Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PowerPC-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// PPCGenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCCCState.h"
#include "PPCCallingConv.h"
#include "PPCISelLowering.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"

//===----------------------------------------------------------------------===//
//
// TBD:
//   fastLowerArguments: Handle simple cases.
//   PPCMaterializeGV: Handle TLS.
//   SelectCall: Handle function pointers.
//   SelectCall: Handle multi-register return values.
//   SelectCall: Optimize away nops for local calls.
//   processCallArgs: Handle bit-converted arguments.
//   finishCall: Handle multi-register return values.
//   PPCComputeAddress: Handle parameter references as FrameIndex's.
//   PPCEmitCmp: Handle immediate as operand 1.
//   SelectCall: Handle small byval arguments.
//   SelectIntrinsicCall: Implement.
//   SelectSelect: Implement.
//   Consider factoring isTypeLegal into the base class.
//   Implement switches and jump tables.
//
//===----------------------------------------------------------------------===//
using namespace llvm;

#define DEBUG_TYPE "ppcfastisel"

namespace {

typedef struct Address {
  enum {
    RegBase,
    FrameIndexBase
  } BaseType;

  union {
    unsigned Reg;
    int FI;
  } Base;

  long Offset;

  // Innocuous defaults for our address.
  Address()
   : BaseType(RegBase), Offset(0) {
     Base.Reg = 0;
   }
} Address;

class PPCFastISel final : public FastISel {

  const TargetMachine &TM;
  const PPCSubtarget *PPCSubTarget;
  PPCFunctionInfo *PPCFuncInfo;
  const TargetInstrInfo &TII;
  const TargetLowering &TLI;
  LLVMContext *Context;

  public:
    explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
                         const TargetLibraryInfo *LibInfo)
        : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
          PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
          PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
          TII(*PPCSubTarget->getInstrInfo()),
          TLI(*PPCSubTarget->getTargetLowering()),
          Context(&FuncInfo.Fn->getContext()) {}

  // Backend specific FastISel code.
  private:
    bool fastSelectInstruction(const Instruction *I) override;
    unsigned fastMaterializeConstant(const Constant *C) override;
    unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
    bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
                             const LoadInst *LI) override;
    bool fastLowerArguments() override;
    unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
    unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
                             const TargetRegisterClass *RC,
                             unsigned Op0, bool Op0IsKill,
                             uint64_t Imm);
    unsigned fastEmitInst_r(unsigned MachineInstOpcode,
                            const TargetRegisterClass *RC,
                            unsigned Op0, bool Op0IsKill);
    unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
                             const TargetRegisterClass *RC,
                             unsigned Op0, bool Op0IsKill,
                             unsigned Op1, bool Op1IsKill);

    bool fastLowerCall(CallLoweringInfo &CLI) override;

  // Instruction selection routines.
  private:
    bool SelectLoad(const Instruction *I);
    bool SelectStore(const Instruction *I);
    bool SelectBranch(const Instruction *I);
    bool SelectIndirectBr(const Instruction *I);
    bool SelectFPExt(const Instruction *I);
    bool SelectFPTrunc(const Instruction *I);
    bool SelectIToFP(const Instruction *I, bool IsSigned);
    bool SelectFPToI(const Instruction *I, bool IsSigned);
    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
    bool SelectRet(const Instruction *I);
    bool SelectTrunc(const Instruction *I);
    bool SelectIntExt(const Instruction *I);

  // Utility routines.
  private:
    bool isTypeLegal(Type *Ty, MVT &VT);
    bool isLoadTypeLegal(Type *Ty, MVT &VT);
    bool isValueAvailable(const Value *V) const;
    bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
      return RC->getID() == PPC::VSFRCRegClassID;
    }
    bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
      return RC->getID() == PPC::VSSRCRegClassID;
    }
    bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
                    bool isZExt, unsigned DestReg,
                    const PPC::Predicate Pred);
    bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
                     const TargetRegisterClass *RC, bool IsZExt = true,
                     unsigned FP64LoadOpc = PPC::LFD);
    bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
    bool PPCComputeAddress(const Value *Obj, Address &Addr);
    void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
                            unsigned &IndexReg);
    bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
                           unsigned DestReg, bool IsZExt);
    unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
    unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
    unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
                               bool UseSExt = true);
    unsigned PPCMaterialize32BitInt(int64_t Imm,
                                    const TargetRegisterClass *RC);
    unsigned PPCMaterialize64BitInt(int64_t Imm,
                                    const TargetRegisterClass *RC);
    unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
                             unsigned SrcReg, bool IsSigned);
    unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);

  // Call handling routines.
  private:
    bool processCallArgs(SmallVectorImpl<Value*> &Args,
                         SmallVectorImpl<unsigned> &ArgRegs,
                         SmallVectorImpl<MVT> &ArgVTs,
                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
                         SmallVectorImpl<unsigned> &RegArgs,
                         CallingConv::ID CC,
                         unsigned &NumBytes,
                         bool IsVarArg);
    bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
    LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag);

  private:
  #include "PPCGenFastISel.inc"

};

} // end anonymous namespace

#include "PPCGenCallingConv.inc"

// Function whose sole purpose is to kill compiler warnings
// stemming from unused functions included from PPCGenCallingConv.inc.
CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
  if (Flag == 1)
    return CC_PPC32_SVR4;
  else if (Flag == 2)
    return CC_PPC32_SVR4_ByVal;
  else if (Flag == 3)
    return CC_PPC32_SVR4_VarArg;
  else if (Flag == 4)
    return RetCC_PPC_Cold;
  else
    return RetCC_PPC;
}

static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
  switch (Pred) {
    // These are not representable with any single compare.
    case CmpInst::FCMP_FALSE:
    case CmpInst::FCMP_TRUE:
    // Major concern about the following 6 cases is NaN result. The comparison
    // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
    // only one of which will be set. The result is generated by fcmpu
    // instruction. However, bc instruction only inspects one of the first 3
    // bits, so when un is set, bc instruction may jump to an undesired
    // place.
    //
    // More specifically, if we expect an unordered comparison and un is set, we
    // expect to always go to true branch; in such case UEQ, UGT and ULT still
    // give false, which are undesired; but UNE, UGE, ULE happen to give true,
    // since they are tested by inspecting !eq, !lt, !gt, respectively.
    //
    // Similarly, for ordered comparison, when un is set, we always expect the
    // result to be false. In such case OGT, OLT and OEQ is good, since they are
    // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
    // and ONE are tested through !lt, !gt and !eq, and these are true.
    case CmpInst::FCMP_UEQ:
    case CmpInst::FCMP_UGT:
    case CmpInst::FCMP_ULT:
    case CmpInst::FCMP_OGE:
    case CmpInst::FCMP_OLE:
    case CmpInst::FCMP_ONE:
    default:
      return Optional<PPC::Predicate>();

    case CmpInst::FCMP_OEQ:
    case CmpInst::ICMP_EQ:
      return PPC::PRED_EQ;

    case CmpInst::FCMP_OGT:
    case CmpInst::ICMP_UGT:
    case CmpInst::ICMP_SGT:
      return PPC::PRED_GT;

    case CmpInst::FCMP_UGE:
    case CmpInst::ICMP_UGE:
    case CmpInst::ICMP_SGE:
      return PPC::PRED_GE;

    case CmpInst::FCMP_OLT:
    case CmpInst::ICMP_ULT:
    case CmpInst::ICMP_SLT:
      return PPC::PRED_LT;

    case CmpInst::FCMP_ULE:
    case CmpInst::ICMP_ULE:
    case CmpInst::ICMP_SLE:
      return PPC::PRED_LE;

    case CmpInst::FCMP_UNE:
    case CmpInst::ICMP_NE:
      return PPC::PRED_NE;

    case CmpInst::FCMP_ORD:
      return PPC::PRED_NU;

    case CmpInst::FCMP_UNO:
      return PPC::PRED_UN;
  }
}

// Determine whether the type Ty is simple enough to be handled by
// fast-isel, and return its equivalent machine type in VT.
// FIXME: Copied directly from ARM -- factor into base class?
bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
  EVT Evt = TLI.getValueType(DL, Ty, true);

  // Only handle simple types.
  if (Evt == MVT::Other || !Evt.isSimple()) return false;
  VT = Evt.getSimpleVT();

  // Handle all legal types, i.e. a register that will directly hold this
  // value.
  return TLI.isTypeLegal(VT);
}

// Determine whether the type Ty is simple enough to be handled by
// fast-isel as a load target, and return its equivalent machine type in VT.
bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
  if (isTypeLegal(Ty, VT)) return true;

  // If this is a type than can be sign or zero-extended to a basic operation
  // go ahead and accept it now.
  if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
    return true;
  }

  return false;
}

bool PPCFastISel::isValueAvailable(const Value *V) const {
  if (!isa<Instruction>(V))
    return true;

  const auto *I = cast<Instruction>(V);
  return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
}

// Given a value Obj, create an Address object Addr that represents its
// address.  Return false if we can't handle it.
bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
  const User *U = nullptr;
  unsigned Opcode = Instruction::UserOp1;
  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    // Don't walk into other basic blocks unless the object is an alloca from
    // another block, otherwise it may not have a virtual register assigned.
    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
      Opcode = I->getOpcode();
      U = I;
    }
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    Opcode = C->getOpcode();
    U = C;
  }

  switch (Opcode) {
    default:
      break;
    case Instruction::BitCast:
      // Look through bitcasts.
      return PPCComputeAddress(U->getOperand(0), Addr);
    case Instruction::IntToPtr:
      // Look past no-op inttoptrs.
      if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
          TLI.getPointerTy(DL))
        return PPCComputeAddress(U->getOperand(0), Addr);
      break;
    case Instruction::PtrToInt:
      // Look past no-op ptrtoints.
      if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
        return PPCComputeAddress(U->getOperand(0), Addr);
      break;
    case Instruction::GetElementPtr: {
      Address SavedAddr = Addr;
      long TmpOffset = Addr.Offset;

      // Iterate through the GEP folding the constants into offsets where
      // we can.
      gep_type_iterator GTI = gep_type_begin(U);
      for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
           II != IE; ++II, ++GTI) {
        const Value *Op = *II;
        if (StructType *STy = GTI.getStructTypeOrNull()) {
          const StructLayout *SL = DL.getStructLayout(STy);
          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
          TmpOffset += SL->getElementOffset(Idx);
        } else {
          uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
          for (;;) {
            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
              // Constant-offset addressing.
              TmpOffset += CI->getSExtValue() * S;
              break;
            }
            if (canFoldAddIntoGEP(U, Op)) {
              // A compatible add with a constant operand. Fold the constant.
              ConstantInt *CI =
              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
              TmpOffset += CI->getSExtValue() * S;
              // Iterate on the other operand.
              Op = cast<AddOperator>(Op)->getOperand(0);
              continue;
            }
            // Unsupported
            goto unsupported_gep;
          }
        }
      }

      // Try to grab the base operand now.
      Addr.Offset = TmpOffset;
      if (PPCComputeAddress(U->getOperand(0), Addr)) return true;

      // We failed, restore everything and try the other options.
      Addr = SavedAddr;

      unsupported_gep:
      break;
    }
    case Instruction::Alloca: {
      const AllocaInst *AI = cast<AllocaInst>(Obj);
      DenseMap<const AllocaInst*, int>::iterator SI =
        FuncInfo.StaticAllocaMap.find(AI);
      if (SI != FuncInfo.StaticAllocaMap.end()) {
        Addr.BaseType = Address::FrameIndexBase;
        Addr.Base.FI = SI->second;
        return true;
      }
      break;
    }
  }

  // FIXME: References to parameters fall through to the behavior
  // below.  They should be able to reference a frame index since
  // they are stored to the stack, so we can get "ld rx, offset(r1)"
  // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
  // just contain the parameter.  Try to handle this with a FI.

  // Try to get this in a register if nothing else has worked.
  if (Addr.Base.Reg == 0)
    Addr.Base.Reg = getRegForValue(Obj);

  // Prevent assignment of base register to X0, which is inappropriate
  // for loads and stores alike.
  if (Addr.Base.Reg != 0)
    MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);

  return Addr.Base.Reg != 0;
}

// Fix up some addresses that can't be used directly.  For example, if
// an offset won't fit in an instruction field, we may need to move it
// into an index register.
void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
                                     unsigned &IndexReg) {

  // Check whether the offset fits in the instruction field.
  if (!isInt<16>(Addr.Offset))
    UseOffset = false;

  // If this is a stack pointer and the offset needs to be simplified then
  // put the alloca address into a register, set the base type back to
  // register and continue. This should almost never happen.
  if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
    unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
            ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
    Addr.Base.Reg = ResultReg;
    Addr.BaseType = Address::RegBase;
  }

  if (!UseOffset) {
    IntegerType *OffsetTy = Type::getInt64Ty(*Context);
    const ConstantInt *Offset =
      ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
    IndexReg = PPCMaterializeInt(Offset, MVT::i64);
    assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
  }
}

// Emit a load instruction if possible, returning true if we succeeded,
// otherwise false.  See commentary below for how the register class of
// the load is determined.
bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
                              const TargetRegisterClass *RC,
                              bool IsZExt, unsigned FP64LoadOpc) {
  unsigned Opc;
  bool UseOffset = true;
  bool HasSPE = PPCSubTarget->hasSPE();

  // If ResultReg is given, it determines the register class of the load.
  // Otherwise, RC is the register class to use.  If the result of the
  // load isn't anticipated in this block, both may be zero, in which
  // case we must make a conservative guess.  In particular, don't assign
  // R0 or X0 to the result register, as the result may be used in a load,
  // store, add-immediate, or isel that won't permit this.  (Though
  // perhaps the spill and reload of live-exit values would handle this?)
  const TargetRegisterClass *UseRC =
    (ResultReg ? MRI.getRegClass(ResultReg) :
     (RC ? RC :
      (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
       (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) :
        (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
         &PPC::GPRC_and_GPRC_NOR0RegClass)))));

  bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);

  switch (VT.SimpleTy) {
    default: // e.g., vector types not handled
      return false;
    case MVT::i8:
      Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
      break;
    case MVT::i16:
      Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
                    : (Is32BitInt ? PPC::LHA : PPC::LHA8));
      break;
    case MVT::i32:
      Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
                    : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
      if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
        UseOffset = false;
      break;
    case MVT::i64:
      Opc = PPC::LD;
      assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
             "64-bit load with 32-bit target??");
      UseOffset = ((Addr.Offset & 3) == 0);
      break;
    case MVT::f32:
      Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
      break;
    case MVT::f64:
      Opc = FP64LoadOpc;
      break;
  }

  // If necessary, materialize the offset into a register and use
  // the indexed form.  Also handle stack pointers with special needs.
  unsigned IndexReg = 0;
  PPCSimplifyAddress(Addr, UseOffset, IndexReg);

  // If this is a potential VSX load with an offset of 0, a VSX indexed load can
  // be used.
  bool IsVSSRC = isVSSRCRegClass(UseRC);
  bool IsVSFRC = isVSFRCRegClass(UseRC);
  bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
  bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
  if ((Is32VSXLoad || Is64VSXLoad) &&
      (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
      (Addr.Offset == 0)) {
    UseOffset = false;
  }

  if (ResultReg == 0)
    ResultReg = createResultReg(UseRC);

  // Note: If we still have a frame index here, we know the offset is
  // in range, as otherwise PPCSimplifyAddress would have converted it
  // into a RegBase.
  if (Addr.BaseType == Address::FrameIndexBase) {
    // VSX only provides an indexed load.
    if (Is32VSXLoad || Is64VSXLoad) return false;

    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
                                          Addr.Offset),
        MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
        MFI.getObjectAlignment(Addr.Base.FI));

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);

  // Base reg with offset in range.
  } else if (UseOffset) {
    // VSX only provides an indexed load.
    if (Is32VSXLoad || Is64VSXLoad) return false;

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
      .addImm(Addr.Offset).addReg(Addr.Base.Reg);

  // Indexed form.
  } else {
    // Get the RR opcode corresponding to the RI one.  FIXME: It would be
    // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
    // is hard to get at.
    switch (Opc) {
      default:        llvm_unreachable("Unexpected opcode!");
      case PPC::LBZ:    Opc = PPC::LBZX;    break;
      case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
      case PPC::LHZ:    Opc = PPC::LHZX;    break;
      case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
      case PPC::LHA:    Opc = PPC::LHAX;    break;
      case PPC::LHA8:   Opc = PPC::LHAX8;   break;
      case PPC::LWZ:    Opc = PPC::LWZX;    break;
      case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
      case PPC::LWA:    Opc = PPC::LWAX;    break;
      case PPC::LWA_32: Opc = PPC::LWAX_32; break;
      case PPC::LD:     Opc = PPC::LDX;     break;
      case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
      case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
      case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
      case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
    }

    auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
                       ResultReg);

    // If we have an index register defined we use it in the store inst,
    // otherwise we use X0 as base as it makes the vector instructions to
    // use zero in the computation of the effective address regardless the
    // content of the register.
    if (IndexReg)
      MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
    else
      MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
  }

  return true;
}

// Attempt to fast-select a load instruction.
bool PPCFastISel::SelectLoad(const Instruction *I) {
  // FIXME: No atomic loads are supported.
  if (cast<LoadInst>(I)->isAtomic())
    return false;

  // Verify we have a legal type before going any further.
  MVT VT;
  if (!isLoadTypeLegal(I->getType(), VT))
    return false;

  // See if we can handle this address.
  Address Addr;
  if (!PPCComputeAddress(I->getOperand(0), Addr))
    return false;

  // Look at the currently assigned register for this instruction
  // to determine the required register class.  This is necessary
  // to constrain RA from using R0/X0 when this is not legal.
  unsigned AssignedReg = FuncInfo.ValueMap[I];
  const TargetRegisterClass *RC =
    AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;

  unsigned ResultReg = 0;
  if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
      PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
    return false;
  updateValueMap(I, ResultReg);
  return true;
}

// Emit a store instruction to store SrcReg at Addr.
bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
  assert(SrcReg && "Nothing to store!");
  unsigned Opc;
  bool UseOffset = true;

  const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
  bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);

  switch (VT.SimpleTy) {
    default: // e.g., vector types not handled
      return false;
    case MVT::i8:
      Opc = Is32BitInt ? PPC::STB : PPC::STB8;
      break;
    case MVT::i16:
      Opc = Is32BitInt ? PPC::STH : PPC::STH8;
      break;
    case MVT::i32:
      assert(Is32BitInt && "Not GPRC for i32??");
      Opc = PPC::STW;
      break;
    case MVT::i64:
      Opc = PPC::STD;
      UseOffset = ((Addr.Offset & 3) == 0);
      break;
    case MVT::f32:
      Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
      break;
    case MVT::f64:
      Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
      break;
  }

  // If necessary, materialize the offset into a register and use
  // the indexed form.  Also handle stack pointers with special needs.
  unsigned IndexReg = 0;
  PPCSimplifyAddress(Addr, UseOffset, IndexReg);

  // If this is a potential VSX store with an offset of 0, a VSX indexed store
  // can be used.
  bool IsVSSRC = isVSSRCRegClass(RC);
  bool IsVSFRC = isVSFRCRegClass(RC);
  bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
  bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
  if ((Is32VSXStore || Is64VSXStore) &&
      (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
      (Addr.Offset == 0)) {
    UseOffset = false;
  }

  // Note: If we still have a frame index here, we know the offset is
  // in range, as otherwise PPCSimplifyAddress would have converted it
  // into a RegBase.
  if (Addr.BaseType == Address::FrameIndexBase) {
    // VSX only provides an indexed store.
    if (Is32VSXStore || Is64VSXStore) return false;

    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
                                          Addr.Offset),
        MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
        MFI.getObjectAlignment(Addr.Base.FI));

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
        .addReg(SrcReg)
        .addImm(Addr.Offset)
        .addFrameIndex(Addr.Base.FI)
        .addMemOperand(MMO);

  // Base reg with offset in range.
  } else if (UseOffset) {
    // VSX only provides an indexed store.
    if (Is32VSXStore || Is64VSXStore)
      return false;

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
      .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);

  // Indexed form.
  } else {
    // Get the RR opcode corresponding to the RI one.  FIXME: It would be
    // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
    // is hard to get at.
    switch (Opc) {
      default:        llvm_unreachable("Unexpected opcode!");
      case PPC::STB:  Opc = PPC::STBX;  break;
      case PPC::STH : Opc = PPC::STHX;  break;
      case PPC::STW : Opc = PPC::STWX;  break;
      case PPC::STB8: Opc = PPC::STBX8; break;
      case PPC::STH8: Opc = PPC::STHX8; break;
      case PPC::STW8: Opc = PPC::STWX8; break;
      case PPC::STD:  Opc = PPC::STDX;  break;
      case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
      case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
      case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
      case PPC::SPESTW: Opc = PPC::SPESTWX; break;
    }

    auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
        .addReg(SrcReg);

    // If we have an index register defined we use it in the store inst,
    // otherwise we use X0 as base as it makes the vector instructions to
    // use zero in the computation of the effective address regardless the
    // content of the register.
    if (IndexReg)
      MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
    else
      MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
  }

  return true;
}

// Attempt to fast-select a store instruction.
bool PPCFastISel::SelectStore(const Instruction *I) {
  Value *Op0 = I->getOperand(0);
  unsigned SrcReg = 0;

  // FIXME: No atomics loads are supported.
  if (cast<StoreInst>(I)->isAtomic())
    return false;

  // Verify we have a legal type before going any further.
  MVT VT;
  if (!isLoadTypeLegal(Op0->getType(), VT))
    return false;

  // Get the value to be stored into a register.
  SrcReg = getRegForValue(Op0);
  if (SrcReg == 0)
    return false;

  // See if we can handle this address.
  Address Addr;
  if (!PPCComputeAddress(I->getOperand(1), Addr))
    return false;

  if (!PPCEmitStore(VT, SrcReg, Addr))
    return false;

  return true;
}

// Attempt to fast-select a branch instruction.
bool PPCFastISel::SelectBranch(const Instruction *I) {
  const BranchInst *BI = cast<BranchInst>(I);
  MachineBasicBlock *BrBB = FuncInfo.MBB;
  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];

  // For now, just try the simplest case where it's fed by a compare.
  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
    if (isValueAvailable(CI)) {
      Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
      if (!OptPPCPred)
        return false;

      PPC::Predicate PPCPred = OptPPCPred.getValue();

      // Take advantage of fall-through opportunities.
      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
        std::swap(TBB, FBB);
        PPCPred = PPC::InvertPredicate(PPCPred);
      }

      unsigned CondReg = createResultReg(&PPC::CRRCRegClass);

      if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
                      CondReg, PPCPred))
        return false;

      BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
        .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
        .addReg(CondReg).addMBB(TBB);
      finishCondBranch(BI->getParent(), TBB, FBB);
      return true;
    }
  } else if (const ConstantInt *CI =
             dyn_cast<ConstantInt>(BI->getCondition())) {
    uint64_t Imm = CI->getZExtValue();
    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
    fastEmitBranch(Target, DbgLoc);
    return true;
  }

  // FIXME: ARM looks for a case where the block containing the compare
  // has been split from the block containing the branch.  If this happens,
  // there is a vreg available containing the result of the compare.  I'm
  // not sure we can do much, as we've lost the predicate information with
  // the compare instruction -- we have a 4-bit CR but don't know which bit
  // to test here.
  return false;
}

// Attempt to emit a compare of the two source values.  Signed and unsigned
// comparisons are supported.  Return false if we can't handle it.
bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
                             bool IsZExt, unsigned DestReg,
                             const PPC::Predicate Pred) {
  Type *Ty = SrcValue1->getType();
  EVT SrcEVT = TLI.getValueType(DL, Ty, true);
  if (!SrcEVT.isSimple())
    return false;
  MVT SrcVT = SrcEVT.getSimpleVT();

  if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
    return false;

  // See if operand 2 is an immediate encodeable in the compare.
  // FIXME: Operands are not in canonical order at -O0, so an immediate
  // operand in position 1 is a lost opportunity for now.  We are
  // similar to ARM in this regard.
  long Imm = 0;
  bool UseImm = false;
  const bool HasSPE = PPCSubTarget->hasSPE();

  // Only 16-bit integer constants can be represented in compares for
  // PowerPC.  Others will be materialized into a register.
  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
    if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
        SrcVT == MVT::i8 || SrcVT == MVT::i1) {
      const APInt &CIVal = ConstInt->getValue();
      Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
      if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
        UseImm = true;
    }
  }

  unsigned SrcReg1 = getRegForValue(SrcValue1);
  if (SrcReg1 == 0)
    return false;

  unsigned SrcReg2 = 0;
  if (!UseImm) {
    SrcReg2 = getRegForValue(SrcValue2);
    if (SrcReg2 == 0)
      return false;
  }

  unsigned CmpOpc;
  bool NeedsExt = false;
  auto RC = MRI.getRegClass(SrcReg1);
  switch (SrcVT.SimpleTy) {
    default: return false;
    case MVT::f32:
      if (HasSPE) {
        switch (Pred) {
          default: return false;
          case PPC::PRED_EQ:
            CmpOpc = PPC::EFSCMPEQ;
            break;
          case PPC::PRED_LT:
            CmpOpc = PPC::EFSCMPLT;
            break;
          case PPC::PRED_GT:
            CmpOpc = PPC::EFSCMPGT;
            break;
        }
      } else {
        CmpOpc = PPC::FCMPUS;
        if (isVSSRCRegClass(RC)) {
          unsigned TmpReg = createResultReg(&PPC::F4RCRegClass);
          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                  TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg1);
          SrcReg1 = TmpReg;
        }
      }
      break;
    case MVT::f64:
      if (HasSPE) {
        switch (Pred) {
          default: return false;
          case PPC::PRED_EQ:
            CmpOpc = PPC::EFDCMPEQ;
            break;
          case PPC::PRED_LT:
            CmpOpc = PPC::EFDCMPLT;
            break;
          case PPC::PRED_GT:
            CmpOpc = PPC::EFDCMPGT;
            break;
        }
      } else if (isVSFRCRegClass(RC)) {
        CmpOpc = PPC::XSCMPUDP;
      } else {
        CmpOpc = PPC::FCMPUD;
      }
      break;
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
      NeedsExt = true;
      LLVM_FALLTHROUGH;
    case MVT::i32:
      if (!UseImm)
        CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
      else
        CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
      break;
    case MVT::i64:
      if (!UseImm)
        CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
      else
        CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
      break;
  }

  if (NeedsExt) {
    unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
    if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
      return false;
    SrcReg1 = ExtReg;

    if (!UseImm) {
      unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
      if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
        return false;
      SrcReg2 = ExtReg;
    }
  }

  if (!UseImm)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
      .addReg(SrcReg1).addReg(SrcReg2);
  else
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
      .addReg(SrcReg1).addImm(Imm);

  return true;
}

// Attempt to fast-select a floating-point extend instruction.
bool PPCFastISel::SelectFPExt(const Instruction *I) {
  Value *Src  = I->getOperand(0);
  EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
  EVT DestVT = TLI.getValueType(DL, I->getType(), true);

  if (SrcVT != MVT::f32 || DestVT != MVT::f64)
    return false;

  unsigned SrcReg = getRegForValue(Src);
  if (!SrcReg)
    return false;

  // No code is generated for a FP extend.
  updateValueMap(I, SrcReg);
  return true;
}

// Attempt to fast-select a floating-point truncate instruction.
bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
  Value *Src  = I->getOperand(0);
  EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
  EVT DestVT = TLI.getValueType(DL, I->getType(), true);

  if (SrcVT != MVT::f64 || DestVT != MVT::f32)
    return false;

  unsigned SrcReg = getRegForValue(Src);
  if (!SrcReg)
    return false;

  // Round the result to single precision.
  unsigned DestReg;

  if (PPCSubTarget->hasSPE()) {
    DestReg = createResultReg(&PPC::SPE4RCRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
      TII.get(PPC::EFSCFD), DestReg)
      .addReg(SrcReg);
  } else {
    DestReg = createResultReg(&PPC::F4RCRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
      TII.get(PPC::FRSP), DestReg)
      .addReg(SrcReg);
  }

  updateValueMap(I, DestReg);
  return true;
}

// Move an i32 or i64 value in a GPR to an f64 value in an FPR.
// FIXME: When direct register moves are implemented (see PowerISA 2.07),
// those should be used instead of moving via a stack slot when the
// subtarget permits.
// FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
// stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
// case to 8 bytes which produces tighter code but wastes stack space.
unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
                                     bool IsSigned) {

  // If necessary, extend 32-bit int to 64-bit.
  if (SrcVT == MVT::i32) {
    unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
    if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
      return 0;
    SrcReg = TmpReg;
  }

  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
  Address Addr;
  Addr.BaseType = Address::FrameIndexBase;
  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);

  // Store the value from the GPR.
  if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
    return 0;

  // Load the integer value into an FPR.  The kind of load used depends
  // on a number of conditions.
  unsigned LoadOpc = PPC::LFD;

  if (SrcVT == MVT::i32) {
    if (!IsSigned) {
      LoadOpc = PPC::LFIWZX;
      Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
    } else if (PPCSubTarget->hasLFIWAX()) {
      LoadOpc = PPC::LFIWAX;
      Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
    }
  }

  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
  unsigned ResultReg = 0;
  if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
    return 0;

  return ResultReg;
}

// Attempt to fast-select an integer-to-floating-point conversion.
// FIXME: Once fast-isel has better support for VSX, conversions using
//        direct moves should be implemented.
bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
  MVT DstVT;
  Type *DstTy = I->getType();
  if (!isTypeLegal(DstTy, DstVT))
    return false;

  if (DstVT != MVT::f32 && DstVT != MVT::f64)
    return false;

  Value *Src = I->getOperand(0);
  EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
  if (!SrcEVT.isSimple())
    return false;

  MVT SrcVT = SrcEVT.getSimpleVT();

  if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
      SrcVT != MVT::i32 && SrcVT != MVT::i64)
    return false;

  unsigned SrcReg = getRegForValue(Src);
  if (SrcReg == 0)
    return false;

  // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
  if (PPCSubTarget->hasSPE()) {
    unsigned Opc;
    if (DstVT == MVT::f32)
      Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
    else
      Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;

    unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
    // Generate the convert.
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
      .addReg(SrcReg);
    updateValueMap(I, DestReg);
    return true;
  }

  // We can only lower an unsigned convert if we have the newer
  // floating-point conversion operations.
  if (!IsSigned && !PPCSubTarget->hasFPCVT())
    return false;

  // FIXME: For now we require the newer floating-point conversion operations
  // (which are present only on P7 and A2 server models) when converting
  // to single-precision float.  Otherwise we have to generate a lot of
  // fiddly code to avoid double rounding.  If necessary, the fiddly code
  // can be found in PPCTargetLowering::LowerINT_TO_FP().
  if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
    return false;

  // Extend the input if necessary.
  if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
    unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
    if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
      return false;
    SrcVT = MVT::i64;
    SrcReg = TmpReg;
  }

  // Move the integer value to an FPR.
  unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
  if (FPReg == 0)
    return false;

  // Determine the opcode for the conversion.
  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
  unsigned DestReg = createResultReg(RC);
  unsigned Opc;

  if (DstVT == MVT::f32)
    Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
  else
    Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;

  // Generate the convert.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
    .addReg(FPReg);

  updateValueMap(I, DestReg);
  return true;
}

// Move the floating-point value in SrcReg into an integer destination
// register, and return the register (or zero if we can't handle it).
// FIXME: When direct register moves are implemented (see PowerISA 2.07),
// those should be used instead of moving via a stack slot when the
// subtarget permits.
unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
                                      unsigned SrcReg, bool IsSigned) {
  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
  // Note that if have STFIWX available, we could use a 4-byte stack
  // slot for i32, but this being fast-isel we'll just go with the
  // easiest code gen possible.
  Address Addr;
  Addr.BaseType = Address::FrameIndexBase;
  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);

  // Store the value from the FPR.
  if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
    return 0;

  // Reload it into a GPR.  If we want an i32 on big endian, modify the
  // address to have a 4-byte offset so we load from the right place.
  if (VT == MVT::i32)
    Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;

  // Look at the currently assigned register for this instruction
  // to determine the required register class.
  unsigned AssignedReg = FuncInfo.ValueMap[I];
  const TargetRegisterClass *RC =
    AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;

  unsigned ResultReg = 0;
  if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
    return 0;

  return ResultReg;
}

// Attempt to fast-select a floating-point-to-integer conversion.
// FIXME: Once fast-isel has better support for VSX, conversions using
//        direct moves should be implemented.
bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
  MVT DstVT, SrcVT;
  Type *DstTy = I->getType();
  if (!isTypeLegal(DstTy, DstVT))
    return false;

  if (DstVT != MVT::i32 && DstVT != MVT::i64)
    return false;

  // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
  if (DstVT == MVT::i64 && !IsSigned &&
      !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE())
    return false;

  Value *Src = I->getOperand(0);
  Type *SrcTy = Src->getType();
  if (!isTypeLegal(SrcTy, SrcVT))
    return false;

  if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
    return false;

  unsigned SrcReg = getRegForValue(Src);
  if (SrcReg == 0)
    return false;

  // Convert f32 to f64 if necessary.  This is just a meaningless copy
  // to get the register class right.
  const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
  if (InRC == &PPC::F4RCRegClass) {
    unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), TmpReg)
      .addReg(SrcReg);
    SrcReg = TmpReg;
  }

  // Determine the opcode for the conversion, which takes place
  // entirely within FPRs.
  unsigned DestReg;
  unsigned Opc;

  if (PPCSubTarget->hasSPE()) {
    DestReg = createResultReg(&PPC::GPRCRegClass);
    if (IsSigned)
      Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
    else
      Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
  } else {
    DestReg = createResultReg(&PPC::F8RCRegClass);
    if (DstVT == MVT::i32)
      if (IsSigned)
        Opc = PPC::FCTIWZ;
      else
        Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
    else
      Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
  }

  // Generate the convert.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
    .addReg(SrcReg);

  // Now move the integer value from a float register to an integer register.
  unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg :
    PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);

  if (IntReg == 0)
    return false;

  updateValueMap(I, IntReg);
  return true;
}

// Attempt to fast-select a binary integer operation that isn't already
// handled automatically.
bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
  EVT DestVT = TLI.getValueType(DL, I->getType(), true);

  // We can get here in the case when we have a binary operation on a non-legal
  // type and the target independent selector doesn't know how to handle it.
  if (DestVT != MVT::i16 && DestVT != MVT::i8)
    return false;

  // Look at the currently assigned register for this instruction
  // to determine the required register class.  If there is no register,
  // make a conservative choice (don't assign R0).
  unsigned AssignedReg = FuncInfo.ValueMap[I];
  const TargetRegisterClass *RC =
    (AssignedReg ? MRI.getRegClass(AssignedReg) :
     &PPC::GPRC_and_GPRC_NOR0RegClass);
  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);

  unsigned Opc;
  switch (ISDOpcode) {
    default: return false;
    case ISD::ADD:
      Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
      break;
    case ISD::OR:
      Opc = IsGPRC ? PPC::OR : PPC::OR8;
      break;
    case ISD::SUB:
      Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
      break;
  }

  unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
  if (SrcReg1 == 0) return false;

  // Handle case of small immediate operand.
  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    const APInt &CIVal = ConstInt->getValue();
    int Imm = (int)CIVal.getSExtValue();
    bool UseImm = true;
    if (isInt<16>(Imm)) {
      switch (Opc) {
        default:
          llvm_unreachable("Missing case!");
        case PPC::ADD4:
          Opc = PPC::ADDI;
          MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
          break;
        case PPC::ADD8:
          Opc = PPC::ADDI8;
          MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
          break;
        case PPC::OR:
          Opc = PPC::ORI;
          break;
        case PPC::OR8:
          Opc = PPC::ORI8;
          break;
        case PPC::SUBF:
          if (Imm == -32768)
            UseImm = false;
          else {
            Opc = PPC::ADDI;
            MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
            Imm = -Imm;
          }
          break;
        case PPC::SUBF8:
          if (Imm == -32768)
            UseImm = false;
          else {
            Opc = PPC::ADDI8;
            MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
            Imm = -Imm;
          }
          break;
      }

      if (UseImm) {
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
                ResultReg)
            .addReg(SrcReg1)
            .addImm(Imm);
        updateValueMap(I, ResultReg);
        return true;
      }
    }
  }

  // Reg-reg case.
  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
  if (SrcReg2 == 0) return false;

  // Reverse operands for subtract-from.
  if (ISDOpcode == ISD::SUB)
    std::swap(SrcReg1, SrcReg2);

  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
    .addReg(SrcReg1).addReg(SrcReg2);
  updateValueMap(I, ResultReg);
  return true;
}

// Handle arguments to a call that we're attempting to fast-select.
// Return false if the arguments are too complex for us at the moment.
bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
                                  SmallVectorImpl<unsigned> &ArgRegs,
                                  SmallVectorImpl<MVT> &ArgVTs,
                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
                                  SmallVectorImpl<unsigned> &RegArgs,
                                  CallingConv::ID CC,
                                  unsigned &NumBytes,
                                  bool IsVarArg) {
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);

  // Reserve space for the linkage area on the stack.
  unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
  CCInfo.AllocateStack(LinkageSize, 8);

  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);

  // Bail out if we can't handle any of the arguments.
  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    CCValAssign &VA = ArgLocs[I];
    MVT ArgVT = ArgVTs[VA.getValNo()];

    // Skip vector arguments for now, as well as long double and
    // uint128_t, and anything that isn't passed in a register.
    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
        !VA.isRegLoc() || VA.needsCustom())
      return false;

    // Skip bit-converted arguments for now.
    if (VA.getLocInfo() == CCValAssign::BCvt)
      return false;
  }

  // Get a count of how many bytes are to be pushed onto the stack.
  NumBytes = CCInfo.getNextStackOffset();

  // The prolog code of the callee may store up to 8 GPR argument registers to
  // the stack, allowing va_start to index over them in memory if its varargs.
  // Because we cannot tell if this is needed on the caller side, we have to
  // conservatively assume that it is needed.  As such, make sure we have at
  // least enough stack space for the caller to store the 8 GPRs.
  // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
  NumBytes = std::max(NumBytes, LinkageSize + 64);

  // Issue CALLSEQ_START.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
          TII.get(TII.getCallFrameSetupOpcode()))
    .addImm(NumBytes).addImm(0);

  // Prepare to assign register arguments.  Every argument uses up a
  // GPR protocol register even if it's passed in a floating-point
  // register (unless we're using the fast calling convention).
  unsigned NextGPR = PPC::X3;
  unsigned NextFPR = PPC::F1;

  // Process arguments.
  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    CCValAssign &VA = ArgLocs[I];
    unsigned Arg = ArgRegs[VA.getValNo()];
    MVT ArgVT = ArgVTs[VA.getValNo()];

    // Handle argument promotion and bitcasts.
    switch (VA.getLocInfo()) {
      default:
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::SExt: {
        MVT DestVT = VA.getLocVT();
        const TargetRegisterClass *RC =
          (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
        unsigned TmpReg = createResultReg(RC);
        if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
          llvm_unreachable("Failed to emit a sext!");
        ArgVT = DestVT;
        Arg = TmpReg;
        break;
      }
      case CCValAssign::AExt:
      case CCValAssign::ZExt: {
        MVT DestVT = VA.getLocVT();
        const TargetRegisterClass *RC =
          (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
        unsigned TmpReg = createResultReg(RC);
        if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
          llvm_unreachable("Failed to emit a zext!");
        ArgVT = DestVT;
        Arg = TmpReg;
        break;
      }
      case CCValAssign::BCvt: {
        // FIXME: Not yet handled.
        llvm_unreachable("Should have bailed before getting here!");
        break;
      }
    }

    // Copy this argument to the appropriate register.
    unsigned ArgReg;
    if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
      ArgReg = NextFPR++;
      if (CC != CallingConv::Fast)
        ++NextGPR;
    } else
      ArgReg = NextGPR++;

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
    RegArgs.push_back(ArgReg);
  }

  return true;
}

// For a call that we've determined we can fast-select, finish the
// call sequence and generate a copy to obtain the return value (if any).
bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
  CallingConv::ID CC = CLI.CallConv;

  // Issue CallSEQ_END.
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
          TII.get(TII.getCallFrameDestroyOpcode()))
    .addImm(NumBytes).addImm(0);

  // Next, generate a copy to obtain the return value.
  // FIXME: No multi-register return values yet, though I don't foresee
  // any real difficulties there.
  if (RetVT != MVT::isVoid) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
    CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
    CCValAssign &VA = RVLocs[0];
    assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
    assert(VA.isRegLoc() && "Can only return in registers!");

    MVT DestVT = VA.getValVT();
    MVT CopyVT = DestVT;

    // Ints smaller than a register still arrive in a full 64-bit
    // register, so make sure we recognize this.
    if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
      CopyVT = MVT::i64;

    unsigned SourcePhysReg = VA.getLocReg();
    unsigned ResultReg = 0;

    if (RetVT == CopyVT) {
      const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
      ResultReg = createResultReg(CpyRC);

      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), ResultReg)
        .addReg(SourcePhysReg);

    // If necessary, round the floating result to single precision.
    } else if (CopyVT == MVT::f64) {
      ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
              ResultReg).addReg(SourcePhysReg);

    // If only the low half of a general register is needed, generate
    // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
    // used along the fast-isel path (not lowered), and downstream logic
    // also doesn't like a direct subreg copy on a physical reg.)
    } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
      ResultReg = createResultReg(&PPC::GPRCRegClass);
      // Convert physical register from G8RC to GPRC.
      SourcePhysReg -= PPC::X0 - PPC::R0;
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), ResultReg)
        .addReg(SourcePhysReg);
    }

    assert(ResultReg && "ResultReg unset!");
    CLI.InRegs.push_back(SourcePhysReg);
    CLI.ResultReg = ResultReg;
    CLI.NumResultRegs = 1;
  }

  return true;
}

bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
  CallingConv::ID CC  = CLI.CallConv;
  bool IsTailCall     = CLI.IsTailCall;
  bool IsVarArg       = CLI.IsVarArg;
  const Value *Callee = CLI.Callee;
  const MCSymbol *Symbol = CLI.Symbol;

  if (!Callee && !Symbol)
    return false;

  // Allow SelectionDAG isel to handle tail calls.
  if (IsTailCall)
    return false;

  // Let SDISel handle vararg functions.
  if (IsVarArg)
    return false;

  // Handle simple calls for now, with legal return types and
  // those that can be extended.
  Type *RetTy = CLI.RetTy;
  MVT RetVT;
  if (RetTy->isVoidTy())
    RetVT = MVT::isVoid;
  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
           RetVT != MVT::i8)
    return false;
  else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
    // We can't handle boolean returns when CR bits are in use.
    return false;

  // FIXME: No multi-register return values yet.
  if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
      RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
      RetVT != MVT::f64) {
    SmallVector<CCValAssign, 16> RVLocs;
    CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
    CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
    if (RVLocs.size() > 1)
      return false;
  }

  // Bail early if more than 8 arguments, as we only currently
  // handle arguments passed in registers.
  unsigned NumArgs = CLI.OutVals.size();
  if (NumArgs > 8)
    return false;

  // Set up the argument vectors.
  SmallVector<Value*, 8> Args;
  SmallVector<unsigned, 8> ArgRegs;
  SmallVector<MVT, 8> ArgVTs;
  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;

  Args.reserve(NumArgs);
  ArgRegs.reserve(NumArgs);
  ArgVTs.reserve(NumArgs);
  ArgFlags.reserve(NumArgs);

  for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
    // Only handle easy calls for now.  It would be reasonably easy
    // to handle <= 8-byte structures passed ByVal in registers, but we
    // have to ensure they are right-justified in the register.
    ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
    if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
      return false;

    Value *ArgValue = CLI.OutVals[i];
    Type *ArgTy = ArgValue->getType();
    MVT ArgVT;
    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
      return false;

    if (ArgVT.isVector())
      return false;

    unsigned Arg = getRegForValue(ArgValue);
    if (Arg == 0)
      return false;

    Args.push_back(ArgValue);
    ArgRegs.push_back(Arg);
    ArgVTs.push_back(ArgVT);
    ArgFlags.push_back(Flags);
  }

  // Process the arguments.
  SmallVector<unsigned, 8> RegArgs;
  unsigned NumBytes;

  if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
                       RegArgs, CC, NumBytes, IsVarArg))
    return false;

  MachineInstrBuilder MIB;
  // FIXME: No handling for function pointers yet.  This requires
  // implementing the function descriptor (OPD) setup.
  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
  if (!GV) {
    // patchpoints are a special case; they always dispatch to a pointer value.
    // However, we don't actually want to generate the indirect call sequence
    // here (that will be generated, as necessary, during asm printing), and
    // the call we generate here will be erased by FastISel::selectPatchpoint,
    // so don't try very hard...
    if (CLI.IsPatchPoint)
      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
    else
      return false;
  } else {
    // Build direct call with NOP for TOC restore.
    // FIXME: We can and should optimize away the NOP for local calls.
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                  TII.get(PPC::BL8_NOP));
    // Add callee.
    MIB.addGlobalAddress(GV);
  }

  // Add implicit physical register uses to the call.
  for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
    MIB.addReg(RegArgs[II], RegState::Implicit);

  // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
  // into the call.
  PPCFuncInfo->setUsesTOCBasePtr();
  MIB.addReg(PPC::X2, RegState::Implicit);

  // Add a register mask with the call-preserved registers.  Proper
  // defs for return values will be added by setPhysRegsDeadExcept().
  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));

  CLI.Call = MIB;

  // Finish off the call including any return values.
  return finishCall(RetVT, CLI, NumBytes);
}

// Attempt to fast-select a return instruction.
bool PPCFastISel::SelectRet(const Instruction *I) {

  if (!FuncInfo.CanLowerReturn)
    return false;

  if (TLI.supportSplitCSR(FuncInfo.MF))
    return false;

  const ReturnInst *Ret = cast<ReturnInst>(I);
  const Function &F = *I->getParent()->getParent();

  // Build a list of return value registers.
  SmallVector<unsigned, 4> RetRegs;
  CallingConv::ID CC = F.getCallingConv();

  if (Ret->getNumOperands() > 0) {
    SmallVector<ISD::OutputArg, 4> Outs;
    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);

    // Analyze operands of the call, assigning locations to each operand.
    SmallVector<CCValAssign, 16> ValLocs;
    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
    CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
    const Value *RV = Ret->getOperand(0);

    // FIXME: Only one output register for now.
    if (ValLocs.size() > 1)
      return false;

    // Special case for returning a constant integer of any size - materialize
    // the constant as an i64 and copy it to the return register.
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
      CCValAssign &VA = ValLocs[0];

      unsigned RetReg = VA.getLocReg();
      // We still need to worry about properly extending the sign. For example,
      // we could have only a single bit or a constant that needs zero
      // extension rather than sign extension. Make sure we pass the return
      // value extension property to integer materialization.
      unsigned SrcReg =
          PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);

      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);

      RetRegs.push_back(RetReg);

    } else {
      unsigned Reg = getRegForValue(RV);

      if (Reg == 0)
        return false;

      // Copy the result values into the output registers.
      for (unsigned i = 0; i < ValLocs.size(); ++i) {

        CCValAssign &VA = ValLocs[i];
        assert(VA.isRegLoc() && "Can only return in registers!");
        RetRegs.push_back(VA.getLocReg());
        unsigned SrcReg = Reg + VA.getValNo();

        EVT RVEVT = TLI.getValueType(DL, RV->getType());
        if (!RVEVT.isSimple())
          return false;
        MVT RVVT = RVEVT.getSimpleVT();
        MVT DestVT = VA.getLocVT();

        if (RVVT != DestVT && RVVT != MVT::i8 &&
            RVVT != MVT::i16 && RVVT != MVT::i32)
          return false;

        if (RVVT != DestVT) {
          switch (VA.getLocInfo()) {
            default:
              llvm_unreachable("Unknown loc info!");
            case CCValAssign::Full:
              llvm_unreachable("Full value assign but types don't match?");
            case CCValAssign::AExt:
            case CCValAssign::ZExt: {
              const TargetRegisterClass *RC =
                (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
              unsigned TmpReg = createResultReg(RC);
              if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
                return false;
              SrcReg = TmpReg;
              break;
            }
            case CCValAssign::SExt: {
              const TargetRegisterClass *RC =
                (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
              unsigned TmpReg = createResultReg(RC);
              if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
                return false;
              SrcReg = TmpReg;
              break;
            }
          }
        }

        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                TII.get(TargetOpcode::COPY), RetRegs[i])
          .addReg(SrcReg);
      }
    }
  }

  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(PPC::BLR8));

  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
    MIB.addReg(RetRegs[i], RegState::Implicit);

  return true;
}

// Attempt to emit an integer extend of SrcReg into DestReg.  Both
// signed and zero extensions are supported.  Return false if we
// can't handle it.
bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
                                unsigned DestReg, bool IsZExt) {
  if (DestVT != MVT::i32 && DestVT != MVT::i64)
    return false;
  if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
    return false;

  // Signed extensions use EXTSB, EXTSH, EXTSW.
  if (!IsZExt) {
    unsigned Opc;
    if (SrcVT == MVT::i8)
      Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
    else if (SrcVT == MVT::i16)
      Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
    else {
      assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
      Opc = PPC::EXTSW_32_64;
    }
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
      .addReg(SrcReg);

  // Unsigned 32-bit extensions use RLWINM.
  } else if (DestVT == MVT::i32) {
    unsigned MB;
    if (SrcVT == MVT::i8)
      MB = 24;
    else {
      assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
      MB = 16;
    }
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
            DestReg)
      .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);

  // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
  } else {
    unsigned MB;
    if (SrcVT == MVT::i8)
      MB = 56;
    else if (SrcVT == MVT::i16)
      MB = 48;
    else
      MB = 32;
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(PPC::RLDICL_32_64), DestReg)
      .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
  }

  return true;
}

// Attempt to fast-select an indirect branch instruction.
bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
  unsigned AddrReg = getRegForValue(I->getOperand(0));
  if (AddrReg == 0)
    return false;

  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
    .addReg(AddrReg);
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));

  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
  for (const BasicBlock *SuccBB : IB->successors())
    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);

  return true;
}

// Attempt to fast-select an integer truncate instruction.
bool PPCFastISel::SelectTrunc(const Instruction *I) {
  Value *Src  = I->getOperand(0);
  EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
  EVT DestVT = TLI.getValueType(DL, I->getType(), true);

  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
    return false;

  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
    return false;

  unsigned SrcReg = getRegForValue(Src);
  if (!SrcReg)
    return false;

  // The only interesting case is when we need to switch register classes.
  if (SrcVT == MVT::i64) {
    unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY),
            ResultReg).addReg(SrcReg, 0, PPC::sub_32);
    SrcReg = ResultReg;
  }

  updateValueMap(I, SrcReg);
  return true;
}

// Attempt to fast-select an integer extend instruction.
bool PPCFastISel::SelectIntExt(const Instruction *I) {
  Type *DestTy = I->getType();
  Value *Src = I->getOperand(0);
  Type *SrcTy = Src->getType();

  bool IsZExt = isa<ZExtInst>(I);
  unsigned SrcReg = getRegForValue(Src);
  if (!SrcReg) return false;

  EVT SrcEVT, DestEVT;
  SrcEVT = TLI.getValueType(DL, SrcTy, true);
  DestEVT = TLI.getValueType(DL, DestTy, true);
  if (!SrcEVT.isSimple())
    return false;
  if (!DestEVT.isSimple())
    return false;

  MVT SrcVT = SrcEVT.getSimpleVT();
  MVT DestVT = DestEVT.getSimpleVT();

  // If we know the register class needed for the result of this
  // instruction, use it.  Otherwise pick the register class of the
  // correct size that does not contain X0/R0, since we don't know
  // whether downstream uses permit that assignment.
  unsigned AssignedReg = FuncInfo.ValueMap[I];
  const TargetRegisterClass *RC =
    (AssignedReg ? MRI.getRegClass(AssignedReg) :
     (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
      &PPC::GPRC_and_GPRC_NOR0RegClass));
  unsigned ResultReg = createResultReg(RC);

  if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
    return false;

  updateValueMap(I, ResultReg);
  return true;
}

// Attempt to fast-select an instruction that wasn't handled by
// the table-generated machinery.
bool PPCFastISel::fastSelectInstruction(const Instruction *I) {

  switch (I->getOpcode()) {
    case Instruction::Load:
      return SelectLoad(I);
    case Instruction::Store:
      return SelectStore(I);
    case Instruction::Br:
      return SelectBranch(I);
    case Instruction::IndirectBr:
      return SelectIndirectBr(I);
    case Instruction::FPExt:
      return SelectFPExt(I);
    case Instruction::FPTrunc:
      return SelectFPTrunc(I);
    case Instruction::SIToFP:
      return SelectIToFP(I, /*IsSigned*/ true);
    case Instruction::UIToFP:
      return SelectIToFP(I, /*IsSigned*/ false);
    case Instruction::FPToSI:
      return SelectFPToI(I, /*IsSigned*/ true);
    case Instruction::FPToUI:
      return SelectFPToI(I, /*IsSigned*/ false);
    case Instruction::Add:
      return SelectBinaryIntOp(I, ISD::ADD);
    case Instruction::Or:
      return SelectBinaryIntOp(I, ISD::OR);
    case Instruction::Sub:
      return SelectBinaryIntOp(I, ISD::SUB);
    case Instruction::Call:
      return selectCall(I);
    case Instruction::Ret:
      return SelectRet(I);
    case Instruction::Trunc:
      return SelectTrunc(I);
    case Instruction::ZExt:
    case Instruction::SExt:
      return SelectIntExt(I);
    // Here add other flavors of Instruction::XXX that automated
    // cases don't catch.  For example, switches are terminators
    // that aren't yet handled.
    default:
      break;
  }
  return false;
}

// Materialize a floating-point constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
  // No plans to handle long double here.
  if (VT != MVT::f32 && VT != MVT::f64)
    return 0;

  // All FP constants are loaded from the constant pool.
  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
  assert(Align > 0 && "Unexpectedly missing alignment information!");
  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
  const bool HasSPE = PPCSubTarget->hasSPE();
  const TargetRegisterClass *RC;
  if (HasSPE)
    RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass);
  else
    RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);

  unsigned DestReg = createResultReg(RC);
  CodeModel::Model CModel = TM.getCodeModel();

  MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
      MachinePointerInfo::getConstantPool(*FuncInfo.MF),
      MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);

  unsigned Opc;

  if (HasSPE)
    Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
  else
    Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);

  unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);

  PPCFuncInfo->setUsesTOCBasePtr();
  // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
  if (CModel == CodeModel::Small) {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
            TmpReg)
      .addConstantPoolIndex(Idx).addReg(PPC::X2);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
      .addImm(0).addReg(TmpReg).addMemOperand(MMO);
  } else {
    // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
            TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
    // But for large code model, we must generate a LDtocL followed
    // by the LF[SD].
    if (CModel == CodeModel::Large) {
      unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
              TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
          .addImm(0)
          .addReg(TmpReg2);
    } else
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
        .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
        .addReg(TmpReg)
        .addMemOperand(MMO);
  }

  return DestReg;
}

// Materialize the address of a global value into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
  assert(VT == MVT::i64 && "Non-address!");
  const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
  unsigned DestReg = createResultReg(RC);

  // Global values may be plain old object addresses, TLS object
  // addresses, constant pool entries, or jump tables.  How we generate
  // code for these may depend on small, medium, or large code model.
  CodeModel::Model CModel = TM.getCodeModel();

  // FIXME: Jump tables are not yet required because fast-isel doesn't
  // handle switches; if that changes, we need them as well.  For now,
  // what follows assumes everything's a generic (or TLS) global address.

  // FIXME: We don't yet handle the complexity of TLS.
  if (GV->isThreadLocal())
    return 0;

  PPCFuncInfo->setUsesTOCBasePtr();
  // For small code model, generate a simple TOC load.
  if (CModel == CodeModel::Small)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
            DestReg)
        .addGlobalAddress(GV)
        .addReg(PPC::X2);
  else {
    // If the address is an externally defined symbol, a symbol with common
    // or externally available linkage, a non-local function address, or a
    // jump table address (not yet needed), or if we are generating code
    // for large code model, we generate:
    //       LDtocL(GV, ADDIStocHA(%x2, GV))
    // Otherwise we generate:
    //       ADDItocL(ADDIStocHA(%x2, GV), GV)
    // Either way, start with the ADDIStocHA:
    unsigned HighPartReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
            HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);

    unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
    if (GVFlags & PPCII::MO_NLP_FLAG) {
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
              DestReg).addGlobalAddress(GV).addReg(HighPartReg);
    } else {
      // Otherwise generate the ADDItocL.
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
              DestReg).addReg(HighPartReg).addGlobalAddress(GV);
    }
  }

  return DestReg;
}

// Materialize a 32-bit integer constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
                                             const TargetRegisterClass *RC) {
  unsigned Lo = Imm & 0xFFFF;
  unsigned Hi = (Imm >> 16) & 0xFFFF;

  unsigned ResultReg = createResultReg(RC);
  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);

  if (isInt<16>(Imm))
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
      .addImm(Imm);
  else if (Lo) {
    // Both Lo and Hi have nonzero bits.
    unsigned TmpReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
      .addImm(Hi);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
      .addReg(TmpReg).addImm(Lo);
  } else
    // Just Hi bits.
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
        .addImm(Hi);

  return ResultReg;
}

// Materialize a 64-bit integer constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
                                             const TargetRegisterClass *RC) {
  unsigned Remainder = 0;
  unsigned Shift = 0;

  // If the value doesn't fit in 32 bits, see if we can shift it
  // so that it fits in 32 bits.
  if (!isInt<32>(Imm)) {
    Shift = countTrailingZeros<uint64_t>(Imm);
    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;

    if (isInt<32>(ImmSh))
      Imm = ImmSh;
    else {
      Remainder = Imm;
      Shift = 32;
      Imm >>= 32;
    }
  }

  // Handle the high-order 32 bits (if shifted) or the whole 32 bits
  // (if not shifted).
  unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
  if (!Shift)
    return TmpReg1;

  // If upper 32 bits were not zero, we've built them and need to shift
  // them into place.
  unsigned TmpReg2;
  if (Imm) {
    TmpReg2 = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
            TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
  } else
    TmpReg2 = TmpReg1;

  unsigned TmpReg3, Hi, Lo;
  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
    TmpReg3 = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
            TmpReg3).addReg(TmpReg2).addImm(Hi);
  } else
    TmpReg3 = TmpReg2;

  if ((Lo = Remainder & 0xFFFF)) {
    unsigned ResultReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
            ResultReg).addReg(TmpReg3).addImm(Lo);
    return ResultReg;
  }

  return TmpReg3;
}

// Materialize an integer constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
                                        bool UseSExt) {
  // If we're using CR bit registers for i1 values, handle that as a special
  // case first.
  if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
    unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
    return ImmReg;
  }

  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
      VT != MVT::i1)
    return 0;

  const TargetRegisterClass *RC =
      ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
  int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();

  // If the constant is in range, use a load-immediate.
  // Since LI will sign extend the constant we need to make sure that for
  // our zeroext constants that the sign extended constant fits into 16-bits -
  // a range of 0..0x7fff.
  if (isInt<16>(Imm)) {
    unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
    unsigned ImmReg = createResultReg(RC);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
        .addImm(Imm);
    return ImmReg;
  }

  // Construct the constant piecewise.
  if (VT == MVT::i64)
    return PPCMaterialize64BitInt(Imm, RC);
  else if (VT == MVT::i32)
    return PPCMaterialize32BitInt(Imm, RC);

  return 0;
}

// Materialize a constant into a register, and return the register
// number (or zero if we failed to handle it).
unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
  EVT CEVT = TLI.getValueType(DL, C->getType(), true);

  // Only handle simple types.
  if (!CEVT.isSimple()) return 0;
  MVT VT = CEVT.getSimpleVT();

  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    return PPCMaterializeFP(CFP, VT);
  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    return PPCMaterializeGV(GV, VT);
  else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
    // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
    // assumes that constant PHI operands will be zero extended, and failure to
    // match that assumption will cause problems if we sign extend here but
    // some user of a PHI is in a block for which we fall back to full SDAG
    // instruction selection.
    return PPCMaterializeInt(CI, VT, false);

  return 0;
}

// Materialize the address created by an alloca into a register, and
// return the register number (or zero if we failed to handle it).
unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
  // Don't handle dynamic allocas.
  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;

  MVT VT;
  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;

  DenseMap<const AllocaInst*, int>::iterator SI =
    FuncInfo.StaticAllocaMap.find(AI);

  if (SI != FuncInfo.StaticAllocaMap.end()) {
    unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
            ResultReg).addFrameIndex(SI->second).addImm(0);
    return ResultReg;
  }

  return 0;
}

// Fold loads into extends when possible.
// FIXME: We can have multiple redundant extend/trunc instructions
// following a load.  The folding only picks up one.  Extend this
// to check subsequent instructions for the same pattern and remove
// them.  Thus ResultReg should be the def reg for the last redundant
// instruction in a chain, and all intervening instructions can be
// removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
// to add ELF64-NOT: rldicl to the appropriate tests when this works.
bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
                                      const LoadInst *LI) {
  // Verify we have a legal type before going any further.
  MVT VT;
  if (!isLoadTypeLegal(LI->getType(), VT))
    return false;

  // Combine load followed by zero- or sign-extend.
  bool IsZExt = false;
  switch(MI->getOpcode()) {
    default:
      return false;

    case PPC::RLDICL:
    case PPC::RLDICL_32_64: {
      IsZExt = true;
      unsigned MB = MI->getOperand(3).getImm();
      if ((VT == MVT::i8 && MB <= 56) ||
          (VT == MVT::i16 && MB <= 48) ||
          (VT == MVT::i32 && MB <= 32))
        break;
      return false;
    }

    case PPC::RLWINM:
    case PPC::RLWINM8: {
      IsZExt = true;
      unsigned MB = MI->getOperand(3).getImm();
      if ((VT == MVT::i8 && MB <= 24) ||
          (VT == MVT::i16 && MB <= 16))
        break;
      return false;
    }

    case PPC::EXTSB:
    case PPC::EXTSB8:
    case PPC::EXTSB8_32_64:
      /* There is no sign-extending load-byte instruction. */
      return false;

    case PPC::EXTSH:
    case PPC::EXTSH8:
    case PPC::EXTSH8_32_64: {
      if (VT != MVT::i16 && VT != MVT::i8)
        return false;
      break;
    }

    case PPC::EXTSW:
    case PPC::EXTSW_32:
    case PPC::EXTSW_32_64: {
      if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
        return false;
      break;
    }
  }

  // See if we can handle this address.
  Address Addr;
  if (!PPCComputeAddress(LI->getOperand(0), Addr))
    return false;

  unsigned ResultReg = MI->getOperand(0).getReg();

  if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
        PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
    return false;

  MachineBasicBlock::iterator I(MI);
  removeDeadCode(I, std::next(I));
  return true;
}

// Attempt to lower call arguments in a faster way than done by
// the selection DAG code.
bool PPCFastISel::fastLowerArguments() {
  // Defer to normal argument lowering for now.  It's reasonably
  // efficient.  Consider doing something like ARM to handle the
  // case where all args fit in registers, no varargs, no float
  // or vector args.
  return false;
}

// Handle materializing integer constants into a register.  This is not
// automatically generated for PowerPC, so must be explicitly created here.
unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {

  if (Opc != ISD::Constant)
    return 0;

  // If we're using CR bit registers for i1 values, handle that as a special
  // case first.
  if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
    unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
    return ImmReg;
  }

  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
      VT != MVT::i1)
    return 0;

  const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
                                   &PPC::GPRCRegClass);
  if (VT == MVT::i64)
    return PPCMaterialize64BitInt(Imm, RC);
  else
    return PPCMaterialize32BitInt(Imm, RC);
}

// Override for ADDI and ADDI8 to set the correct register class
// on RHS operand 0.  The automatic infrastructure naively assumes
// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
// for these cases.  At the moment, none of the other automatically
// generated RI instructions require special treatment.  However, once
// SelectSelect is implemented, "isel" requires similar handling.
//
// Also be conservative about the output register class.  Avoid
// assigning R0 or X0 to the output register for GPRC and G8RC
// register classes, as any such result could be used in ADDI, etc.,
// where those regs have another meaning.
unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
                                      const TargetRegisterClass *RC,
                                      unsigned Op0, bool Op0IsKill,
                                      uint64_t Imm) {
  if (MachineInstOpcode == PPC::ADDI)
    MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
  else if (MachineInstOpcode == PPC::ADDI8)
    MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);

  const TargetRegisterClass *UseRC =
    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));

  return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
                                   Op0, Op0IsKill, Imm);
}

// Override for instructions with one register operand to avoid use of
// R0/X0.  The automatic infrastructure isn't aware of the context so
// we must be conservative.
unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
                                     const TargetRegisterClass* RC,
                                     unsigned Op0, bool Op0IsKill) {
  const TargetRegisterClass *UseRC =
    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));

  return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
}

// Override for instructions with two register operands to avoid use
// of R0/X0.  The automatic infrastructure isn't aware of the context
// so we must be conservative.
unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
                                      const TargetRegisterClass* RC,
                                      unsigned Op0, bool Op0IsKill,
                                      unsigned Op1, bool Op1IsKill) {
  const TargetRegisterClass *UseRC =
    (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
     (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));

  return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
                                   Op1, Op1IsKill);
}

namespace llvm {
  // Create the fast instruction selector for PowerPC64 ELF.
  FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
                                const TargetLibraryInfo *LibInfo) {
    // Only available on 64-bit ELF for now.
    const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
    if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
      return new PPCFastISel(FuncInfo, LibInfo);
    return nullptr;
  }
}