Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
//===-- LanaiInstrInfo.td - Target Description for Lanai Target -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Lanai instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "LanaiInstrFormats.td"

// -------------------------------------------------- //
// Instruction Operands and Patterns
// -------------------------------------------------- //

//  These are target-independent nodes, but have target-specific formats.
def SDT_LanaiCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
                                            SDTCisVT<1, i32>]>;
def SDT_LanaiCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
                                          SDTCisVT<1, i32>]>;
def SDT_LanaiCall         : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
def SDT_LanaiSetFlag      : SDTypeProfile<0,  2, [SDTCisSameAs<0, 1>]>;
def SDT_LanaiSelectCC     : SDTypeProfile<1,  3, [SDTCisSameAs<0, 1>,
                                                  SDTCisSameAs<1, 2>]>;
def SDT_LanaiSetCC        : SDTypeProfile<1,  1, [SDTCisVT<0, i32>,
                                                  SDTCisVT<1, i32>]>;
def SDT_LanaiBrCC         : SDTypeProfile<0,  2, [SDTCisVT<0, OtherVT>,
                                                  SDTCisVT<1, i32>]>;
def SDT_LanaiAdjDynAlloc  : SDTypeProfile<1,  1, [SDTCisVT<0, i32>,
                                                  SDTCisVT<1, i32>]>;

def Call             : SDNode<"LanaiISD::CALL", SDT_LanaiCall,
                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                               SDNPVariadic]>;
def RetFlag          : SDNode<"LanaiISD::RET_FLAG", SDTNone,
                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def CallSeqStart     : SDNode<"ISD::CALLSEQ_START", SDT_LanaiCallSeqStart,
                              [SDNPHasChain, SDNPOutGlue]>;
def CallSeqEnd       : SDNode<"ISD::CALLSEQ_END", SDT_LanaiCallSeqEnd,
                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def LanaiSetFlag     : SDNode<"LanaiISD::SET_FLAG", SDT_LanaiSetFlag,
                              [SDNPOutGlue]>;
def LanaiSubbF       : SDNode<"LanaiISD::SUBBF", SDT_LanaiSetFlag,
                              [SDNPOutGlue, SDNPInGlue]>;
def LanaiBrCC        : SDNode<"LanaiISD::BR_CC", SDT_LanaiBrCC,
                              [SDNPHasChain, SDNPInGlue]>;
def LanaiSelectCC    : SDNode<"LanaiISD::SELECT_CC", SDT_LanaiSelectCC,
                              [SDNPInGlue]>;
def LanaiSetCC       : SDNode<"LanaiISD::SETCC", SDT_LanaiSetCC,
                              [SDNPInGlue]>;
def LanaiHi          : SDNode<"LanaiISD::HI", SDTIntUnaryOp>;
def LanaiLo          : SDNode<"LanaiISD::LO", SDTIntUnaryOp>;
def LanaiSmall       : SDNode<"LanaiISD::SMALL", SDTIntUnaryOp>;
def LanaiAdjDynAlloc : SDNode<"LanaiISD::ADJDYNALLOC", SDT_LanaiAdjDynAlloc>;

// Extract bits 0-15 (low-end) of an immediate value.
def LO16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() & 0xffff,
                                   SDLoc(N), MVT::i32);
}]>;

// Extract bits 16-31 (high-end) of an immediate value.
// Transformation function: shift the immediate value down into the low bits.
def HI16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() >> 16, SDLoc(N),
                                   MVT::i32);
}]>;

def NEG : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;

def LO21 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() & 0x1fffff,
                                   SDLoc(N), MVT::i32);
}]>;

// Branch targets
def BrTargetAsmOperand : AsmOperandClass {
  let Name = "BrTarget";
}
def BrTarget   : Operand<OtherVT> {
  let ParserMatchClass = BrTargetAsmOperand;
  let EncoderMethod = "getBranchTargetOpValue";
  let DecoderMethod = "decodeBranch";
}

def CallTargetAsmOperand : AsmOperandClass {
  let Name = "CallTarget";
}
def CallTarget : Operand<i32> {
  let ParserMatchClass = CallTargetAsmOperand;
  let EncoderMethod = "getBranchTargetOpValue";
  let DecoderMethod = "decodeBranch";
}

def ImmShiftAsmOperand : AsmOperandClass { let Name = "ImmShift"; }
def immShift : Operand<i32>, PatLeaf<(imm), [{
    int Imm = N->getSExtValue();
    return Imm >= -31 && Imm <= 31;}]> {
  let ParserMatchClass = ImmShiftAsmOperand;
  let DecoderMethod = "decodeShiftImm";
}

def Imm10AsmOperand : AsmOperandClass { let Name = "Imm10"; }
def imm10 : Operand<i32>, PatLeaf<(imm), [{
    return isInt<10>(N->getSExtValue()); }]> {
  let ParserMatchClass = Imm10AsmOperand;
}

def LoImm16AsmOperand : AsmOperandClass { let Name = "LoImm16"; }
def i32lo16z : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has only rightmost 16
    // bits set.
    return ((N->getZExtValue() & 0xFFFFUL) == N->getZExtValue());}], LO16> {
  let ParserMatchClass = LoImm16AsmOperand;
}
def i32neg16 : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32neg16 predicate - true if the 32-bit immediate is negative and can
    // be represented by a 16 bit integer.
    int Imm = N->getSExtValue();
    return (Imm < 0) && (isInt<16>(Imm));}], LO16> {
  let ParserMatchClass = LoImm16AsmOperand;
}
def i32lo16s : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has only rightmost 16
    // bits set.
    return ((int64_t)(N->getSExtValue() & 0xFFFFUL) == N->getSExtValue());}], LO16> {
  let ParserMatchClass = LoImm16AsmOperand;
}

def LoImm16AndAsmOperand : AsmOperandClass { let Name = "LoImm16And"; }
def i32lo16and : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has the rightmost 16
    // bits set and the leftmost 16 bits 1's.
    return (N->getZExtValue() >= 0xFFFF0000UL);}], LO16> {
  let ParserMatchClass = LoImm16AndAsmOperand;
  let PrintMethod = "printLo16AndImmOperand";
}

def HiImm16AsmOperand : AsmOperandClass { let Name = "HiImm16"; }
def i32hi16 : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32hi16 predicate - true if the 32-bit immediate has only leftmost 16
    // bits set.
    return ((N->getZExtValue() & 0xFFFF0000UL) == N->getZExtValue());}], HI16> {
  let ParserMatchClass = HiImm16AsmOperand;
  let PrintMethod = "printHi16ImmOperand";
}

def HiImm16AndAsmOperand : AsmOperandClass { let Name = "HiImm16And"; }
def i32hi16and : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo16 predicate - true if the 32-bit immediate has the leftmost 16
    // bits set and the rightmost 16 bits 1's.
    return ((N->getZExtValue() & 0xFFFFUL) == 0xFFFFUL);}], HI16> {
  let ParserMatchClass = HiImm16AndAsmOperand;
  let PrintMethod = "printHi16AndImmOperand";
}

def LoImm21AsmOperand : AsmOperandClass { let Name = "LoImm21"; }
def i32lo21 : Operand<i32>, PatLeaf<(i32 imm), [{
    // i32lo21 predicate - true if the 32-bit immediate has only rightmost 21
    // bits set.
    return ((N->getZExtValue() & 0x1FFFFFUL) == N->getZExtValue());}], LO21> {
  let ParserMatchClass = LoImm21AsmOperand;
}

def AluOp : Operand<i32> {
  let PrintMethod = "printAluOperand";
}

// Addressing modes.
def ADDRrr : ComplexPattern<i32, 3, "selectAddrRr", [], []>;
def ADDRri : ComplexPattern<i32, 3, "selectAddrRi", [frameindex], []>;
def ADDRsls : ComplexPattern<i32, 1, "selectAddrSls", [frameindex], []>;
def ADDRspls : ComplexPattern<i32, 3, "selectAddrSpls", [frameindex], []>;

// Address operands
def MemRegImmAsmOperand : AsmOperandClass {
  let Name = "MemRegImm";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMri : Operand<i32> {
  let DecoderMethod = "decodeRiMemoryValue";
  let EncoderMethod = "getRiMemoryOpValue";
  let MIOperandInfo = (ops GPR:$base, i32lo16s:$offset, AluOp:$Opcode);
  let ParserMatchClass = MemRegImmAsmOperand;
  let PrintMethod   = "printMemRiOperand";
}

def MemRegRegAsmOperand : AsmOperandClass {
  let Name = "MemRegReg";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMrr : Operand<i32> {
  let DecoderMethod = "decodeRrMemoryValue";
  let EncoderMethod = "getRrMemoryOpValue";
  let MIOperandInfo = (ops GPR:$Op1, GPR:$Op2, AluOp:$Opcode);
  let ParserMatchClass = MemRegRegAsmOperand;
  let PrintMethod   = "printMemRrOperand";
}

def MemImmAsmOperand : AsmOperandClass {
  let Name = "MemImm";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMi : Operand<i32> {
  let MIOperandInfo = (ops i32lo21:$offset);
  let ParserMatchClass = MemImmAsmOperand;
  let PrintMethod   = "printMemImmOperand";
}

def MemSplsAsmOperand : AsmOperandClass {
  let Name = "MemSpls";
  let ParserMethod  = "parseMemoryOperand";
}
def MEMspls : Operand<i32> {
  let DecoderMethod = "decodeSplsValue";
  let EncoderMethod = "getSplsOpValue";
  let MIOperandInfo = (ops GPR:$base, imm10:$offset, AluOp:$Opcode);
  let ParserMatchClass = MemSplsAsmOperand;
  let PrintMethod   = "printMemSplsOperand";
}

def CCOp : Operand<i32> {
  let PrintMethod = "printCCOperand";
}

// Predicate operand. Default to 0 = true.
def CondCodeOperand : AsmOperandClass { let Name = "CondCode"; }

def pred : PredicateOperand<i32, (ops i32imm), (ops (i32 0))> {
  let PrintMethod = "printPredicateOperand";
  let ParserMatchClass = CondCodeOperand;
  let DecoderMethod = "decodePredicateOperand";
}

let hasSideEffects = 0, Inst = 0x00000001 in
  def NOP : InstLanai<(outs), (ins), "nop", []>;

// Special NOPs to change logging level in vlanai.
let hasSideEffects = 0, Inst = 0x00000002 in
  def LOG0 : InstLanai<(outs), (ins), "log_0", []>;
let hasSideEffects = 0, Inst = 0x00000003 in
  def LOG1 : InstLanai<(outs), (ins), "log_1", []>;
let hasSideEffects = 0, Inst = 0x00000004 in
  def LOG2 : InstLanai<(outs), (ins), "log_2", []>;
let hasSideEffects = 0, Inst = 0x00000005 in
  def LOG3 : InstLanai<(outs), (ins), "log_3", []>;
let hasSideEffects = 0, Inst = 0x00000006 in
  def LOG4 : InstLanai<(outs), (ins), "log_4", []>;

// Map an SPLS instruction onto itself. All other instructions will be mapped
// onto -1. Used to identify SPLS instructions.
def splsIdempotent : InstrMapping {
  let FilterClass = "InstSPLS";
  let RowFields = ["AsmString"];
  let ColFields = ["PostEncoderMethod"];
  let KeyCol = ["adjustPqBitsSpls"];
  let ValueCols = [["adjustPqBitsSpls"]];
}

// -------------------------------------------------- //
// ALU instructions
// -------------------------------------------------- //
multiclass ALUbase<bits<3> subOp, string AsmStr, SDNode OpNode,
                   PatLeaf LoExt, PatLeaf HiExt,
                   list<dag> loPattern, list<dag> hiPattern> {
  // Register Immediate
  let H = 0 in
    def LO : InstRI<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, LoExt:$imm16),
                    !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"),
                    loPattern>;
  let H = 1 in
    def HI : InstRI<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, HiExt:$imm16),
                    !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"),
                    hiPattern>;

}

multiclass ALUarith<bits<3> subOp, string AsmStr, SDNode OpNode,
                    PatLeaf LoExt, PatLeaf HiExt> {
  defm I_ : ALUbase<subOp, AsmStr, OpNode, LoExt, HiExt, [], []>;

  // Register Register
  let JJJJJ = 0 in
    def R : InstRR<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI),
                   !strconcat(AsmStr, "$DDDI\t$Rs1, $Rs2, $Rd"),
                   [(set GPR:$Rd, (OpNode GPR:$Rs1, GPR:$Rs2))]>;
}

multiclass ALUlogic<bits<3> subOp, string AsmStr, SDNode OpNode,
                    PatLeaf LoExt, PatLeaf HiExt> {
  defm I_ : ALUbase<subOp, AsmStr, OpNode, LoExt, HiExt,
                    [(set GPR:$Rd, (OpNode GPR:$Rs1, LoExt:$imm16))],
                    [(set GPR:$Rd, (OpNode GPR:$Rs1, HiExt:$imm16))]>;

  // Register Register
  let JJJJJ = 0 in
    def R : InstRR<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI),
                   !strconcat(AsmStr, "$DDDI\t$Rs1, $Rs2, $Rd"),
                   [(set GPR:$Rd, (OpNode GPR:$Rs1, GPR:$Rs2))]>;
}

// Non flag setting ALU operations
let isAsCheapAsAMove = 1, F = 0 in {
  let isCommutable = 1 in {
    defm ADD_ : ALUarith<0b000, "add", add, i32lo16z, i32hi16>;
  }
  defm SUB_ : ALUarith<0b010,   "sub", sub, i32lo16z, i32hi16>;
  let isCommutable = 1 in {
    defm AND_ : ALUlogic<0b100, "and", and, i32lo16and, i32hi16and>;
    defm OR_  : ALUlogic<0b101,  "or",  or, i32lo16z, i32hi16>;
    defm XOR_ : ALUlogic<0b110, "xor", xor, i32lo16z, i32hi16>;
  }
}

def : Pat<(add GPR:$Rs1, i32lo16z:$imm),
          (ADD_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(sub GPR:$Rs1, i32lo16z:$imm),
          (SUB_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(add GPR:$Rs1, i32hi16:$imm),
          (ADD_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(sub GPR:$Rs1, i32hi16:$imm),
          (SUB_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(i32 i32lo16and:$imm), (AND_I_LO (i32 R1), i32lo16and:$imm)>;
def : Pat<(i32 i32hi16and:$imm), (AND_I_HI (i32 R1), i32hi16and:$imm)>;

// Change add/sub with negative number to sub/add
def : Pat<(add GPR:$Rs1, i32neg16:$imm),
          (SUB_I_LO GPR:$Rs1, (NEG $imm))>;
def : Pat<(sub GPR:$Rs1, i32neg16:$imm),
          (ADD_I_LO GPR:$Rs1, (NEG $imm))>;

// Flag (incl. carry) setting addition and subtraction
let F = 1, Defs = [SR] in {
  defm ADD_F_ : ALUarith<0b000, "add.f", addc, i32lo16z, i32hi16>;
  defm SUB_F_ : ALUarith<0b010, "sub.f", subc, i32lo16z, i32hi16>;
}

def : Pat<(addc GPR:$Rs1, i32lo16z:$imm),
          (ADD_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(subc GPR:$Rs1, i32lo16z:$imm),
          (SUB_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(addc GPR:$Rs1, i32hi16:$imm),
          (ADD_F_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(subc GPR:$Rs1, i32hi16:$imm),
          (SUB_F_I_HI GPR:$Rs1, i32hi16:$imm)>;

// Carry using addition and subtraction
let F = 0, Uses = [SR] in {
  defm ADDC_ : ALUarith<0b001, "addc", adde, i32lo16z, i32hi16>;
  defm SUBB_ : ALUarith<0b011, "subb", sube, i32lo16z, i32hi16>;
}

def : Pat<(adde GPR:$Rs1, i32lo16z:$imm),
          (ADDC_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(sube GPR:$Rs1, i32lo16z:$imm),
          (SUBB_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(adde GPR:$Rs1, i32hi16:$imm),
          (ADDC_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : Pat<(sube GPR:$Rs1, i32hi16:$imm),
          (SUBB_I_HI GPR:$Rs1, i32hi16:$imm)>;

// Flag setting ALU operations
let isAsCheapAsAMove = 1, F = 1, Defs = [SR] in {
  let isCommutable = 1 in {
    defm AND_F_ : ALUlogic<0b100, "and.f",  and, i32lo16and, i32hi16and>;
    defm OR_F_  : ALUlogic<0b101,  "or.f",   or, i32lo16z, i32hi16>;
    defm XOR_F_ : ALUlogic<0b110, "xor.f",  xor, i32lo16z, i32hi16>;
  }
}

let isAsCheapAsAMove = 1, F = 1, Defs = [SR], Uses = [SR] in {
  defm ADDC_F_ : ALUarith<0b001, "addc.f", adde, i32lo16z, i32hi16>;
  defm SUBB_F_ : ALUarith<0b011, "subb.f", sube, i32lo16z, i32hi16>;
}

def : Pat<(LanaiSubbF GPR:$Rs1, GPR:$Rs2),
          (SUBB_F_R GPR:$Rs1, GPR:$Rs2)>;

def : Pat<(LanaiSubbF GPR:$Rs1, i32lo16z:$imm),
          (SUBB_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;

def : Pat<(LanaiSubbF GPR:$Rs1, i32hi16:$imm),
          (SUBB_F_I_HI GPR:$Rs1, i32hi16:$imm)>;

def : InstAlias<"mov $src, $dst", (ADD_R GPR:$dst, GPR:$src, R0, 0)>;

let isAsCheapAsAMove = 1, Rs1 = R0.Num, isCodeGenOnly = 1, H = 1, F = 0,
  isReMaterializable = 1 in
  def MOVHI : InstRI<0b000, (outs GPR:$Rd), (ins i32hi16:$imm16),
                     "mov\t$imm16, $Rd",
                     [(set GPR:$Rd, i32hi16:$imm16)]>;

def : InstAlias<"mov $imm16, $dst", (ADD_I_LO GPR:$dst, R0, i32lo16z:$imm16)>;
def : InstAlias<"mov $imm16, $dst", (ADD_I_HI GPR:$dst, R0, i32hi16:$imm16)>;
def : InstAlias<"mov $imm16, $dst",
                (AND_I_LO GPR:$dst, R1, i32lo16and:$imm16)>;
def : InstAlias<"mov $imm16, $dst",
                (AND_I_HI GPR:$dst, R1, i32hi16and:$imm16)>;

// Shift instructions
class ShiftRI<string AsmStr, list<dag> Pattern>
  : InstRI<0b111, (outs GPR:$Rd), (ins GPR:$Rs1, immShift:$imm16),
           !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"), Pattern> {
  let isReMaterializable = 1;
}

let F = 0 in {
  let H = 0 in
    def SL_I : ShiftRI<"sh", [(set GPR:$Rd, (shl GPR:$Rs1, immShift:$imm16))]>;
  let H = 1 in
    def SA_I : ShiftRI<"sha", []>;
}
def : Pat<(srl GPR:$Rs1, immShift:$imm), (SL_I GPR:$Rs1, (NEG $imm))>;
def : Pat<(sra GPR:$Rs1, immShift:$imm), (SA_I GPR:$Rs1, (NEG $imm))>;

let F = 1, Defs = [SR] in {
  let H = 0 in
    def SL_F_I : ShiftRI<"sh.f", []>;
  let H = 1 in
    def SA_F_I : ShiftRI<"sha.f", []>;
}

class ShiftRR<string AsmStr, list<dag> Pattern>
  : InstRR<0b111, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI), AsmStr,
           Pattern>;

let F = 0 in {
  let JJJJJ = 0b10000 in
    def SHL_R : ShiftRR<"sh$DDDI\t$Rs1, $Rs2, $Rd",
                        [(set GPR:$Rd, (shl GPR:$Rs1, GPR:$Rs2))]>;
  let isCodeGenOnly = 1 in {
    let JJJJJ = 0b10000 in
      def SRL_R : ShiftRR<"sh$DDDI\t$Rs1, $Rs2, $Rd", []>;
  }
  let JJJJJ = 0b11000 in
    def SRA_R : ShiftRR<"sha$DDDI\t$Rs1, $Rs2, $Rd", []>;
}

let F = 1, Defs = [SR] in {
  let JJJJJ = 0b10000 in
    def SHL_F_R : ShiftRR<"sh.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
  let isCodeGenOnly = 1 in {
    let JJJJJ = 0b10000 in
      def SRL_F_R : ShiftRR<"sh.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
  }
  let JJJJJ = 0b11000 in
    def SRA_F_R : ShiftRR<"sha.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
}

// Expand shift-right operations
def : Pat<(srl GPR:$Rs1, GPR:$Rs2),
          (SRL_R GPR:$Rs1, (SUB_R R0, GPR:$Rs2))>;
def : Pat<(sra GPR:$Rs1, GPR:$Rs2),
          (SRA_R GPR:$Rs1, (SUB_R R0, GPR:$Rs2))>;

// -------------------------------------------------- //
// LOAD instructions
// -------------------------------------------------- //

class LoadRR<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRRM<0b0, (outs GPR:$Rd), (ins MEMrr:$src),
            !strconcat(OpcString, "\t$src, $Rd"),
            [(set (Ty GPR:$Rd), (OpNode ADDRrr:$src))]>,
    Sched<[WriteLD]> {
  bits<20> src;

  let Rs1 = src{19-15};
  let Rs2 = src{14-10};
  let P = src{9};
  let Q = src{8};
  let BBB = src{7-5};
  let JJJJJ = src{4-0};
  let mayLoad = 1;
}

class LoadRI<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRM<0b0, (outs GPR:$Rd), (ins MEMri:$src),
           !strconcat(OpcString, "\t$src, $Rd"),
           [(set (Ty GPR:$Rd), (OpNode ADDRri:$src))]>,
    Sched<[WriteLD]> {
  bits<23> src;

  let Itinerary = IIC_LD;
  let Rs1 = src{22-18};
  let P = src{17};
  let Q = src{16};
  let imm16 = src{15-0};
  let isReMaterializable = 1;
  let mayLoad = 1;
}

let E = 0 in {
  let YL = 0b01 in {
    // uld is used here and ld in the alias as the alias is printed out first if
    // an alias exist
    def LDW_RI : LoadRI<"uld", load, i32>;
    def LDW_RR : LoadRR<"ld", load, i32>;
  }
}

def : InstAlias<"ld $src, $dst", (LDW_RI GPR:$dst, MEMri:$src)>;

let E = 1 in {
  let YL = 0b01 in {
    def LDWz_RR : LoadRR<"uld", zextloadi32, i32>;
  }
}

let E = 1 in {
  let YL = 0b00 in
    def LDHz_RR : LoadRR<"uld.h", zextloadi16, i32>;
  let YL = 0b10 in
    def LDBz_RR : LoadRR<"uld.b", zextloadi8, i32>;
}

let E = 0 in {
  let YL = 0b00 in
    def LDHs_RR : LoadRR<"ld.h", sextloadi16, i32>;
  let YL = 0b10 in
    def LDBs_RR : LoadRR<"ld.b", sextloadi8, i32>;
}

def LDADDR : InstSLS<0x0, (outs GPR:$Rd), (ins MEMi:$src),
                     "ld\t$src, $Rd",
                     [(set (i32 GPR:$Rd), (load ADDRsls:$src))]>,
    Sched<[WriteLD]> {
  bits<21> src;

  let Itinerary = IIC_LD;
  let msb = src{20-16};
  let lsb = src{15-0};
  let isReMaterializable = 1;
  let mayLoad = 1;
}

class LoadSPLS<string asmstring, PatFrag opNode>
  : InstSPLS<(outs GPR:$Rd), (ins MEMspls:$src),
             !strconcat(asmstring, "\t$src, $Rd"),
             [(set (i32 GPR:$Rd), (opNode ADDRspls:$src))]>,
    Sched<[WriteLDSW]> {
  bits<17> src;
  let Itinerary = IIC_LDSW;
  let Rs1 = src{16-12};
  let P = src{11};
  let Q = src{10};
  let imm10 = src{9-0};
  let mayLoad = 1;
  let isReMaterializable = 1;
}

let Y = 0, S = 0, E = 1 in
  def LDHz_RI : LoadSPLS<"uld.h", zextloadi16>;

let Y = 0, S = 0, E = 0 in
  def LDHs_RI : LoadSPLS<"ld.h", sextloadi16>;

let Y = 1, S = 0, E = 1 in
  def LDBz_RI : LoadSPLS<"uld.b", zextloadi8>;

let Y = 1, S = 0, E = 0 in
  def LDBs_RI : LoadSPLS<"ld.b", sextloadi8>;

def SLI : InstSLI<(outs GPR:$Rd), (ins i32lo21:$imm),
                  "mov\t$imm, $Rd",
                  [(set GPR:$Rd, i32lo21:$imm)]> {
  bits<21> imm;

  let msb = imm{20-16};
  let lsb = imm{15-0};
  let isReMaterializable = 1;
  let isAsCheapAsAMove = 1;
}

// -------------------------------------------------- //
// STORE instructions
// -------------------------------------------------- //

class StoreRR<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRRM<0b1, (outs), (ins GPR:$Rd, MEMrr:$dst),
            !strconcat(OpcString, "\t$Rd, $dst"),
            [(OpNode (Ty GPR:$Rd), ADDRrr:$dst)]>,
    Sched<[WriteST]> {
  bits<20> dst;

  let Itinerary = IIC_ST;
  let Rs1 = dst{19-15};
  let Rs2 = dst{14-10};
  let P = dst{9};
  let Q = dst{8};
  let BBB = dst{7-5};
  let JJJJJ = dst{4-0};
  let mayStore = 1;
}

class StoreRI<string OpcString, PatFrag OpNode, ValueType Ty>
  : InstRM<0b1, (outs), (ins GPR:$Rd, MEMri:$dst),
           !strconcat(OpcString, "\t$Rd, $dst"),
           [(OpNode (Ty GPR:$Rd), ADDRri:$dst)]>,
    Sched<[WriteST]> {
  bits<23> dst;

  let Itinerary = IIC_ST;
  let Rs1 = dst{22-18};
  let P = dst{17};
  let Q = dst{16};
  let imm16 = dst{15-0};
  let mayStore = 1;
}

let YL = 0b01, E = 0 in {
  def SW_RR : StoreRR<"st", store, i32>;
  def SW_RI : StoreRI<"st", store, i32>;
}

let E = 0 in {
  let YL = 0b00 in
    def STH_RR : StoreRR<"st.h", truncstorei16, i32>;
  let YL = 0b10 in
    def STB_RR : StoreRR<"st.b", truncstorei8, i32>;
}

def STADDR : InstSLS<0x1, (outs), (ins GPR:$Rd, MEMi:$dst),
                     "st\t$Rd, $dst",
                     [(store (i32 GPR:$Rd), ADDRsls:$dst)]>,
    Sched<[WriteST]> {
  bits<21> dst;

  let Itinerary = IIC_ST;
  let msb = dst{20-16};
  let lsb = dst{15-0};
  let mayStore = 1;
}

class StoreSPLS<string asmstring, PatFrag opNode>
  : InstSPLS<(outs), (ins GPR:$Rd, MEMspls:$dst),
             !strconcat(asmstring, "\t$Rd, $dst"),
             [(opNode (i32 GPR:$Rd), ADDRspls:$dst)]>,
    Sched<[WriteSTSW]> {
  bits<17> dst;

  let Itinerary = IIC_STSW;
  let Rs1 = dst{16-12};
  let P = dst{11};
  let Q = dst{10};
  let imm10 = dst{9-0};
  let mayStore = 1;
}

let Y = 0, S = 1, E = 0 in
  def STH_RI : StoreSPLS<"st.h", truncstorei16>;

let Y = 1, S = 1, E = 0 in
  def STB_RI : StoreSPLS<"st.b", truncstorei8>;

// -------------------------------------------------- //
// BRANCH instructions
// -------------------------------------------------- //

let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1 in {
  def BT : InstBR<(outs), (ins BrTarget:$addr),
                  "bt\t$addr",
                  [(br bb:$addr)]> {
    let DDDI = 0b0000;
  }
  let Uses = [SR] in
    def BRCC : InstBR<(outs), (ins BrTarget:$addr, CCOp:$DDDI),
                      "b$DDDI\t$addr",
                      [(LanaiBrCC bb:$addr, imm:$DDDI)]>;

  let isIndirectBranch = 1 in {
    def JR : InstRR<0b101, (outs), (ins GPR:$Rs2), "bt\t$Rs2",
                    [(brind GPR:$Rs2)]> {
      let Rs1 = R0.Num;
      let Rd = R2.Num;
      let F = 0;
      let JJJJJ = 0;
      let DDDI = 0;
    }
  }
}

// -------------------------------------------------- //
// Condition/SF instructions
// -------------------------------------------------- //

// Instructions to set flags used in lowering comparisons.
multiclass SF<bits<3> op2Val, string AsmStr> {
  let F = 1, Rd = R0.Num, JJJJJ = 0, Defs = [SR], DDDI = 0 in
    def _RR : InstRR<op2Val, (outs), (ins GPR:$Rs1, GPR:$Rs2),
                     !strconcat(AsmStr, "\t$Rs1, $Rs2, %r0"),
                     [(LanaiSetFlag (i32 GPR:$Rs1), (i32 GPR:$Rs2))]>;
  let F = 1, Rd = R0.Num, H = 0, Defs = [SR] in
    def _RI_LO : InstRI<op2Val, (outs), (ins GPR:$Rs1, i32lo16z:$imm16),
                     !strconcat(AsmStr, "\t$Rs1, $imm16, %r0"),
                     [(LanaiSetFlag (i32 GPR:$Rs1), i32lo16z:$imm16)]>;
  let F = 1, Rd = R0.Num, H = 1, Defs = [SR] in
    def _RI_HI : InstRI<op2Val, (outs), (ins GPR:$Rs1, i32hi16:$imm16),
                     !strconcat(AsmStr, "\t$Rs1, $imm16, %r0"),
                     [(LanaiSetFlag (i32 GPR:$Rs1), i32hi16:$imm16)]>;
}
let isCodeGenOnly = 1, isCompare = 1 in {
  defm SFSUB_F : SF<0b010, "sub.f">;
}

// Jump and link
let isCall = 1, hasDelaySlot = 1, isCodeGenOnly = 1, Uses = [SP],
    Defs = [RCA] in {
  def CALL : Pseudo<(outs), (ins CallTarget:$addr), "", []>;
  def CALLR : Pseudo<(outs), (ins GPR:$Rs1), "", [(Call GPR:$Rs1)]>;
}

let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    Uses = [RCA] in {
  def RET : InstRM<0b0, (outs), (ins),
                   "ld\t-4[%fp], %pc ! return",
                   [(RetFlag)]> {
    let Rd = PC.Num;
    let Rs1 = FP.Num;
    let P = 1;
    let Q = 0;
    let imm16 = -4;

    // Post encoding is not needed for RET.
    let PostEncoderMethod = "";
  }
}

// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber SP.
let Defs = [SP], Uses = [SP] in {
  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                                "#ADJCALLSTACKDOWN $amt1 $amt2",
                                [(CallSeqStart timm:$amt1, timm:$amt2)]>;
  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                                "#ADJCALLSTACKUP $amt1 $amt2",
                                [(CallSeqEnd timm:$amt1, timm:$amt2)]>;
}

let Defs = [SP], Uses = [SP] in {
  def ADJDYNALLOC : Pseudo<(outs GPR:$dst), (ins GPR:$src),
                           "#ADJDYNALLOC $dst $src",
                           [(set GPR:$dst, (LanaiAdjDynAlloc GPR:$src))]>;
}

let Uses = [SR] in {
  def SCC : InstSCC<(outs GPR:$Rs1), (ins CCOp:$DDDI),
                    "s$DDDI\t$Rs1",
                    [(set (i32 GPR:$Rs1), (LanaiSetCC imm:$DDDI))]>;
}

// Select with hardware support
let Uses = [SR], isSelect = 1 in {
  def SELECT : InstRR<0b111, (outs GPR:$Rd),
                      (ins GPR:$Rs1, GPR:$Rs2, CCOp:$DDDI),
                      "sel.$DDDI $Rs1, $Rs2, $Rd",
                      [(set (i32 GPR:$Rd),
                       (LanaiSelectCC (i32 GPR:$Rs1), (i32 GPR:$Rs2),
                                      (imm:$DDDI)))]> {
    let JJJJJ = 0;
    let F = 0;
  }
}

let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1,
    isIndirectBranch = 1, Uses = [SR] in {
  def BRIND_CC : InstRR<0b101, (outs), (ins GPR:$Rs1, CCOp:$DDDI),
                        "b$DDDI\t$Rs1", []> {
    let F = 0;
    let JJJJJ = 0;
    let Rd = PC.Num;
    let Rs2 = R0.Num;
  }

  def BRIND_CCA : InstRR<0b101, (outs), (ins GPR:$Rs1, GPR:$Rs2, CCOp:$DDDI),
                         "b${DDDI}\t$Rs1 add $Rs2", []> {
    let F = 0;
    let Rd = PC.Num;
    let JJJJJ = 0;
  }
}

// TODO: This only considers the case where BROFF is an immediate and not where
// it is a register. Add support for register relative branching.
let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1, Rs1 = 0,
    Uses = [SR] in
  def BRR : InstBRR<(outs), (ins i16imm:$imm16, CCOp:$DDDI),
                    "b${DDDI}.r\t$imm16", []>;

let F = 0 in {
// Population Count (POPC)
def POPC: InstSpecial<0b001, (outs GPR:$Rd), (ins GPR:$Rs1),
                      "popc\t$Rs1, $Rd",
                      [(set GPR:$Rd, (ctpop GPR:$Rs1))]>;

// Count Leading Zeros (LEADZ)
def LEADZ: InstSpecial<0b010, (outs GPR:$Rd), (ins GPR:$Rs1),
                       "leadz\t$Rs1, $Rd", [(set GPR:$Rd, (ctlz GPR:$Rs1))]>;

// Count Trailing Zeros (TRAILZ)
def TRAILZ : InstSpecial<0b011, (outs GPR:$Rd), (ins GPR:$Rs1),
                         "trailz\t$Rs1, $Rd",
                         [(set GPR:$Rd, (cttz GPR:$Rs1))]>;
}

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// unsigned 16-bit immediate
def : Pat<(i32 i32lo16z:$imm), (OR_I_LO (i32 R0), imm:$imm)>;

// arbitrary immediate
def : Pat<(i32 imm:$imm), (OR_I_LO (MOVHI (HI16 imm:$imm)), (LO16 imm:$imm))>;

// Calls
def : Pat<(Call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
def : Pat<(Call texternalsym:$dst), (CALL texternalsym:$dst)>;

// Loads
def : Pat<(extloadi8  ADDRspls:$src), (i32 (LDBz_RI ADDRspls:$src))>;
def : Pat<(extloadi16 ADDRspls:$src), (i32 (LDHz_RI ADDRspls:$src))>;
// Loads up to 32-bits are already atomic.
// TODO: This is a workaround for a particular failing case and should be
// handled more generally.
def : Pat<(atomic_load_8  ADDRspls:$src), (i32 (LDBz_RI ADDRspls:$src))>;

// GlobalAddress, ExternalSymbol, Jumptable, ConstantPool
def : Pat<(LanaiHi tglobaladdr:$dst), (MOVHI tglobaladdr:$dst)>;
def : Pat<(LanaiLo tglobaladdr:$dst), (OR_I_LO (i32 R0), tglobaladdr:$dst)>;
def : Pat<(LanaiSmall tglobaladdr:$dst), (SLI tglobaladdr:$dst)>;
def : Pat<(LanaiHi texternalsym:$dst), (MOVHI texternalsym:$dst)>;
def : Pat<(LanaiLo texternalsym:$dst), (OR_I_LO (i32 R0), texternalsym:$dst)>;
def : Pat<(LanaiSmall texternalsym:$dst), (SLI texternalsym:$dst)>;
def : Pat<(LanaiHi tblockaddress:$dst), (MOVHI tblockaddress:$dst)>;
def : Pat<(LanaiLo tblockaddress:$dst), (OR_I_LO (i32 R0), tblockaddress:$dst)>;
def : Pat<(LanaiSmall tblockaddress:$dst), (SLI tblockaddress:$dst)>;
def : Pat<(LanaiHi tjumptable:$dst), (MOVHI tjumptable:$dst)>;
def : Pat<(LanaiLo tjumptable:$dst), (OR_I_LO (i32 R0), tjumptable:$dst)>;
def : Pat<(LanaiSmall tjumptable:$dst), (SLI tjumptable:$dst)>;
def : Pat<(LanaiHi tconstpool:$dst), (MOVHI tconstpool:$dst)>;
def : Pat<(LanaiLo tconstpool:$dst), (OR_I_LO (i32 R0), tconstpool:$dst)>;
def : Pat<(LanaiSmall tconstpool:$dst), (SLI tconstpool:$dst)>;

def : Pat<(or GPR:$hi, (LanaiLo tglobaladdr:$lo)),
          (OR_I_LO GPR:$hi, tglobaladdr:$lo)>;
def : Pat<(or R0, (LanaiSmall tglobaladdr:$small)),
          (SLI tglobaladdr:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo texternalsym:$lo)),
          (OR_I_LO GPR:$hi, texternalsym:$lo)>;
def : Pat<(or R0, (LanaiSmall texternalsym:$small)),
          (SLI texternalsym:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo tblockaddress:$lo)),
          (OR_I_LO GPR:$hi, tblockaddress:$lo)>;
def : Pat<(or R0, (LanaiSmall tblockaddress:$small)),
          (SLI tblockaddress:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo tjumptable:$lo)),
          (OR_I_LO GPR:$hi, tjumptable:$lo)>;
def : Pat<(or R0, (LanaiSmall tjumptable:$small)),
          (SLI tjumptable:$small)>;
def : Pat<(or GPR:$hi, (LanaiLo tconstpool:$lo)),
          (OR_I_LO GPR:$hi, tconstpool:$lo)>;
def : Pat<(or R0, (LanaiSmall tconstpool:$small)),
          (SLI tconstpool:$small)>;