}

//------------------------------------------------------------------------------
// Register Register (RR)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.0.0| . . . . | . . . . |F.I| . . . . |B.B.B|J.J.J.J.J|D.D.D|
//           -----------------------------------------------------------------
//            opcode     Rd        Rs1           Rs2   \       operation     /
//
// Action:
//           `Rd <- Rs1 op Rs2' iff condition DDDI is true.
//
// `DDDI' is as described for the BR instruction.
//
// `F' determines whether the instruction modifies (1) or does not
// modify (0) the program flags.
//
// `BBB' determines the operation: `add' (000), `addc' (001), `sub'
// (010), `subb' (011), `and' (100), `or' (101), `xor' (110), or "special"
// (111).  The `JJJJJ' field is irrelevant except for special.
//
// `JJJJJ' determines which special operation is performed.  `10---'
// is a logical shift, and `11---' is an arithmetic shift, and ‘00000` is
// the SELECT operation.  The amount and direction of the shift are
// determined by the contents of `Rs2' interpreted as a two's complement
// number (in the same way as shifts in the Register-Immediate
// instructions in *Note RI::).  For the SELECT operation, Rd gets Rs1 if
// condition DDDI is true, Rs2 otherwise. All other `JJJJJ' combinations
// are reserved for instructions that may be defined in the future.
//
// If the `F' bit is 1, RR instructions modify the condition bits, `Z'
// (Zero), `N' (Negative), `V' (oVerflow), and `C' (Carry), according to
// the result.  All RR instructions modify the `Z', `N', and `V' flags.
// Except for arithmetic instructions (`add', `addc', `sub', `subb'), `V'
// is cleared.  Only arithmetic instructions and shifts modify `C'. Right
// shifts clear C.
//
// DDDI is as described in the table for the BR instruction and only used for
// the select instruction.
//
// A Jump is accomplished by `Rd' being `pc', and it has one shadow.
class InstRR<bits<3> op, dag outs, dag ins, string asmstr,
             list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern>, Sched<[WriteALU]> {
  let Itinerary = IIC_ALU;
  bits<5> Rd;
  bits<5> Rs1;
  bits<5> Rs2;
  bit F;
  bits<4> DDDI;
  bits<5> JJJJJ;

  let Opcode = 0b1100;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = F;
  let Inst{16} = DDDI{0};
  let Inst{15 - 11} = Rs2;
  let Inst{10 - 8} = op;
  let Inst{7 - 3} = JJJJJ;
  let Inst{2 - 0} = DDDI{3 - 1};
}

//------------------------------------------------------------------------------
// Register Memory (RM)
//------------------------------------------------------------------------------
// Encoding:
//          -----------------------------------------------------------------
//          |1.0.0.S| . . . . | . . . . |P.Q| . . . . . . . . . . . . . . . |
//          -----------------------------------------------------------------
//           opcode     Rd        Rs1                 constant (16)
//
// Action:
//        Rd <- Memory(ea)      (Load)    see below for the
//        Memory(ea) <- Rd      (Store)   definition of ea.
//
// `S' determines whether the instruction is a Load (0) or a Store (1).
// Loads appear in Rd one cycle after this instruction executes.  If the
// following instruction reads Rd, that instruction will be delayed by 1
// clock cycle.
//
//   PQ      operation
//   --      ------------------------------------------
//   00      ea = Rs1
//   01      ea = Rs1,             Rs1 <- Rs1 + constant
//   10      ea = Rs1 + constant
//   11      ea = Rs1 + constant,  Rs1 <- Rs1 + constant
//
// The constant is sign-extended for this instruction.
//
// A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots.
class InstRM<bit S, dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> Rs1;
  bit P;
  bit Q;
  bits<16> imm16;
  // Dummy variables to allow multiclass definition of RM and RRM
  bits<2> YL;
  bit E;

  let Opcode{3 - 1} = 0b100;
  let Opcode{0} = S;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = P;
  let Inst{16} = Q;
  let Inst{15 - 0} = imm16;

  let PostEncoderMethod = "adjustPqBitsRmAndRrm";
}

//------------------------------------------------------------------------------
// Register Register Memory (RRM)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.0.1.S| . . . . | . . . . |P.Q| . . . . |B.B.B|J.J.J.J.J|Y.L.E|
//           -----------------------------------------------------------------
//            opcode     Rd        Rs1           Rs2   \       operation     /
//
// Action:
//           Rd <- Memory(ea)      (Load)    see below for the
//           Memory(ea) <- Rd      (Store)   definition of ea.
//
// The RRM instruction is identical to the RM (*note RM::.) instruction
// except that:
//
// 1. `Rs1 + constant' is replaced with `Rs1 op Rs2', where `op' is
//    determined in the same way as in the RR instruction (*note RR::.)
//    and
//
// 2. part-word memory accesses are allowed as specified below.
//
//    If `BBB' != 111 (i.e.: For all but shift operations):
//        If `YLE' = 01- => fuLl-word memory access
//        If `YLE' = 00- => half-word memory access
//        If `YLE' = 10- => bYte memory access
//        If `YLE' = --1 => loads are zEro extended
//        If `YLE' = --0 => loads are sign extended
//
//    If `BBB' = 111 (For shift operations):
//        fullword memory access are performed.
//
// All part-word loads write the least significant part of the
// destination register with the higher-order bits zero- or sign-extended.
// All part-word stores store the least significant part-word of the
// source register in the destination memory location.
//
// A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots.
class InstRRM<bit S, dag outs, dag ins, string asmstr,
              list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> Rs1;
  bits<5> Rs2;
  bit P;
  bit Q;
  bits<3> BBB;
  bits<5> JJJJJ;
  bits<2> YL;
  bit E;

  let Opcode{3 - 1} = 0b101;
  let Opcode{0} = S;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = P;
  let Inst{16} = Q;
  let Inst{15 - 11} = Rs2;
  let Inst{10 - 8} = BBB;
  let Inst{7 - 3} = JJJJJ;
  let Inst{2 - 1} = YL;
  let Inst{0} = E;

  let PostEncoderMethod = "adjustPqBitsRmAndRrm";
}

//------------------------------------------------------------------------------
// Conditional Branch (BR)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.0|D.D.D| . . . . . . . . . . . . . . . . . . . . . . |0.I|
//           -----------------------------------------------------------------
//            opcode condition                   constant (23)
//
// Action:
//            if (condition) { `pc' <- 4*(zero-extended constant) }
//
// The BR instruction is an absolute branch.
// The constant is scaled as shown by its position in the instruction word such
// that it specifies word-aligned addresses in the range [0,2^25-4]
//
// The `DDDI' field selects the condition that causes the branch to be taken.
// (the `I' (Invert sense) bit inverts the sense of the condition):
//
//   DDDI  logical function                        [code, used for...]
//   ----  --------------------------------------  ------------------------
//   0000  1                                       [T, true]
//   0001  0                                       [F, false]
//   0010  C AND Z'                                [HI, high]
//   0011  C' OR Z                                 [LS, low or same]
//   0100  C'                                      [CC, carry cleared]
//   0101  C                                       [CS, carry set]
//   0110  Z'                                      [NE, not equal]
//   0111  Z                                       [EQ, equal]
//   1000  V'                                      [VC, oVerflow cleared]
//   1001  V                                       [VS, oVerflow set]
//   1010  N'                                      [PL, plus]
//   1011  N                                       [MI, minus]
//   1100  (N AND V) OR (N' AND V')                [GE, greater than or equal]
//   1101  (N AND V') OR (N' AND V)                [LT, less than]
//   1110  (N AND V AND Z') OR (N' AND V' AND Z')  [GT, greater than]
//   1111  (Z) OR (N AND V') OR (N' AND V)         [LE, less than or equal]
//
// If the branch is not taken, the BR instruction is a no-op.  If the branch is
// taken, the processor starts executing instructions at the branch target
// address *after* the processor has executed one more instruction.  That is,
// the branch has one “branch delay slot”.  Be very careful if you find yourself
// wanting to put a branch in a branch delays slot!
class InstBR<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  let Itinerary = IIC_ALU;
  bits<25> addr;
  bits<4> DDDI;

  let Opcode = 0b1110;
  let Inst{27 - 25} = DDDI{3 - 1};
  let Inst{24 - 0} = addr;
  // These instructions overwrite the last two address bits (which are assumed
  // and ensured to be 0).
  let Inst{1} = 0;
  let Inst{0} = DDDI{0};
}

//------------------------------------------------------------------------------
// Conditional Branch Relative (BRR)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.0|D.D.D|1|-| . . . . |-.-| . . . . . . . . . . . . . |1.I|
//           -----------------------------------------------------------------
//            opcode condition     Rs1           constant (14)
// Action:
//           if (condition) { ‘pc’ <- Rs1 + 4*sign-extended constant) }
//
// BRR behaves like BR, except the branch target address is a 16-bit PC relative
// offset.
class InstBRR<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<4> DDDI;
  bits<5> Rs1;
  bits<16> imm16;

  let Opcode = 0b1110;
  let Inst{27 - 25} = DDDI{3 - 1};
  let Inst{24} = 1;
  let Inst{22 - 18} = Rs1;
  let Inst{17 - 16} = 0;
  let Inst{15 - 0} = imm16;
  // Overwrite last two bits which have to be zero
  let Inst{1} = 1;
  let Inst{0} = DDDI{0};

  // Set don't cares to zero
  let Inst{23} = 0;
}

//------------------------------------------------------------------------------
// Conditional Set (SCC)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.0|D.D.D|0.-| . . . . |-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.I|
//           -----------------------------------------------------------------
//            opcode condition     Rs1
//
// Action:
//       Rs1 <- logical function result
//
// SCC sets dst_reg to the boolean result of computing the logical function
// specified by DDDI, as described in the table for the BR instruction.
class InstSCC<dag outs, dag ins, string asmstr,
              list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  let Itinerary = IIC_ALU;
  bits<5> Rs1; // dst_reg in documentation
  bits<4> DDDI;

  let Opcode = 0b1110;
  let Inst{27 - 25} = DDDI{3 - 1};
  let Inst{24} = 0;
  let Inst{22 - 18} = Rs1;
  let Inst{1} = 1;
  let Inst{0} = DDDI{0};

  // Set don't cares to zero
  let Inst{23} = 0;
  let Inst{17 - 2} = 0;
}

//------------------------------------------------------------------------------
// Special Load/Store (SLS)
//------------------------------------------------------------------------------
//
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.1| . . . . | . . . . |0.S| . . . . . . . . . . . . . . . |
//           -----------------------------------------------------------------
//            opcode     Rd    addr 5msb's            address 16 lsb's
//
// Action:
//           If S = 0 (LOAD):   Rd <- Memory(address);
//           If S = 1 (STORE):  Memory(address) <- Rd
//
// The timing is the same as for RM (*note RM::.) and RRM (*note
// RRM::.) instructions.  The two low-order bits of the 21-bit address are
// ignored.  The address is zero extended.  Fullword memory accesses are
// performed.
class InstSLS<bit S, dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> msb;
  bits<16> lsb;

  let Opcode = 0b1111;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = msb;
  let Inst{17} = 0;
  let Inst{16} = S;
  let Inst{15 - 0} = lsb;
}

//------------------------------------------------------------------------------
// Special Load Immediate (SLI)
//------------------------------------------------------------------------------
// Encoding:
//           -----------------------------------------------------------------
//           |1.1.1.1| . . . . | . . . . |1.0| . . . . . . . . . . . . . . . |
//           -----------------------------------------------------------------
//            opcode     Rd    const 5msb's          constant 16 lsb's
//
// Action:
//           Rd <- constant
//
// The 21-bit constant is zero-extended.  The timing is the same as the
// RM instruction (*note RM::.).
class InstSLI<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> msb;
  bits<16> lsb;

  let Opcode = 0b1111;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = msb;
  let Inst{17} = 1;
  let Inst{16} = 0;
  let Inst{15 - 0} = lsb;
}

//------------------------------------------------------------------------------
// Special Part-Word Load/Store (SPLS)
//------------------------------------------------------------------------------
// Encoding:
//        -----------------------------------------------------------------
//        |1.1.1.1| . . . . | . . . . |1.1.0.Y.S.E.P.Q| . . . . . . . . . |
//        -----------------------------------------------------------------
//         opcode     Rd        Rs1                       constant (10)
//
// Action:
//        If `YS' = 11  (bYte     Store):
//             Memory(ea) <- (least significant byte of Rr)
//        If `YS' = 01  (halfword Store):
//             Memory(ea) <- (least significant half-word of Rr)
//        If `YS' = 10  (bYte     load):  Rr <- Memory(ea)
//        If `YS' = 00  (halfword load):  Rr <- Memory(ea)
//             [Note: here ea is determined as in the RM instruction. ]
//        If `SE' = 01 then the value is zEro extended
//             before being loaded into Rd.
//        If `SE' = 00 then the value is sign extended
//             before being loaded into Rd.
//
// `P' and `Q' are used to determine `ea' as in the RM instruction. The
// constant is sign extended.  The timing is the same as the RM and RRM
// instructions.  *Note RM:: and *Note RRM::.
//
// All part-word loads write the part-word into the least significant
// part of the destination register, with the higher-order bits zero- or
// sign-extended.  All part-word stores store the least significant
// part-word of the source register into the destination memory location.
class InstSPLS<dag outs, dag ins, string asmstr,
               list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  bits<5> Rd;
  bits<5> Rs1;
  bits<5> msb;
  bit Y;
  bit S;
  bit E;
  bit P;
  bit Q;
  bits<10> imm10;

  let Opcode = 0b1111;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17 - 15} = 0b110;
  let Inst{14} = Y;
  let Inst{13} = S;
  let Inst{12} = E;
  let Inst{11} = P;
  let Inst{10} = Q;
  let Inst{9 - 0} = imm10;

  let PostEncoderMethod = "adjustPqBitsSpls";
}

//------------------------------------------------------------------------------
// Special instructions (popc, leadz, trailz)
//------------------------------------------------------------------------------
// Encoding:
//         -----------------------------------------------------------------
//         |1.1.0.1|    Rd   |   Rs1   |F.-| . . . . | . . | . . . . | OP  |
//         -----------------------------------------------------------------
//          opcode      Rd       Rs1
// Action:
//         Rd <- Perform action encoded in OP on Rs1
//   OP is one of:
//      0b001 POPC   Population count;
//      0b010 LEADZ  Count number of leading zeros;
//      0b011 TRAILZ Count number of trailing zeros;
class InstSpecial<bits<3> op, dag outs, dag ins, string asmstr,
                  list<dag> pattern> : InstLanai<outs, ins, asmstr,
                  pattern>, Sched<[WriteALU]> {
  let Itinerary = IIC_ALU;
  bit F;
  bits<5> Rd;
  bits<5> Rs1;

  let Opcode = 0b1101;
  let Inst{27 - 23} = Rd;
  let Inst{22 - 18} = Rs1;
  let Inst{17} = F;
  let Inst{16 - 3} = 0;
  let Inst{2 - 0} = op;
}

// Pseudo instructions
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    : InstLanai<outs, ins, asmstr, pattern> {
  let Inst{15 - 0} = 0;
  let isPseudo = 1;
}