Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
//===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

include "RISCVInstrFormats.td"

//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//

def SDT_RISCVCall         : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
def SDT_RISCVCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
                                            SDTCisVT<1, i32>]>;
def SDT_RISCVCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
                                          SDTCisVT<1, i32>]>;
def SDT_RISCVSelectCC     : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
                                                 SDTCisSameAs<0, 4>,
                                                 SDTCisSameAs<4, 5>]>;


def Call         : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                           SDNPVariadic]>;
def CallSeqStart : SDNode<"ISD::CALLSEQ_START", SDT_RISCVCallSeqStart,
                          [SDNPHasChain, SDNPOutGlue]>;
def CallSeqEnd   : SDNode<"ISD::CALLSEQ_END", SDT_RISCVCallSeqEnd,
                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def RetFlag      : SDNode<"RISCVISD::RET_FLAG", SDTNone,
                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def URetFlag     : SDNode<"RISCVISD::URET_FLAG", SDTNone,
                          [SDNPHasChain, SDNPOptInGlue]>;
def SRetFlag     : SDNode<"RISCVISD::SRET_FLAG", SDTNone,
                          [SDNPHasChain, SDNPOptInGlue]>;
def MRetFlag     : SDNode<"RISCVISD::MRET_FLAG", SDTNone,
                          [SDNPHasChain, SDNPOptInGlue]>;
def SelectCC     : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC,
                          [SDNPInGlue]>;
def Tail         : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                           SDNPVariadic]>;

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
  let Name = prefix # "ImmXLen" # suffix;
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
  let Name = prefix # "Imm" # width # suffix;
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

class SImmAsmOperand<int width, string suffix = "">
    : ImmAsmOperand<"S", width, suffix> {
}

class UImmAsmOperand<int width, string suffix = "">
    : ImmAsmOperand<"U", width, suffix> {
}

def FenceArg : AsmOperandClass {
  let Name = "FenceArg";
  let RenderMethod = "addFenceArgOperands";
  let DiagnosticType = "InvalidFenceArg";
}

def fencearg : Operand<XLenVT> {
  let ParserMatchClass = FenceArg;
  let PrintMethod = "printFenceArg";
  let DecoderMethod = "decodeUImmOperand<4>";
}

def UImmLog2XLenAsmOperand : AsmOperandClass {
  let Name = "UImmLog2XLen";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidUImmLog2XLen";
}

def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{
  if (Subtarget->is64Bit())
    return isUInt<6>(Imm);
  return isUInt<5>(Imm);
}]> {
  let ParserMatchClass = UImmLog2XLenAsmOperand;
  // TODO: should ensure invalid shamt is rejected when decoding.
  let DecoderMethod = "decodeUImmOperand<6>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (!MCOp.evaluateAsConstantImm(Imm))
      return false;
    if (STI.getTargetTriple().isArch64Bit())
      return  isUInt<6>(Imm);
    return isUInt<5>(Imm);
  }];
}

def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> {
  let ParserMatchClass = UImmAsmOperand<5>;
  let DecoderMethod = "decodeUImmOperand<5>";
}

def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> {
  let ParserMatchClass = SImmAsmOperand<12>;
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeSImmOperand<12>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isInt<12>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

// A 13-bit signed immediate where the least significant bit is zero.
def simm13_lsb0 : Operand<OtherVT> {
  let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
  let EncoderMethod = "getImmOpValueAsr1";
  let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isShiftedInt<12, 1>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

class UImm20Operand : Operand<XLenVT> {
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeUImmOperand<20>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isUInt<20>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

def uimm20_lui : UImm20Operand {
  let ParserMatchClass = UImmAsmOperand<20, "LUI">;
}
def uimm20_auipc : UImm20Operand {
  let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
}

def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
  let ParserMethod = "parseJALOffset";
}

// A 21-bit signed immediate where the least significant bit is zero.
def simm21_lsb0_jal : Operand<OtherVT> {
  let ParserMatchClass = Simm21Lsb0JALAsmOperand;
  let EncoderMethod = "getImmOpValueAsr1";
  let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isShiftedInt<20, 1>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

def BareSymbol : AsmOperandClass {
  let Name = "BareSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidBareSymbol";
  let ParserMethod = "parseBareSymbol";
}

// A bare symbol.
def bare_symbol : Operand<XLenVT> {
  let ParserMatchClass = BareSymbol;
}

def CSRSystemRegister : AsmOperandClass {
  let Name = "CSRSystemRegister";
  let ParserMethod = "parseCSRSystemRegister";
  let DiagnosticType = "InvalidCSRSystemRegister";
}

def csr_sysreg : Operand<XLenVT> {
  let ParserMatchClass = CSRSystemRegister;
  let PrintMethod = "printCSRSystemRegister";
  let DecoderMethod = "decodeUImmOperand<12>";
}

// A parameterized register class alternative to i32imm/i64imm from Target.td.
def ixlenimm : Operand<XLenVT>;

def ixlenimm_li : Operand<XLenVT> {
  let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
}

// Standalone (codegen-only) immleaf patterns.
def simm32     : ImmLeaf<XLenVT, [{return isInt<32>(Imm);}]>;
def simm32hi20 : ImmLeaf<XLenVT, [{return isShiftedInt<20, 12>(Imm);}]>;
// A mask value that won't affect significant shift bits.
def immbottomxlenset : ImmLeaf<XLenVT, [{
  if (Subtarget->is64Bit())
    return countTrailingOnes<uint64_t>(Imm) >= 6;
  return countTrailingOnes<uint64_t>(Imm) >= 5;
}]>;

// Addressing modes.
// Necessary because a frameindex can't be matched directly in a pattern.
def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>;

// Extract least significant 12 bits from an immediate value and sign extend
// them.
def LO12Sext : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(SignExtend64<12>(N->getZExtValue()),
                                   SDLoc(N), N->getValueType(0));
}]>;

// Extract the most significant 20 bits from an immediate value. Add 1 if bit
// 11 is 1, to compensate for the low 12 bits in the matching immediate addi
// or ld/st being negative.
def HI20 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(((N->getZExtValue()+0x800) >> 12) & 0xfffff,
                                   SDLoc(N), N->getValueType(0));
}]>;

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class BranchCC_rri<bits<3> funct3, string opcodestr>
    : RVInstB<funct3, OPC_BRANCH, (outs),
              (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
              opcodestr, "$rs1, $rs2, $imm12"> {
  let isBranch = 1;
  let isTerminator = 1;
}

let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
class Load_ri<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
              opcodestr, "$rd, ${imm12}(${rs1})">;

// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
class Store_rri<bits<3> funct3, string opcodestr>
    : RVInstS<funct3, OPC_STORE, (outs),
              (ins GPR:$rs2, GPR:$rs1, simm12:$imm12),
              opcodestr, "$rs2, ${imm12}(${rs1})">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_ri<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
              opcodestr, "$rd, $rs1, $imm12">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class Shift_ri<bit arithshift, bits<3> funct3, string opcodestr>
    : RVInstIShift<arithshift, funct3, OPC_OP_IMM, (outs GPR:$rd),
                   (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
                   "$rd, $rs1, $shamt">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
    : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
              opcodestr, "$rd, $rs1, $rs2">;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ir<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
              opcodestr, "$rd, $imm12, $rs1">;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ii<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
              (ins csr_sysreg:$imm12, uimm5:$rs1),
              opcodestr, "$rd, $imm12, $rs1">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ShiftW_ri<bit arithshift, bits<3> funct3, string opcodestr>
    : RVInstIShiftW<arithshift, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
                    (ins GPR:$rs1, uimm5:$shamt), opcodestr,
                    "$rd, $rs1, $shamt">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
    : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
              (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class Priv<string opcodestr, bits<7> funct7>
    : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
              opcodestr, "">;

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, isReMaterializable = 1, mayLoad = 0, mayStore = 0 in {
def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
                  "lui", "$rd, $imm20">;

def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
                    "auipc", "$rd, $imm20">;

let isCall = 1 in
def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
                  "jal", "$rd, $imm20">;

let isCall = 1 in
def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
                   (ins GPR:$rs1, simm12:$imm12),
                   "jalr", "$rd, $rs1, $imm12">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

def BEQ  : BranchCC_rri<0b000, "beq">;
def BNE  : BranchCC_rri<0b001, "bne">;
def BLT  : BranchCC_rri<0b100, "blt">;
def BGE  : BranchCC_rri<0b101, "bge">;
def BLTU : BranchCC_rri<0b110, "bltu">;
def BGEU : BranchCC_rri<0b111, "bgeu">;

def LB  : Load_ri<0b000, "lb">;
def LH  : Load_ri<0b001, "lh">;
def LW  : Load_ri<0b010, "lw">;
def LBU : Load_ri<0b100, "lbu">;
def LHU : Load_ri<0b101, "lhu">;

def SB : Store_rri<0b000, "sb">;
def SH : Store_rri<0b001, "sh">;
def SW : Store_rri<0b010, "sw">;

// ADDI isn't always rematerializable, but isReMaterializable will be used as
// a hint which is verified in isReallyTriviallyReMaterializable.
let isReMaterializable = 1 in
def ADDI  : ALU_ri<0b000, "addi">;

def SLTI  : ALU_ri<0b010, "slti">;
def SLTIU : ALU_ri<0b011, "sltiu">;
def XORI  : ALU_ri<0b100, "xori">;
def ORI   : ALU_ri<0b110, "ori">;
def ANDI  : ALU_ri<0b111, "andi">;

def SLLI : Shift_ri<0, 0b001, "slli">;
def SRLI : Shift_ri<0, 0b101, "srli">;
def SRAI : Shift_ri<1, 0b101, "srai">;

def ADD  : ALU_rr<0b0000000, 0b000, "add">;
def SUB  : ALU_rr<0b0100000, 0b000, "sub">;
def SLL  : ALU_rr<0b0000000, 0b001, "sll">;
def SLT  : ALU_rr<0b0000000, 0b010, "slt">;
def SLTU : ALU_rr<0b0000000, 0b011, "sltu">;
def XOR  : ALU_rr<0b0000000, 0b100, "xor">;
def SRL  : ALU_rr<0b0000000, 0b101, "srl">;
def SRA  : ALU_rr<0b0100000, 0b101, "sra">;
def OR   : ALU_rr<0b0000000, 0b110, "or">;
def AND  : ALU_rr<0b0000000, 0b111, "and">;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
                    (ins fencearg:$pred, fencearg:$succ),
                    "fence", "$pred, $succ"> {
  bits<4> pred;
  bits<4> succ;

  let rs1 = 0;
  let rd = 0;
  let imm12 = {0b0000,pred,succ};
}

def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", ""> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = {0b1000,0b0011,0b0011};
}

def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", ""> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0;
}

def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", ""> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0;
}

def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", ""> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 1;
}

// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
// instruction (i.e., it should always trap, if your implementation has invalid
// instruction traps).
def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", ""> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0b110000000000;
}
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0

def CSRRW : CSR_ir<0b001, "csrrw">;
def CSRRS : CSR_ir<0b010, "csrrs">;
def CSRRC : CSR_ir<0b011, "csrrc">;

def CSRRWI : CSR_ii<0b101, "csrrwi">;
def CSRRSI : CSR_ii<0b110, "csrrsi">;
def CSRRCI : CSR_ii<0b111, "csrrci">;

/// RV64I instructions

let Predicates = [IsRV64] in {
def LWU   : Load_ri<0b110, "lwu">;
def LD    : Load_ri<0b011, "ld">;
def SD    : Store_rri<0b011, "sd">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
                    (ins GPR:$rs1, simm12:$imm12),
                    "addiw", "$rd, $rs1, $imm12">;

def SLLIW : ShiftW_ri<0, 0b001, "slliw">;
def SRLIW : ShiftW_ri<0, 0b101, "srliw">;
def SRAIW : ShiftW_ri<1, 0b101, "sraiw">;

def ADDW  : ALUW_rr<0b0000000, 0b000, "addw">;
def SUBW  : ALUW_rr<0b0100000, 0b000, "subw">;
def SLLW  : ALUW_rr<0b0000000, 0b001, "sllw">;
def SRLW  : ALUW_rr<0b0000000, 0b101, "srlw">;
def SRAW  : ALUW_rr<0b0100000, 0b101, "sraw">;
} // Predicates = [IsRV64]

//===----------------------------------------------------------------------===//
// Privileged instructions
//===----------------------------------------------------------------------===//

let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def URET : Priv<"uret", 0b0000000> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}

def SRET : Priv<"sret", 0b0001000> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}

def MRET : Priv<"mret", 0b0011000> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1

def WFI : Priv<"wfi", 0b0001000> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00101;
}

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs),
                         (ins GPR:$rs1, GPR:$rs2),
                         "sfence.vma", "$rs1, $rs2"> {
  let rd = 0;
}

//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//

// TODO la
// TODO lb lh lw
// TODO RV64I: ld
// TODO sb sh sw
// TODO RV64I: sd

def : InstAlias<"nop",           (ADDI      X0,      X0,       0)>;

// Note that the size is 32 because up to 8 32-bit instructions are needed to
// generate an arbitrary 64-bit immediate. However, the size does not really
// matter since PseudoLI is currently only used in the AsmParser where it gets
// expanded to real instructions immediately.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
    isCodeGenOnly = 0, isAsmParserOnly = 1 in
def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
                      "li", "$rd, $imm">;

def : InstAlias<"mv $rd, $rs",   (ADDI GPR:$rd, GPR:$rs,       0)>;
def : InstAlias<"not $rd, $rs",  (XORI GPR:$rd, GPR:$rs,      -1)>;
def : InstAlias<"neg $rd, $rs",  (SUB  GPR:$rd,      X0, GPR:$rs)>;

let Predicates = [IsRV64] in {
def : InstAlias<"negw $rd, $rs",   (SUBW  GPR:$rd,      X0, GPR:$rs)>;
def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs,       0)>;
} // Predicates = [IsRV64]

def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs,       1)>;
def : InstAlias<"snez $rd, $rs", (SLTU  GPR:$rd,      X0, GPR:$rs)>;
def : InstAlias<"sltz $rd, $rs", (SLT   GPR:$rd, GPR:$rs,      X0)>;
def : InstAlias<"sgtz $rd, $rs", (SLT   GPR:$rd,      X0, GPR:$rs)>;

// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
// form will always be printed. Therefore, set a zero weight.
def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;

def : InstAlias<"beqz $rs, $offset",
                (BEQ GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bnez $rs, $offset",
                (BNE GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"blez $rs, $offset",
                (BGE      X0, GPR:$rs, simm13_lsb0:$offset)>;
def : InstAlias<"bgez $rs, $offset",
                (BGE GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bltz $rs, $offset",
                (BLT GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bgtz $rs, $offset",
                (BLT      X0, GPR:$rs, simm13_lsb0:$offset)>;

// Always output the canonical mnemonic for the pseudo branch instructions.
// The GNU tools emit the canonical mnemonic for the branch pseudo instructions
// as well (e.g. "bgt" will be recognised by the assembler but never printed by
// objdump). Match this behaviour by setting a zero weight.
def : InstAlias<"bgt $rs, $rt, $offset",
                (BLT  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"ble $rs, $rt, $offset",
                (BGE  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bgtu $rs, $rt, $offset",
                (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bleu $rs, $rt, $offset",
                (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;

// "ret" has more weight since "ret" and "jr" alias the same "jalr" instruction.
def : InstAlias<"j $offset",   (JAL  X0, simm21_lsb0_jal:$offset)>;
def : InstAlias<"jal $offset", (JAL  X1, simm21_lsb0_jal:$offset)>;
def : InstAlias<"jr $rs",      (JALR X0, GPR:$rs, 0)>;
def : InstAlias<"jalr $rs",    (JALR X1, GPR:$rs, 0)>;
def : InstAlias<"ret",         (JALR X0,      X1, 0), 2>;
// TODO call
// TODO tail

def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw

// CSR Addresses: 0xC00 == cycle,  0xC01 == time,  0xC02 == instret
//                0xC80 == cycleh, 0xC81 == timeh, 0xC82 == instreth
def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, 0xC02, X0)>;
def : InstAlias<"rdcycle $rd",   (CSRRS GPR:$rd, 0xC00, X0)>;
def : InstAlias<"rdtime $rd",    (CSRRS GPR:$rd, 0xC01, X0)>;

let Predicates = [IsRV32] in {
def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, 0xC82, X0)>;
def : InstAlias<"rdcycleh $rd",   (CSRRS GPR:$rd, 0xC80, X0)>;
def : InstAlias<"rdtimeh $rd",    (CSRRS GPR:$rd, 0xC81, X0)>;
} // Predicates = [IsRV32]

def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr,      X0)>;
def : InstAlias<"csrw $csr, $rs", (CSRRW      X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrs $csr, $rs", (CSRRS      X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrc $csr, $rs", (CSRRC      X0, csr_sysreg:$csr, GPR:$rs)>;

def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;

let EmitPriority = 0 in {
def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;

def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
}

def : InstAlias<"sfence.vma",     (SFENCE_VMA      X0, X0)>;
def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;

let EmitPriority = 0 in {
def : InstAlias<"add $rd, $rs1, $imm12",
                (ADDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"and $rd, $rs1, $imm12",
                (ANDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"xor $rd, $rs1, $imm12",
                (XORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"or $rd, $rs1, $imm12",
                (ORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sll $rd, $rs1, $shamt",
                (SLLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"srl $rd, $rs1, $shamt",
                (SRLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"sra $rd, $rs1, $shamt",
                (SRAI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
let Predicates = [IsRV64] in {
def : InstAlias<"addw $rd, $rs1, $imm12",
                (ADDIW  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sllw $rd, $rs1, $shamt",
                (SLLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"srlw $rd, $rs1, $shamt",
                (SRLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"sraw $rd, $rs1, $shamt",
                (SRAIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
} // Predicates = [IsRV64]
def : InstAlias<"slt $rd, $rs1, $imm12",
                (SLTI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sltu $rd, $rs1, $imm12",
                (SLTIU  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
}

def : MnemonicAlias<"move", "mv">;

// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
// the old name for backwards compatibility.
def : MnemonicAlias<"scall", "ecall">;
def : MnemonicAlias<"sbreak", "ebreak">;

//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//
// Naming convention: For 'generic' pattern classes, we use the naming
// convention PatTy1Ty2. For pattern classes which offer a more complex
// expension, prefix the class name, e.g. BccPat.
//===----------------------------------------------------------------------===//

/// Generic pattern classes

class PatGprGpr<SDPatternOperator OpNode, RVInst Inst>
    : Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>;
class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
    : Pat<(OpNode GPR:$rs1, simm12:$imm12), (Inst GPR:$rs1, simm12:$imm12)>;
class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
    : Pat<(OpNode GPR:$rs1, uimmlog2xlen:$shamt),
          (Inst GPR:$rs1, uimmlog2xlen:$shamt)>;

/// Predicates

def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
  return isOrEquivalentToAdd(N);
}]>;
def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
  return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
}]>;
def sexti32 : PatFrags<(ops node:$src),
                       [(sext_inreg node:$src, i32),
                        (assertsexti32 node:$src)]>;
def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
  return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
}]>;
def assertzexti5 : PatFrag<(ops node:$src), (assertzext node:$src), [{
  return cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits() <= 5;
}]>;
def zexti32 : PatFrags<(ops node:$src),
                       [(and node:$src, 0xffffffff),
                        (assertzexti32 node:$src)]>;
// Defines a legal mask for (assertzexti5 (and src, mask)) to be combinable
// with a shiftw operation. The mask mustn't modify the lower 5 bits or the
// upper 32 bits.
def shiftwamt_mask : ImmLeaf<XLenVT, [{
  return countTrailingOnes<uint64_t>(Imm) >= 5 && isUInt<32>(Imm);
}]>;
def shiftwamt : PatFrags<(ops node:$src),
                         [(assertzexti5 (and node:$src, shiftwamt_mask)),
                          (assertzexti5 node:$src)]>;

/// Immediates

def : Pat<(simm12:$imm), (ADDI X0, simm12:$imm)>;
def : Pat<(simm32hi20:$imm), (LUI (HI20 imm:$imm))>;
def : Pat<(simm32:$imm), (ADDI (LUI (HI20 imm:$imm)), (LO12Sext imm:$imm))>,
      Requires<[IsRV32]>;

/// Simple arithmetic operations

def : PatGprGpr<add, ADD>;
def : PatGprSimm12<add, ADDI>;
def : PatGprGpr<sub, SUB>;
def : PatGprGpr<or, OR>;
def : PatGprSimm12<or, ORI>;
def : PatGprGpr<and, AND>;
def : PatGprSimm12<and, ANDI>;
def : PatGprGpr<xor, XOR>;
def : PatGprSimm12<xor, XORI>;
def : PatGprUimmLog2XLen<shl, SLLI>;
def : PatGprUimmLog2XLen<srl, SRLI>;
def : PatGprUimmLog2XLen<sra, SRAI>;

// Match both a plain shift and one where the shift amount is masked (this is
// typically introduced when the legalizer promotes the shift amount and
// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
class shiftop<SDPatternOperator operator>
    : PatFrags<(ops node:$val, node:$count),
               [(operator node:$val, node:$count),
                (operator node:$val, (and node:$count, immbottomxlenset))]>;

def : PatGprGpr<shiftop<shl>, SLL>;
def : PatGprGpr<shiftop<srl>, SRL>;
def : PatGprGpr<shiftop<sra>, SRA>;

/// FrameIndex calculations

def : Pat<(add (i32 AddrFI:$Rs), simm12:$imm12),
          (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
def : Pat<(IsOrAdd (i32 AddrFI:$Rs), simm12:$imm12),
          (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;

/// Setcc

def : PatGprGpr<setlt, SLT>;
def : PatGprSimm12<setlt, SLTI>;
def : PatGprGpr<setult, SLTU>;
def : PatGprSimm12<setult, SLTIU>;

// Define pattern expansions for setcc operations that aren't directly
// handled by a RISC-V instruction.
def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>;
def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>;
def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>;
def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>;
def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>;
def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>;
def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>;
def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>;

let usesCustomInserter = 1 in
class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty>
    : Pseudo<(outs valty:$dst),
             (ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm,
              valty:$truev, valty:$falsev),
             [(set valty:$dst, (SelectCC cmpty:$lhs, cmpty:$rhs,
              (XLenVT imm:$imm), valty:$truev, valty:$falsev))]>;

def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>;

/// Branches and jumps

// Match `(brcond (CondOp ..), ..)` and lower to the appropriate RISC-V branch
// instruction.
class BccPat<PatFrag CondOp, RVInstB Inst>
    : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
          (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;

def : BccPat<seteq, BEQ>;
def : BccPat<setne, BNE>;
def : BccPat<setlt, BLT>;
def : BccPat<setge, BGE>;
def : BccPat<setult, BLTU>;
def : BccPat<setuge, BGEU>;

class BccSwapPat<PatFrag CondOp, RVInst InstBcc>
    : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
          (InstBcc GPR:$rs2, GPR:$rs1, bb:$imm12)>;

// Condition codes that don't have matching RISC-V branch instructions, but
// are trivially supported by swapping the two input operands
def : BccSwapPat<setgt, BLT>;
def : BccSwapPat<setle, BGE>;
def : BccSwapPat<setugt, BLTU>;
def : BccSwapPat<setule, BGEU>;

// An extra pattern is needed for a brcond without a setcc (i.e. where the
// condition was calculated elsewhere).
def : Pat<(brcond GPR:$cond, bb:$imm12), (BNE GPR:$cond, X0, bb:$imm12)>;

let isBarrier = 1, isBranch = 1, isTerminator = 1 in
def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
               PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;

let isCall = 1, Defs=[X1] in
let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
def PseudoBRIND : Pseudo<(outs), (ins GPR:$rs1, simm12:$imm12), []>,
                  PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;

def : Pat<(brind GPR:$rs1), (PseudoBRIND GPR:$rs1, 0)>;
def : Pat<(brind (add GPR:$rs1, simm12:$imm12)),
          (PseudoBRIND GPR:$rs1, simm12:$imm12)>;

// PseudoCALL is a pseudo instruction which will eventually expand to auipc
// and jalr while encoding. This is desirable, as an auipc+jalr pair with
// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
// if the offset fits in a signed 21-bit immediate.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in
def PseudoCALL : Pseudo<(outs), (ins bare_symbol:$func),
                        [(Call tglobaladdr:$func)]> {
  let AsmString = "call\t$func";
}

def : Pat<(Call texternalsym:$func), (PseudoCALL texternalsym:$func)>;

def : Pat<(URetFlag), (URET X0, X0)>;
def : Pat<(SRetFlag), (SRET X0, X0)>;
def : Pat<(MRetFlag), (MRET X0, X0)>;

let isCall = 1, Defs = [X1] in
def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rs1), [(Call GPR:$rs1)]>,
                         PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;

let isBarrier = 1, isReturn = 1, isTerminator = 1 in
def PseudoRET : Pseudo<(outs), (ins), [(RetFlag)]>,
                PseudoInstExpansion<(JALR X0, X1, 0)>;

// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
// expand to auipc and jalr while encoding.
// Define AsmString to print "tail" when compile with -S flag.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
    isCodeGenOnly = 0 in
def PseudoTAIL : Pseudo<(outs), (ins bare_symbol:$dst), []> {
  let AsmString = "tail\t$dst";
}

let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1), [(Tail GPRTC:$rs1)]>,
                         PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;

def : Pat<(Tail (iPTR tglobaladdr:$dst)),
          (PseudoTAIL texternalsym:$dst)>;
def : Pat<(Tail (iPTR texternalsym:$dst)),
          (PseudoTAIL texternalsym:$dst)>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                       "lla", "$dst, $src">;

/// Loads

multiclass LdPat<PatFrag LoadOp, RVInst Inst> {
  def : Pat<(LoadOp GPR:$rs1), (Inst GPR:$rs1, 0)>;
  def : Pat<(LoadOp AddrFI:$rs1), (Inst AddrFI:$rs1, 0)>;
  def : Pat<(LoadOp (add GPR:$rs1, simm12:$imm12)),
            (Inst GPR:$rs1, simm12:$imm12)>;
  def : Pat<(LoadOp (add AddrFI:$rs1, simm12:$imm12)),
            (Inst AddrFI:$rs1, simm12:$imm12)>;
  def : Pat<(LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
            (Inst AddrFI:$rs1, simm12:$imm12)>;
}

defm : LdPat<sextloadi8, LB>;
defm : LdPat<extloadi8, LB>;
defm : LdPat<sextloadi16, LH>;
defm : LdPat<extloadi16, LH>;
defm : LdPat<load, LW>, Requires<[IsRV32]>;
defm : LdPat<zextloadi8, LBU>;
defm : LdPat<zextloadi16, LHU>;

/// Stores

multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy> {
  def : Pat<(StoreOp StTy:$rs2, GPR:$rs1), (Inst StTy:$rs2, GPR:$rs1, 0)>;
  def : Pat<(StoreOp StTy:$rs2, AddrFI:$rs1), (Inst StTy:$rs2, AddrFI:$rs1, 0)>;
  def : Pat<(StoreOp StTy:$rs2, (add GPR:$rs1, simm12:$imm12)),
            (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;
  def : Pat<(StoreOp StTy:$rs2, (add AddrFI:$rs1, simm12:$imm12)),
            (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
  def : Pat<(StoreOp StTy:$rs2, (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
            (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
}

defm : StPat<truncstorei8, SB, GPR>;
defm : StPat<truncstorei16, SH, GPR>;
defm : StPat<store, SW, GPR>, Requires<[IsRV32]>;

/// Fences

// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
// Manual: Volume I.

// fence acquire -> fence r, rw
def : Pat<(atomic_fence (XLenVT 4), (imm)), (FENCE 0b10, 0b11)>;
// fence release -> fence rw, w
def : Pat<(atomic_fence (XLenVT 5), (imm)), (FENCE 0b11, 0b1)>;
// fence acq_rel -> fence.tso
def : Pat<(atomic_fence (XLenVT 6), (imm)), (FENCE_TSO)>;
// fence seq_cst -> fence rw, rw
def : Pat<(atomic_fence (XLenVT 7), (imm)), (FENCE 0b11, 0b11)>;

// Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
// Although these are lowered to fence+load/store instructions defined in the
// base RV32I/RV64I ISA, this lowering is only used when the A extension is
// present. This is necessary as it isn't valid to mix __atomic_* libcalls
// with inline atomic operations for the same object.

/// Other pseudo-instructions

// Pessimistically assume the stack pointer will be clobbered
let Defs = [X2], Uses = [X2] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              [(CallSeqStart timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP   : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              [(CallSeqEnd timm:$amt1, timm:$amt2)]>;
} // Defs = [X2], Uses = [X2]

/// RV64 patterns

let Predicates = [IsRV64] in {

/// sext and zext

def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
def : Pat<(and GPR:$rs1, 0xffffffff), (SRLI (SLLI GPR:$rs1, 32), 32)>;

/// ALU operations

def : Pat<(sext_inreg (add GPR:$rs1, GPR:$rs2), i32),
          (ADDW GPR:$rs1, GPR:$rs2)>;
def : Pat<(sext_inreg (add GPR:$rs1, simm12:$imm12), i32),
          (ADDIW GPR:$rs1, simm12:$imm12)>;
def : Pat<(sext_inreg (sub GPR:$rs1, GPR:$rs2), i32),
          (SUBW GPR:$rs1, GPR:$rs2)>;
def : Pat<(sext_inreg (shl GPR:$rs1, uimm5:$shamt), i32),
          (SLLIW GPR:$rs1, uimm5:$shamt)>;
// (srl (zexti32 ...), uimm5:$shamt) is matched with custom code due to the
// need to undo manipulation of the mask value performed by DAGCombine.
def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
          (SRAIW GPR:$rs1, uimm5:$shamt)>;

// For variable-length shifts, we rely on assertzexti5 being inserted during
// lowering (see RISCVTargetLowering::PerformDAGCombine). This enables us to
// guarantee that selecting a 32-bit variable shift is legal (as the variable
// shift is known to be <= 32). We must also be careful not to create
// semantically incorrect patterns. For instance, selecting SRLW for
// (srl (zexti32 GPR:$rs1), (shiftwamt GPR:$rs2)),
// is not guaranteed to be safe, as we don't know whether the upper 32-bits of
// the result are used or not (in the case where rs2=0, this is a
// sign-extension operation).

def : Pat<(sext_inreg (shl GPR:$rs1, (shiftwamt GPR:$rs2)), i32),
          (SLLW GPR:$rs1, GPR:$rs2)>;
def : Pat<(zexti32 (shl GPR:$rs1, (shiftwamt GPR:$rs2))),
          (SRLI (SLLI (SLLW GPR:$rs1, GPR:$rs2), 32), 32)>;

def : Pat<(sext_inreg (srl (zexti32 GPR:$rs1), (shiftwamt GPR:$rs2)), i32),
          (SRLW GPR:$rs1, GPR:$rs2)>;
def : Pat<(zexti32 (srl (zexti32 GPR:$rs1), (shiftwamt GPR:$rs2))),
          (SRLI (SLLI (SRLW GPR:$rs1, GPR:$rs2), 32), 32)>;

def : Pat<(sra (sexti32 GPR:$rs1), (shiftwamt GPR:$rs2)),
          (SRAW GPR:$rs1, GPR:$rs2)>;

/// Loads

defm : LdPat<sextloadi32, LW>;
defm : LdPat<extloadi32, LW>;
defm : LdPat<zextloadi32, LWU>;
defm : LdPat<load, LD>;

/// Stores

defm : StPat<truncstorei32, SW, GPR>;
defm : StPat<store, SD, GPR>;
} // Predicates = [IsRV64]

//===----------------------------------------------------------------------===//
// Standard extensions
//===----------------------------------------------------------------------===//

include "RISCVInstrInfoM.td"
include "RISCVInstrInfoA.td"
include "RISCVInstrInfoF.td"
include "RISCVInstrInfoD.td"
include "RISCVInstrInfoC.td"