Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
//===--- ASTMatchFinder.cpp - Structural query framework ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  Implements an algorithm to efficiently search for matches on AST nodes.
//  Uses memoization to support recursive matches like HasDescendant.
//
//  The general idea is to visit all AST nodes with a RecursiveASTVisitor,
//  calling the Matches(...) method of each matcher we are running on each
//  AST node. The matcher can recurse via the ASTMatchFinder interface.
//
//===----------------------------------------------------------------------===//

#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Timer.h"
#include <deque>
#include <memory>
#include <set>

namespace clang {
namespace ast_matchers {
namespace internal {
namespace {

typedef MatchFinder::MatchCallback MatchCallback;

// The maximum number of memoization entries to store.
// 10k has been experimentally found to give a good trade-off
// of performance vs. memory consumption by running matcher
// that match on every statement over a very large codebase.
//
// FIXME: Do some performance optimization in general and
// revisit this number; also, put up micro-benchmarks that we can
// optimize this on.
static const unsigned MaxMemoizationEntries = 10000;

// We use memoization to avoid running the same matcher on the same
// AST node twice.  This struct is the key for looking up match
// result.  It consists of an ID of the MatcherInterface (for
// identifying the matcher), a pointer to the AST node and the
// bound nodes before the matcher was executed.
//
// We currently only memoize on nodes whose pointers identify the
// nodes (\c Stmt and \c Decl, but not \c QualType or \c TypeLoc).
// For \c QualType and \c TypeLoc it is possible to implement
// generation of keys for each type.
// FIXME: Benchmark whether memoization of non-pointer typed nodes
// provides enough benefit for the additional amount of code.
struct MatchKey {
  DynTypedMatcher::MatcherIDType MatcherID;
  ast_type_traits::DynTypedNode Node;
  BoundNodesTreeBuilder BoundNodes;

  bool operator<(const MatchKey &Other) const {
    return std::tie(MatcherID, Node, BoundNodes) <
           std::tie(Other.MatcherID, Other.Node, Other.BoundNodes);
  }
};

// Used to store the result of a match and possibly bound nodes.
struct MemoizedMatchResult {
  bool ResultOfMatch;
  BoundNodesTreeBuilder Nodes;
};

// A RecursiveASTVisitor that traverses all children or all descendants of
// a node.
class MatchChildASTVisitor
    : public RecursiveASTVisitor<MatchChildASTVisitor> {
public:
  typedef RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase;

  // Creates an AST visitor that matches 'matcher' on all children or
  // descendants of a traversed node. max_depth is the maximum depth
  // to traverse: use 1 for matching the children and INT_MAX for
  // matching the descendants.
  MatchChildASTVisitor(const DynTypedMatcher *Matcher,
                       ASTMatchFinder *Finder,
                       BoundNodesTreeBuilder *Builder,
                       int MaxDepth,
                       ASTMatchFinder::TraversalKind Traversal,
                       ASTMatchFinder::BindKind Bind)
      : Matcher(Matcher),
        Finder(Finder),
        Builder(Builder),
        CurrentDepth(0),
        MaxDepth(MaxDepth),
        Traversal(Traversal),
        Bind(Bind),
        Matches(false) {}

  // Returns true if a match is found in the subtree rooted at the
  // given AST node. This is done via a set of mutually recursive
  // functions. Here's how the recursion is done (the  *wildcard can
  // actually be Decl, Stmt, or Type):
  //
  //   - Traverse(node) calls BaseTraverse(node) when it needs
  //     to visit the descendants of node.
  //   - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node))
  //     Traverse*(c) for each child c of 'node'.
  //   - Traverse*(c) in turn calls Traverse(c), completing the
  //     recursion.
  bool findMatch(const ast_type_traits::DynTypedNode &DynNode) {
    reset();
    if (const Decl *D = DynNode.get<Decl>())
      traverse(*D);
    else if (const Stmt *S = DynNode.get<Stmt>())
      traverse(*S);
    else if (const NestedNameSpecifier *NNS =
             DynNode.get<NestedNameSpecifier>())
      traverse(*NNS);
    else if (const NestedNameSpecifierLoc *NNSLoc =
             DynNode.get<NestedNameSpecifierLoc>())
      traverse(*NNSLoc);
    else if (const QualType *Q = DynNode.get<QualType>())
      traverse(*Q);
    else if (const TypeLoc *T = DynNode.get<TypeLoc>())
      traverse(*T);
    else if (const auto *C = DynNode.get<CXXCtorInitializer>())
      traverse(*C);
    // FIXME: Add other base types after adding tests.

    // It's OK to always overwrite the bound nodes, as if there was
    // no match in this recursive branch, the result set is empty
    // anyway.
    *Builder = ResultBindings;

    return Matches;
  }

  // The following are overriding methods from the base visitor class.
  // They are public only to allow CRTP to work. They are *not *part
  // of the public API of this class.
  bool TraverseDecl(Decl *DeclNode) {
    ScopedIncrement ScopedDepth(&CurrentDepth);
    return (DeclNode == nullptr) || traverse(*DeclNode);
  }
  bool TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue = nullptr) {
    // If we need to keep track of the depth, we can't perform data recursion.
    if (CurrentDepth == 0 || (CurrentDepth <= MaxDepth && MaxDepth < INT_MAX))
      Queue = nullptr;

    ScopedIncrement ScopedDepth(&CurrentDepth);
    Stmt *StmtToTraverse = StmtNode;
    if (Traversal == ASTMatchFinder::TK_IgnoreImplicitCastsAndParentheses) {
      if (Expr *ExprNode = dyn_cast_or_null<Expr>(StmtNode))
        StmtToTraverse = ExprNode->IgnoreParenImpCasts();
    }
    if (!StmtToTraverse)
      return true;
    if (!match(*StmtToTraverse))
      return false;
    return VisitorBase::TraverseStmt(StmtToTraverse, Queue);
  }
  // We assume that the QualType and the contained type are on the same
  // hierarchy level. Thus, we try to match either of them.
  bool TraverseType(QualType TypeNode) {
    if (TypeNode.isNull())
      return true;
    ScopedIncrement ScopedDepth(&CurrentDepth);
    // Match the Type.
    if (!match(*TypeNode))
      return false;
    // The QualType is matched inside traverse.
    return traverse(TypeNode);
  }
  // We assume that the TypeLoc, contained QualType and contained Type all are
  // on the same hierarchy level. Thus, we try to match all of them.
  bool TraverseTypeLoc(TypeLoc TypeLocNode) {
    if (TypeLocNode.isNull())
      return true;
    ScopedIncrement ScopedDepth(&CurrentDepth);
    // Match the Type.
    if (!match(*TypeLocNode.getType()))
      return false;
    // Match the QualType.
    if (!match(TypeLocNode.getType()))
      return false;
    // The TypeLoc is matched inside traverse.
    return traverse(TypeLocNode);
  }
  bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
    ScopedIncrement ScopedDepth(&CurrentDepth);
    return (NNS == nullptr) || traverse(*NNS);
  }
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) {
    if (!NNS)
      return true;
    ScopedIncrement ScopedDepth(&CurrentDepth);
    if (!match(*NNS.getNestedNameSpecifier()))
      return false;
    return traverse(NNS);
  }
  bool TraverseConstructorInitializer(CXXCtorInitializer *CtorInit) {
    if (!CtorInit)
      return true;
    ScopedIncrement ScopedDepth(&CurrentDepth);
    return traverse(*CtorInit);
  }

  bool shouldVisitTemplateInstantiations() const { return true; }
  bool shouldVisitImplicitCode() const { return true; }

private:
  // Used for updating the depth during traversal.
  struct ScopedIncrement {
    explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); }
    ~ScopedIncrement() { --(*Depth); }

   private:
    int *Depth;
  };

  // Resets the state of this object.
  void reset() {
    Matches = false;
    CurrentDepth = 0;
  }

  // Forwards the call to the corresponding Traverse*() method in the
  // base visitor class.
  bool baseTraverse(const Decl &DeclNode) {
    return VisitorBase::TraverseDecl(const_cast<Decl*>(&DeclNode));
  }
  bool baseTraverse(const Stmt &StmtNode) {
    return VisitorBase::TraverseStmt(const_cast<Stmt*>(&StmtNode));
  }
  bool baseTraverse(QualType TypeNode) {
    return VisitorBase::TraverseType(TypeNode);
  }
  bool baseTraverse(TypeLoc TypeLocNode) {
    return VisitorBase::TraverseTypeLoc(TypeLocNode);
  }
  bool baseTraverse(const NestedNameSpecifier &NNS) {
    return VisitorBase::TraverseNestedNameSpecifier(
        const_cast<NestedNameSpecifier*>(&NNS));
  }
  bool baseTraverse(NestedNameSpecifierLoc NNS) {
    return VisitorBase::TraverseNestedNameSpecifierLoc(NNS);
  }
  bool baseTraverse(const CXXCtorInitializer &CtorInit) {
    return VisitorBase::TraverseConstructorInitializer(
        const_cast<CXXCtorInitializer *>(&CtorInit));
  }

  // Sets 'Matched' to true if 'Matcher' matches 'Node' and:
  //   0 < CurrentDepth <= MaxDepth.
  //
  // Returns 'true' if traversal should continue after this function
  // returns, i.e. if no match is found or 'Bind' is 'BK_All'.
  template <typename T>
  bool match(const T &Node) {
    if (CurrentDepth == 0 || CurrentDepth > MaxDepth) {
      return true;
    }
    if (Bind != ASTMatchFinder::BK_All) {
      BoundNodesTreeBuilder RecursiveBuilder(*Builder);
      if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), Finder,
                           &RecursiveBuilder)) {
        Matches = true;
        ResultBindings.addMatch(RecursiveBuilder);
        return false; // Abort as soon as a match is found.
      }
    } else {
      BoundNodesTreeBuilder RecursiveBuilder(*Builder);
      if (Matcher->matches(ast_type_traits::DynTypedNode::create(Node), Finder,
                           &RecursiveBuilder)) {
        // After the first match the matcher succeeds.
        Matches = true;
        ResultBindings.addMatch(RecursiveBuilder);
      }
    }
    return true;
  }

  // Traverses the subtree rooted at 'Node'; returns true if the
  // traversal should continue after this function returns.
  template <typename T>
  bool traverse(const T &Node) {
    static_assert(IsBaseType<T>::value,
                  "traverse can only be instantiated with base type");
    if (!match(Node))
      return false;
    return baseTraverse(Node);
  }

  const DynTypedMatcher *const Matcher;
  ASTMatchFinder *const Finder;
  BoundNodesTreeBuilder *const Builder;
  BoundNodesTreeBuilder ResultBindings;
  int CurrentDepth;
  const int MaxDepth;
  const ASTMatchFinder::TraversalKind Traversal;
  const ASTMatchFinder::BindKind Bind;
  bool Matches;
};

// Controls the outermost traversal of the AST and allows to match multiple
// matchers.
class MatchASTVisitor : public RecursiveASTVisitor<MatchASTVisitor>,
                        public ASTMatchFinder {
public:
  MatchASTVisitor(const MatchFinder::MatchersByType *Matchers,
                  const MatchFinder::MatchFinderOptions &Options)
      : Matchers(Matchers), Options(Options), ActiveASTContext(nullptr) {}

  ~MatchASTVisitor() override {
    if (Options.CheckProfiling) {
      Options.CheckProfiling->Records = std::move(TimeByBucket);
    }
  }

  void onStartOfTranslationUnit() {
    const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
    TimeBucketRegion Timer;
    for (MatchCallback *MC : Matchers->AllCallbacks) {
      if (EnableCheckProfiling)
        Timer.setBucket(&TimeByBucket[MC->getID()]);
      MC->onStartOfTranslationUnit();
    }
  }

  void onEndOfTranslationUnit() {
    const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
    TimeBucketRegion Timer;
    for (MatchCallback *MC : Matchers->AllCallbacks) {
      if (EnableCheckProfiling)
        Timer.setBucket(&TimeByBucket[MC->getID()]);
      MC->onEndOfTranslationUnit();
    }
  }

  void set_active_ast_context(ASTContext *NewActiveASTContext) {
    ActiveASTContext = NewActiveASTContext;
  }

  // The following Visit*() and Traverse*() functions "override"
  // methods in RecursiveASTVisitor.

  bool VisitTypedefNameDecl(TypedefNameDecl *DeclNode) {
    // When we see 'typedef A B', we add name 'B' to the set of names
    // A's canonical type maps to.  This is necessary for implementing
    // isDerivedFrom(x) properly, where x can be the name of the base
    // class or any of its aliases.
    //
    // In general, the is-alias-of (as defined by typedefs) relation
    // is tree-shaped, as you can typedef a type more than once.  For
    // example,
    //
    //   typedef A B;
    //   typedef A C;
    //   typedef C D;
    //   typedef C E;
    //
    // gives you
    //
    //   A
    //   |- B
    //   `- C
    //      |- D
    //      `- E
    //
    // It is wrong to assume that the relation is a chain.  A correct
    // implementation of isDerivedFrom() needs to recognize that B and
    // E are aliases, even though neither is a typedef of the other.
    // Therefore, we cannot simply walk through one typedef chain to
    // find out whether the type name matches.
    const Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr();
    const Type *CanonicalType =  // root of the typedef tree
        ActiveASTContext->getCanonicalType(TypeNode);
    TypeAliases[CanonicalType].insert(DeclNode);
    return true;
  }

  bool TraverseDecl(Decl *DeclNode);
  bool TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue = nullptr);
  bool TraverseType(QualType TypeNode);
  bool TraverseTypeLoc(TypeLoc TypeNode);
  bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS);
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS);
  bool TraverseConstructorInitializer(CXXCtorInitializer *CtorInit);

  // Matches children or descendants of 'Node' with 'BaseMatcher'.
  bool memoizedMatchesRecursively(const ast_type_traits::DynTypedNode &Node,
                                  const DynTypedMatcher &Matcher,
                                  BoundNodesTreeBuilder *Builder, int MaxDepth,
                                  TraversalKind Traversal, BindKind Bind) {
    // For AST-nodes that don't have an identity, we can't memoize.
    if (!Node.getMemoizationData() || !Builder->isComparable())
      return matchesRecursively(Node, Matcher, Builder, MaxDepth, Traversal,
                                Bind);

    MatchKey Key;
    Key.MatcherID = Matcher.getID();
    Key.Node = Node;
    // Note that we key on the bindings *before* the match.
    Key.BoundNodes = *Builder;

    MemoizationMap::iterator I = ResultCache.find(Key);
    if (I != ResultCache.end()) {
      *Builder = I->second.Nodes;
      return I->second.ResultOfMatch;
    }

    MemoizedMatchResult Result;
    Result.Nodes = *Builder;
    Result.ResultOfMatch = matchesRecursively(Node, Matcher, &Result.Nodes,
                                              MaxDepth, Traversal, Bind);

    MemoizedMatchResult &CachedResult = ResultCache[Key];
    CachedResult = std::move(Result);

    *Builder = CachedResult.Nodes;
    return CachedResult.ResultOfMatch;
  }

  // Matches children or descendants of 'Node' with 'BaseMatcher'.
  bool matchesRecursively(const ast_type_traits::DynTypedNode &Node,
                          const DynTypedMatcher &Matcher,
                          BoundNodesTreeBuilder *Builder, int MaxDepth,
                          TraversalKind Traversal, BindKind Bind) {
    MatchChildASTVisitor Visitor(
      &Matcher, this, Builder, MaxDepth, Traversal, Bind);
    return Visitor.findMatch(Node);
  }

  bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
                          const Matcher<NamedDecl> &Base,
                          BoundNodesTreeBuilder *Builder) override;

  // Implements ASTMatchFinder::matchesChildOf.
  bool matchesChildOf(const ast_type_traits::DynTypedNode &Node,
                      const DynTypedMatcher &Matcher,
                      BoundNodesTreeBuilder *Builder,
                      TraversalKind Traversal,
                      BindKind Bind) override {
    if (ResultCache.size() > MaxMemoizationEntries)
      ResultCache.clear();
    return memoizedMatchesRecursively(Node, Matcher, Builder, 1, Traversal,
                                      Bind);
  }
  // Implements ASTMatchFinder::matchesDescendantOf.
  bool matchesDescendantOf(const ast_type_traits::DynTypedNode &Node,
                           const DynTypedMatcher &Matcher,
                           BoundNodesTreeBuilder *Builder,
                           BindKind Bind) override {
    if (ResultCache.size() > MaxMemoizationEntries)
      ResultCache.clear();
    return memoizedMatchesRecursively(Node, Matcher, Builder, INT_MAX,
                                      TK_AsIs, Bind);
  }
  // Implements ASTMatchFinder::matchesAncestorOf.
  bool matchesAncestorOf(const ast_type_traits::DynTypedNode &Node,
                         const DynTypedMatcher &Matcher,
                         BoundNodesTreeBuilder *Builder,
                         AncestorMatchMode MatchMode) override {
    // Reset the cache outside of the recursive call to make sure we
    // don't invalidate any iterators.
    if (ResultCache.size() > MaxMemoizationEntries)
      ResultCache.clear();
    return memoizedMatchesAncestorOfRecursively(Node, Matcher, Builder,
                                                MatchMode);
  }

  // Matches all registered matchers on the given node and calls the
  // result callback for every node that matches.
  void match(const ast_type_traits::DynTypedNode &Node) {
    // FIXME: Improve this with a switch or a visitor pattern.
    if (auto *N = Node.get<Decl>()) {
      match(*N);
    } else if (auto *N = Node.get<Stmt>()) {
      match(*N);
    } else if (auto *N = Node.get<Type>()) {
      match(*N);
    } else if (auto *N = Node.get<QualType>()) {
      match(*N);
    } else if (auto *N = Node.get<NestedNameSpecifier>()) {
      match(*N);
    } else if (auto *N = Node.get<NestedNameSpecifierLoc>()) {
      match(*N);
    } else if (auto *N = Node.get<TypeLoc>()) {
      match(*N);
    } else if (auto *N = Node.get<CXXCtorInitializer>()) {
      match(*N);
    }
  }

  template <typename T> void match(const T &Node) {
    matchDispatch(&Node);
  }

  // Implements ASTMatchFinder::getASTContext.
  ASTContext &getASTContext() const override { return *ActiveASTContext; }

  bool shouldVisitTemplateInstantiations() const { return true; }
  bool shouldVisitImplicitCode() const { return true; }

private:
  class TimeBucketRegion {
  public:
    TimeBucketRegion() : Bucket(nullptr) {}
    ~TimeBucketRegion() { setBucket(nullptr); }

    /// Start timing for \p NewBucket.
    ///
    /// If there was a bucket already set, it will finish the timing for that
    /// other bucket.
    /// \p NewBucket will be timed until the next call to \c setBucket() or
    /// until the \c TimeBucketRegion is destroyed.
    /// If \p NewBucket is the same as the currently timed bucket, this call
    /// does nothing.
    void setBucket(llvm::TimeRecord *NewBucket) {
      if (Bucket != NewBucket) {
        auto Now = llvm::TimeRecord::getCurrentTime(true);
        if (Bucket)
          *Bucket += Now;
        if (NewBucket)
          *NewBucket -= Now;
        Bucket = NewBucket;
      }
    }

  private:
    llvm::TimeRecord *Bucket;
  };

  /// Runs all the \p Matchers on \p Node.
  ///
  /// Used by \c matchDispatch() below.
  template <typename T, typename MC>
  void matchWithoutFilter(const T &Node, const MC &Matchers) {
    const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
    TimeBucketRegion Timer;
    for (const auto &MP : Matchers) {
      if (EnableCheckProfiling)
        Timer.setBucket(&TimeByBucket[MP.second->getID()]);
      BoundNodesTreeBuilder Builder;
      if (MP.first.matches(Node, this, &Builder)) {
        MatchVisitor Visitor(ActiveASTContext, MP.second);
        Builder.visitMatches(&Visitor);
      }
    }
  }

  void matchWithFilter(const ast_type_traits::DynTypedNode &DynNode) {
    auto Kind = DynNode.getNodeKind();
    auto it = MatcherFiltersMap.find(Kind);
    const auto &Filter =
        it != MatcherFiltersMap.end() ? it->second : getFilterForKind(Kind);

    if (Filter.empty())
      return;

    const bool EnableCheckProfiling = Options.CheckProfiling.hasValue();
    TimeBucketRegion Timer;
    auto &Matchers = this->Matchers->DeclOrStmt;
    for (unsigned short I : Filter) {
      auto &MP = Matchers[I];
      if (EnableCheckProfiling)
        Timer.setBucket(&TimeByBucket[MP.second->getID()]);
      BoundNodesTreeBuilder Builder;
      if (MP.first.matchesNoKindCheck(DynNode, this, &Builder)) {
        MatchVisitor Visitor(ActiveASTContext, MP.second);
        Builder.visitMatches(&Visitor);
      }
    }
  }

  const std::vector<unsigned short> &
  getFilterForKind(ast_type_traits::ASTNodeKind Kind) {
    auto &Filter = MatcherFiltersMap[Kind];
    auto &Matchers = this->Matchers->DeclOrStmt;
    assert((Matchers.size() < USHRT_MAX) && "Too many matchers.");
    for (unsigned I = 0, E = Matchers.size(); I != E; ++I) {
      if (Matchers[I].first.canMatchNodesOfKind(Kind)) {
        Filter.push_back(I);
      }
    }
    return Filter;
  }

  /// @{
  /// Overloads to pair the different node types to their matchers.
  void matchDispatch(const Decl *Node) {
    return matchWithFilter(ast_type_traits::DynTypedNode::create(*Node));
  }
  void matchDispatch(const Stmt *Node) {
    return matchWithFilter(ast_type_traits::DynTypedNode::create(*Node));
  }

  void matchDispatch(const Type *Node) {
    matchWithoutFilter(QualType(Node, 0), Matchers->Type);
  }
  void matchDispatch(const TypeLoc *Node) {
    matchWithoutFilter(*Node, Matchers->TypeLoc);
  }
  void matchDispatch(const QualType *Node) {
    matchWithoutFilter(*Node, Matchers->Type);
  }
  void matchDispatch(const NestedNameSpecifier *Node) {
    matchWithoutFilter(*Node, Matchers->NestedNameSpecifier);
  }
  void matchDispatch(const NestedNameSpecifierLoc *Node) {
    matchWithoutFilter(*Node, Matchers->NestedNameSpecifierLoc);
  }
  void matchDispatch(const CXXCtorInitializer *Node) {
    matchWithoutFilter(*Node, Matchers->CtorInit);
  }
  void matchDispatch(const void *) { /* Do nothing. */ }
  /// @}

  // Returns whether an ancestor of \p Node matches \p Matcher.
  //
  // The order of matching ((which can lead to different nodes being bound in
  // case there are multiple matches) is breadth first search.
  //
  // To allow memoization in the very common case of having deeply nested
  // expressions inside a template function, we first walk up the AST, memoizing
  // the result of the match along the way, as long as there is only a single
  // parent.
  //
  // Once there are multiple parents, the breadth first search order does not
  // allow simple memoization on the ancestors. Thus, we only memoize as long
  // as there is a single parent.
  bool memoizedMatchesAncestorOfRecursively(
      const ast_type_traits::DynTypedNode &Node, const DynTypedMatcher &Matcher,
      BoundNodesTreeBuilder *Builder, AncestorMatchMode MatchMode) {
    // For AST-nodes that don't have an identity, we can't memoize.
    if (!Builder->isComparable())
      return matchesAncestorOfRecursively(Node, Matcher, Builder, MatchMode);

    MatchKey Key;
    Key.MatcherID = Matcher.getID();
    Key.Node = Node;
    Key.BoundNodes = *Builder;

    // Note that we cannot use insert and reuse the iterator, as recursive
    // calls to match might invalidate the result cache iterators.
    MemoizationMap::iterator I = ResultCache.find(Key);
    if (I != ResultCache.end()) {
      *Builder = I->second.Nodes;
      return I->second.ResultOfMatch;
    }

    MemoizedMatchResult Result;
    Result.Nodes = *Builder;
    Result.ResultOfMatch =
        matchesAncestorOfRecursively(Node, Matcher, &Result.Nodes, MatchMode);

    MemoizedMatchResult &CachedResult = ResultCache[Key];
    CachedResult = std::move(Result);

    *Builder = CachedResult.Nodes;
    return CachedResult.ResultOfMatch;
  }

  bool matchesAncestorOfRecursively(const ast_type_traits::DynTypedNode &Node,
                                    const DynTypedMatcher &Matcher,
                                    BoundNodesTreeBuilder *Builder,
                                    AncestorMatchMode MatchMode) {
    const auto &Parents = ActiveASTContext->getParents(Node);
    if (Parents.empty()) {
      // Nodes may have no parents if:
      //  a) the node is the TranslationUnitDecl
      //  b) we have a limited traversal scope that excludes the parent edges
      //  c) there is a bug in the AST, and the node is not reachable
      // Usually the traversal scope is the whole AST, which precludes b.
      // Bugs are common enough that it's worthwhile asserting when we can.
#ifndef NDEBUG
      if (!Node.get<TranslationUnitDecl>() &&
          /* Traversal scope is full AST if any of the bounds are the TU */
          llvm::any_of(ActiveASTContext->getTraversalScope(), [](Decl *D) {
            return D->getKind() == Decl::TranslationUnit;
          })) {
        llvm::errs() << "Tried to match orphan node:\n";
        Node.dump(llvm::errs(), ActiveASTContext->getSourceManager());
        llvm_unreachable("Parent map should be complete!");
      }
#endif
      return false;
    }
    if (Parents.size() == 1) {
      // Only one parent - do recursive memoization.
      const ast_type_traits::DynTypedNode Parent = Parents[0];
      BoundNodesTreeBuilder BuilderCopy = *Builder;
      if (Matcher.matches(Parent, this, &BuilderCopy)) {
        *Builder = std::move(BuilderCopy);
        return true;
      }
      if (MatchMode != ASTMatchFinder::AMM_ParentOnly) {
        return memoizedMatchesAncestorOfRecursively(Parent, Matcher, Builder,
                                                    MatchMode);
        // Once we get back from the recursive call, the result will be the
        // same as the parent's result.
      }
    } else {
      // Multiple parents - BFS over the rest of the nodes.
      llvm::DenseSet<const void *> Visited;
      std::deque<ast_type_traits::DynTypedNode> Queue(Parents.begin(),
                                                      Parents.end());
      while (!Queue.empty()) {
        BoundNodesTreeBuilder BuilderCopy = *Builder;
        if (Matcher.matches(Queue.front(), this, &BuilderCopy)) {
          *Builder = std::move(BuilderCopy);
          return true;
        }
        if (MatchMode != ASTMatchFinder::AMM_ParentOnly) {
          for (const auto &Parent :
               ActiveASTContext->getParents(Queue.front())) {
            // Make sure we do not visit the same node twice.
            // Otherwise, we'll visit the common ancestors as often as there
            // are splits on the way down.
            if (Visited.insert(Parent.getMemoizationData()).second)
              Queue.push_back(Parent);
          }
        }
        Queue.pop_front();
      }
    }
    return false;
  }

  // Implements a BoundNodesTree::Visitor that calls a MatchCallback with
  // the aggregated bound nodes for each match.
  class MatchVisitor : public BoundNodesTreeBuilder::Visitor {
  public:
    MatchVisitor(ASTContext* Context,
                 MatchFinder::MatchCallback* Callback)
      : Context(Context),
        Callback(Callback) {}

    void visitMatch(const BoundNodes& BoundNodesView) override {
      Callback->run(MatchFinder::MatchResult(BoundNodesView, Context));
    }

  private:
    ASTContext* Context;
    MatchFinder::MatchCallback* Callback;
  };

  // Returns true if 'TypeNode' has an alias that matches the given matcher.
  bool typeHasMatchingAlias(const Type *TypeNode,
                            const Matcher<NamedDecl> &Matcher,
                            BoundNodesTreeBuilder *Builder) {
    const Type *const CanonicalType =
      ActiveASTContext->getCanonicalType(TypeNode);
    auto Aliases = TypeAliases.find(CanonicalType);
    if (Aliases == TypeAliases.end())
      return false;
    for (const TypedefNameDecl *Alias : Aliases->second) {
      BoundNodesTreeBuilder Result(*Builder);
      if (Matcher.matches(*Alias, this, &Result)) {
        *Builder = std::move(Result);
        return true;
      }
    }
    return false;
  }

  /// Bucket to record map.
  ///
  /// Used to get the appropriate bucket for each matcher.
  llvm::StringMap<llvm::TimeRecord> TimeByBucket;

  const MatchFinder::MatchersByType *Matchers;

  /// Filtered list of matcher indices for each matcher kind.
  ///
  /// \c Decl and \c Stmt toplevel matchers usually apply to a specific node
  /// kind (and derived kinds) so it is a waste to try every matcher on every
  /// node.
  /// We precalculate a list of matchers that pass the toplevel restrict check.
  /// This also allows us to skip the restrict check at matching time. See
  /// use \c matchesNoKindCheck() above.
  llvm::DenseMap<ast_type_traits::ASTNodeKind, std::vector<unsigned short>>
      MatcherFiltersMap;

  const MatchFinder::MatchFinderOptions &Options;
  ASTContext *ActiveASTContext;

  // Maps a canonical type to its TypedefDecls.
  llvm::DenseMap<const Type*, std::set<const TypedefNameDecl*> > TypeAliases;

  // Maps (matcher, node) -> the match result for memoization.
  typedef std::map<MatchKey, MemoizedMatchResult> MemoizationMap;
  MemoizationMap ResultCache;
};

static CXXRecordDecl *
getAsCXXRecordDeclOrPrimaryTemplate(const Type *TypeNode) {
  if (auto *RD = TypeNode->getAsCXXRecordDecl())
    return RD;

  // Find the innermost TemplateSpecializationType that isn't an alias template.
  auto *TemplateType = TypeNode->getAs<TemplateSpecializationType>();
  while (TemplateType && TemplateType->isTypeAlias())
    TemplateType =
        TemplateType->getAliasedType()->getAs<TemplateSpecializationType>();

  // If this is the name of a (dependent) template specialization, use the
  // definition of the template, even though it might be specialized later.
  if (TemplateType)
    if (auto *ClassTemplate = dyn_cast_or_null<ClassTemplateDecl>(
          TemplateType->getTemplateName().getAsTemplateDecl()))
      return ClassTemplate->getTemplatedDecl();

  return nullptr;
}

// Returns true if the given class is directly or indirectly derived
// from a base type with the given name.  A class is not considered to be
// derived from itself.
bool MatchASTVisitor::classIsDerivedFrom(const CXXRecordDecl *Declaration,
                                         const Matcher<NamedDecl> &Base,
                                         BoundNodesTreeBuilder *Builder) {
  if (!Declaration->hasDefinition())
    return false;
  for (const auto &It : Declaration->bases()) {
    const Type *TypeNode = It.getType().getTypePtr();

    if (typeHasMatchingAlias(TypeNode, Base, Builder))
      return true;

    // FIXME: Going to the primary template here isn't really correct, but
    // unfortunately we accept a Decl matcher for the base class not a Type
    // matcher, so it's the best thing we can do with our current interface.
    CXXRecordDecl *ClassDecl = getAsCXXRecordDeclOrPrimaryTemplate(TypeNode);
    if (!ClassDecl)
      continue;
    if (ClassDecl == Declaration) {
      // This can happen for recursive template definitions; if the
      // current declaration did not match, we can safely return false.
      return false;
    }
    BoundNodesTreeBuilder Result(*Builder);
    if (Base.matches(*ClassDecl, this, &Result)) {
      *Builder = std::move(Result);
      return true;
    }
    if (classIsDerivedFrom(ClassDecl, Base, Builder))
      return true;
  }
  return false;
}

bool MatchASTVisitor::TraverseDecl(Decl *DeclNode) {
  if (!DeclNode) {
    return true;
  }
  match(*DeclNode);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode);
}

bool MatchASTVisitor::TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue) {
  if (!StmtNode) {
    return true;
  }
  match(*StmtNode);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode, Queue);
}

bool MatchASTVisitor::TraverseType(QualType TypeNode) {
  match(TypeNode);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode);
}

bool MatchASTVisitor::TraverseTypeLoc(TypeLoc TypeLocNode) {
  // The RecursiveASTVisitor only visits types if they're not within TypeLocs.
  // We still want to find those types via matchers, so we match them here. Note
  // that the TypeLocs are structurally a shadow-hierarchy to the expressed
  // type, so we visit all involved parts of a compound type when matching on
  // each TypeLoc.
  match(TypeLocNode);
  match(TypeLocNode.getType());
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseTypeLoc(TypeLocNode);
}

bool MatchASTVisitor::TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
  match(*NNS);
  return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifier(NNS);
}

bool MatchASTVisitor::TraverseNestedNameSpecifierLoc(
    NestedNameSpecifierLoc NNS) {
  if (!NNS)
    return true;

  match(NNS);

  // We only match the nested name specifier here (as opposed to traversing it)
  // because the traversal is already done in the parallel "Loc"-hierarchy.
  if (NNS.hasQualifier())
    match(*NNS.getNestedNameSpecifier());
  return
      RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifierLoc(NNS);
}

bool MatchASTVisitor::TraverseConstructorInitializer(
    CXXCtorInitializer *CtorInit) {
  if (!CtorInit)
    return true;

  match(*CtorInit);

  return RecursiveASTVisitor<MatchASTVisitor>::TraverseConstructorInitializer(
      CtorInit);
}

class MatchASTConsumer : public ASTConsumer {
public:
  MatchASTConsumer(MatchFinder *Finder,
                   MatchFinder::ParsingDoneTestCallback *ParsingDone)
      : Finder(Finder), ParsingDone(ParsingDone) {}

private:
  void HandleTranslationUnit(ASTContext &Context) override {
    if (ParsingDone != nullptr) {
      ParsingDone->run();
    }
    Finder->matchAST(Context);
  }

  MatchFinder *Finder;
  MatchFinder::ParsingDoneTestCallback *ParsingDone;
};

} // end namespace
} // end namespace internal

MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes,
                                      ASTContext *Context)
  : Nodes(Nodes), Context(Context),
    SourceManager(&Context->getSourceManager()) {}

MatchFinder::MatchCallback::~MatchCallback() {}
MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {}

MatchFinder::MatchFinder(MatchFinderOptions Options)
    : Options(std::move(Options)), ParsingDone(nullptr) {}

MatchFinder::~MatchFinder() {}

void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch,
                             MatchCallback *Action) {
  Matchers.DeclOrStmt.emplace_back(NodeMatch, Action);
  Matchers.AllCallbacks.insert(Action);
}

void MatchFinder::addMatcher(const TypeMatcher &NodeMatch,
                             MatchCallback *Action) {
  Matchers.Type.emplace_back(NodeMatch, Action);
  Matchers.AllCallbacks.insert(Action);
}

void MatchFinder::addMatcher(const StatementMatcher &NodeMatch,
                             MatchCallback *Action) {
  Matchers.DeclOrStmt.emplace_back(NodeMatch, Action);
  Matchers.AllCallbacks.insert(Action);
}

void MatchFinder::addMatcher(const NestedNameSpecifierMatcher &NodeMatch,
                             MatchCallback *Action) {
  Matchers.NestedNameSpecifier.emplace_back(NodeMatch, Action);
  Matchers.AllCallbacks.insert(Action);
}

void MatchFinder::addMatcher(const NestedNameSpecifierLocMatcher &NodeMatch,
                             MatchCallback *Action) {
  Matchers.NestedNameSpecifierLoc.emplace_back(NodeMatch, Action);
  Matchers.AllCallbacks.insert(Action);
}

void MatchFinder::addMatcher(const TypeLocMatcher &NodeMatch,
                             MatchCallback *Action) {
  Matchers.TypeLoc.emplace_back(NodeMatch, Action);
  Matchers.AllCallbacks.insert(Action);
}

void MatchFinder::addMatcher(const CXXCtorInitializerMatcher &NodeMatch,
                             MatchCallback *Action) {
  Matchers.CtorInit.emplace_back(NodeMatch, Action);
  Matchers.AllCallbacks.insert(Action);
}

bool MatchFinder::addDynamicMatcher(const internal::DynTypedMatcher &NodeMatch,
                                    MatchCallback *Action) {
  if (NodeMatch.canConvertTo<Decl>()) {
    addMatcher(NodeMatch.convertTo<Decl>(), Action);
    return true;
  } else if (NodeMatch.canConvertTo<QualType>()) {
    addMatcher(NodeMatch.convertTo<QualType>(), Action);
    return true;
  } else if (NodeMatch.canConvertTo<Stmt>()) {
    addMatcher(NodeMatch.convertTo<Stmt>(), Action);
    return true;
  } else if (NodeMatch.canConvertTo<NestedNameSpecifier>()) {
    addMatcher(NodeMatch.convertTo<NestedNameSpecifier>(), Action);
    return true;
  } else if (NodeMatch.canConvertTo<NestedNameSpecifierLoc>()) {
    addMatcher(NodeMatch.convertTo<NestedNameSpecifierLoc>(), Action);
    return true;
  } else if (NodeMatch.canConvertTo<TypeLoc>()) {
    addMatcher(NodeMatch.convertTo<TypeLoc>(), Action);
    return true;
  } else if (NodeMatch.canConvertTo<CXXCtorInitializer>()) {
    addMatcher(NodeMatch.convertTo<CXXCtorInitializer>(), Action);
    return true;
  }
  return false;
}

std::unique_ptr<ASTConsumer> MatchFinder::newASTConsumer() {
  return llvm::make_unique<internal::MatchASTConsumer>(this, ParsingDone);
}

void MatchFinder::match(const clang::ast_type_traits::DynTypedNode &Node,
                        ASTContext &Context) {
  internal::MatchASTVisitor Visitor(&Matchers, Options);
  Visitor.set_active_ast_context(&Context);
  Visitor.match(Node);
}

void MatchFinder::matchAST(ASTContext &Context) {
  internal::MatchASTVisitor Visitor(&Matchers, Options);
  Visitor.set_active_ast_context(&Context);
  Visitor.onStartOfTranslationUnit();
  Visitor.TraverseAST(Context);
  Visitor.onEndOfTranslationUnit();
}

void MatchFinder::registerTestCallbackAfterParsing(
    MatchFinder::ParsingDoneTestCallback *NewParsingDone) {
  ParsingDone = NewParsingDone;
}

StringRef MatchFinder::MatchCallback::getID() const { return "<unknown>"; }

} // end namespace ast_matchers
} // end namespace clang