Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with code generation of C++ expressions
//
//===----------------------------------------------------------------------===//

#include "CodeGenFunction.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "ConstantEmitter.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Intrinsics.h"

using namespace clang;
using namespace CodeGen;

namespace {
struct MemberCallInfo {
  RequiredArgs ReqArgs;
  // Number of prefix arguments for the call. Ignores the `this` pointer.
  unsigned PrefixSize;
};
}

static MemberCallInfo
commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
                                  llvm::Value *This, llvm::Value *ImplicitParam,
                                  QualType ImplicitParamTy, const CallExpr *CE,
                                  CallArgList &Args, CallArgList *RtlArgs) {
  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
         isa<CXXOperatorCallExpr>(CE));
  assert(MD->isInstance() &&
         "Trying to emit a member or operator call expr on a static method!");
  ASTContext &C = CGF.getContext();

  // Push the this ptr.
  const CXXRecordDecl *RD =
      CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
  Args.add(RValue::get(This),
           RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);

  // If there is an implicit parameter (e.g. VTT), emit it.
  if (ImplicitParam) {
    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
  }

  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
  unsigned PrefixSize = Args.size() - 1;

  // And the rest of the call args.
  if (RtlArgs) {
    // Special case: if the caller emitted the arguments right-to-left already
    // (prior to emitting the *this argument), we're done. This happens for
    // assignment operators.
    Args.addFrom(*RtlArgs);
  } else if (CE) {
    // Special case: skip first argument of CXXOperatorCall (it is "this").
    unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
    CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
                     CE->getDirectCallee());
  } else {
    assert(
        FPT->getNumParams() == 0 &&
        "No CallExpr specified for function with non-zero number of arguments");
  }
  return {required, PrefixSize};
}

RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
    const CXXMethodDecl *MD, const CGCallee &Callee,
    ReturnValueSlot ReturnValue,
    llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
    const CallExpr *CE, CallArgList *RtlArgs) {
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
  CallArgList Args;
  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
      *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
      Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
                  CE ? CE->getExprLoc() : SourceLocation());
}

RValue CodeGenFunction::EmitCXXDestructorCall(
    const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
    llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
    StructorType Type) {
  CallArgList Args;
  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
                                    ImplicitParamTy, CE, Args, nullptr);
  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
                  Callee, ReturnValueSlot(), Args);
}

RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
                                            const CXXPseudoDestructorExpr *E) {
  QualType DestroyedType = E->getDestroyedType();
  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
    // Automatic Reference Counting:
    //   If the pseudo-expression names a retainable object with weak or
    //   strong lifetime, the object shall be released.
    Expr *BaseExpr = E->getBase();
    Address BaseValue = Address::invalid();
    Qualifiers BaseQuals;

    // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
    if (E->isArrow()) {
      BaseValue = EmitPointerWithAlignment(BaseExpr);
      const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
      BaseQuals = PTy->getPointeeType().getQualifiers();
    } else {
      LValue BaseLV = EmitLValue(BaseExpr);
      BaseValue = BaseLV.getAddress();
      QualType BaseTy = BaseExpr->getType();
      BaseQuals = BaseTy.getQualifiers();
    }

    switch (DestroyedType.getObjCLifetime()) {
    case Qualifiers::OCL_None:
    case Qualifiers::OCL_ExplicitNone:
    case Qualifiers::OCL_Autoreleasing:
      break;

    case Qualifiers::OCL_Strong:
      EmitARCRelease(Builder.CreateLoad(BaseValue,
                        DestroyedType.isVolatileQualified()),
                     ARCPreciseLifetime);
      break;

    case Qualifiers::OCL_Weak:
      EmitARCDestroyWeak(BaseValue);
      break;
    }
  } else {
    // C++ [expr.pseudo]p1:
    //   The result shall only be used as the operand for the function call
    //   operator (), and the result of such a call has type void. The only
    //   effect is the evaluation of the postfix-expression before the dot or
    //   arrow.
    EmitIgnoredExpr(E->getBase());
  }

  return RValue::get(nullptr);
}

static CXXRecordDecl *getCXXRecord(const Expr *E) {
  QualType T = E->getType();
  if (const PointerType *PTy = T->getAs<PointerType>())
    T = PTy->getPointeeType();
  const RecordType *Ty = T->castAs<RecordType>();
  return cast<CXXRecordDecl>(Ty->getDecl());
}

// Note: This function also emit constructor calls to support a MSVC
// extensions allowing explicit constructor function call.
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
                                              ReturnValueSlot ReturnValue) {
  const Expr *callee = CE->getCallee()->IgnoreParens();

  if (isa<BinaryOperator>(callee))
    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);

  const MemberExpr *ME = cast<MemberExpr>(callee);
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());

  if (MD->isStatic()) {
    // The method is static, emit it as we would a regular call.
    CGCallee callee =
        CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
    return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
                    ReturnValue);
  }

  bool HasQualifier = ME->hasQualifier();
  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
  bool IsArrow = ME->isArrow();
  const Expr *Base = ME->getBase();

  return EmitCXXMemberOrOperatorMemberCallExpr(
      CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
}

RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
    const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
    bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
    const Expr *Base) {
  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));

  // Compute the object pointer.
  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;

  const CXXMethodDecl *DevirtualizedMethod = nullptr;
  if (CanUseVirtualCall &&
      MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
    assert(DevirtualizedMethod);
    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
    const Expr *Inner = Base->ignoreParenBaseCasts();
    if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
        MD->getReturnType().getCanonicalType())
      // If the return types are not the same, this might be a case where more
      // code needs to run to compensate for it. For example, the derived
      // method might return a type that inherits form from the return
      // type of MD and has a prefix.
      // For now we just avoid devirtualizing these covariant cases.
      DevirtualizedMethod = nullptr;
    else if (getCXXRecord(Inner) == DevirtualizedClass)
      // If the class of the Inner expression is where the dynamic method
      // is defined, build the this pointer from it.
      Base = Inner;
    else if (getCXXRecord(Base) != DevirtualizedClass) {
      // If the method is defined in a class that is not the best dynamic
      // one or the one of the full expression, we would have to build
      // a derived-to-base cast to compute the correct this pointer, but
      // we don't have support for that yet, so do a virtual call.
      DevirtualizedMethod = nullptr;
    }
  }

  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
  // operator before the LHS.
  CallArgList RtlArgStorage;
  CallArgList *RtlArgs = nullptr;
  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
    if (OCE->isAssignmentOp()) {
      RtlArgs = &RtlArgStorage;
      EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
                   drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
                   /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
    }
  }

  LValue This;
  if (IsArrow) {
    LValueBaseInfo BaseInfo;
    TBAAAccessInfo TBAAInfo;
    Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
    This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
  } else {
    This = EmitLValue(Base);
  }


  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
    if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
    if (isa<CXXConstructorDecl>(MD) &&
        cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
      return RValue::get(nullptr);

    if (!MD->getParent()->mayInsertExtraPadding()) {
      if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
        // We don't like to generate the trivial copy/move assignment operator
        // when it isn't necessary; just produce the proper effect here.
        LValue RHS = isa<CXXOperatorCallExpr>(CE)
                         ? MakeNaturalAlignAddrLValue(
                               (*RtlArgs)[0].getRValue(*this).getScalarVal(),
                               (*(CE->arg_begin() + 1))->getType())
                         : EmitLValue(*CE->arg_begin());
        EmitAggregateAssign(This, RHS, CE->getType());
        return RValue::get(This.getPointer());
      }

      if (isa<CXXConstructorDecl>(MD) &&
          cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
        // Trivial move and copy ctor are the same.
        assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
        const Expr *Arg = *CE->arg_begin();
        LValue RHS = EmitLValue(Arg);
        LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
        // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
        // constructing a new complete object of type Ctor.
        EmitAggregateCopy(Dest, RHS, Arg->getType(),
                          AggValueSlot::DoesNotOverlap);
        return RValue::get(This.getPointer());
      }
      llvm_unreachable("unknown trivial member function");
    }
  }

  // Compute the function type we're calling.
  const CXXMethodDecl *CalleeDecl =
      DevirtualizedMethod ? DevirtualizedMethod : MD;
  const CGFunctionInfo *FInfo = nullptr;
  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
    FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
        Dtor, StructorType::Complete);
  else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
    FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
        Ctor, StructorType::Complete);
  else
    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);

  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);

  // C++11 [class.mfct.non-static]p2:
  //   If a non-static member function of a class X is called for an object that
  //   is not of type X, or of a type derived from X, the behavior is undefined.
  SourceLocation CallLoc;
  ASTContext &C = getContext();
  if (CE)
    CallLoc = CE->getExprLoc();

  SanitizerSet SkippedChecks;
  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
    auto *IOA = CMCE->getImplicitObjectArgument();
    bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
    if (IsImplicitObjectCXXThis)
      SkippedChecks.set(SanitizerKind::Alignment, true);
    if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
      SkippedChecks.set(SanitizerKind::Null, true);
  }
  EmitTypeCheck(
      isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
                                          : CodeGenFunction::TCK_MemberCall,
      CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
      /*Alignment=*/CharUnits::Zero(), SkippedChecks);

  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
  // 'CalleeDecl' instead.

  // C++ [class.virtual]p12:
  //   Explicit qualification with the scope operator (5.1) suppresses the
  //   virtual call mechanism.
  //
  // We also don't emit a virtual call if the base expression has a record type
  // because then we know what the type is.
  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;

  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
    assert(CE->arg_begin() == CE->arg_end() &&
           "Destructor shouldn't have explicit parameters");
    assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
    if (UseVirtualCall) {
      CGM.getCXXABI().EmitVirtualDestructorCall(
          *this, Dtor, Dtor_Complete, This.getAddress(),
          cast<CXXMemberCallExpr>(CE));
    } else {
      CGCallee Callee;
      if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
        Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
      else if (!DevirtualizedMethod)
        Callee = CGCallee::forDirect(
            CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
            GlobalDecl(Dtor, Dtor_Complete));
      else {
        const CXXDestructorDecl *DDtor =
          cast<CXXDestructorDecl>(DevirtualizedMethod);
        Callee = CGCallee::forDirect(
            CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
            GlobalDecl(DDtor, Dtor_Complete));
      }
      EmitCXXMemberOrOperatorCall(
          CalleeDecl, Callee, ReturnValue, This.getPointer(),
          /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
    }
    return RValue::get(nullptr);
  }

  CGCallee Callee;
  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
    Callee = CGCallee::forDirect(
        CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
        GlobalDecl(Ctor, Ctor_Complete));
  } else if (UseVirtualCall) {
    Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
  } else {
    if (SanOpts.has(SanitizerKind::CFINVCall) &&
        MD->getParent()->isDynamicClass()) {
      llvm::Value *VTable;
      const CXXRecordDecl *RD;
      std::tie(VTable, RD) =
          CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
                                        MD->getParent());
      EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
    }

    if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
      Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
    else if (!DevirtualizedMethod)
      Callee =
          CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
    else {
      Callee =
          CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
                              GlobalDecl(DevirtualizedMethod));
    }
  }

  if (MD->isVirtual()) {
    Address NewThisAddr =
        CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
            *this, CalleeDecl, This.getAddress(), UseVirtualCall);
    This.setAddress(NewThisAddr);
  }

  return EmitCXXMemberOrOperatorCall(
      CalleeDecl, Callee, ReturnValue, This.getPointer(),
      /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
}

RValue
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
                                              ReturnValueSlot ReturnValue) {
  const BinaryOperator *BO =
      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
  const Expr *BaseExpr = BO->getLHS();
  const Expr *MemFnExpr = BO->getRHS();

  const MemberPointerType *MPT =
    MemFnExpr->getType()->castAs<MemberPointerType>();

  const FunctionProtoType *FPT =
    MPT->getPointeeType()->castAs<FunctionProtoType>();
  const CXXRecordDecl *RD =
    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());

  // Emit the 'this' pointer.
  Address This = Address::invalid();
  if (BO->getOpcode() == BO_PtrMemI)
    This = EmitPointerWithAlignment(BaseExpr);
  else
    This = EmitLValue(BaseExpr).getAddress();

  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
                QualType(MPT->getClass(), 0));

  // Get the member function pointer.
  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);

  // Ask the ABI to load the callee.  Note that This is modified.
  llvm::Value *ThisPtrForCall = nullptr;
  CGCallee Callee =
    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
                                             ThisPtrForCall, MemFnPtr, MPT);

  CallArgList Args;

  QualType ThisType =
    getContext().getPointerType(getContext().getTagDeclType(RD));

  // Push the this ptr.
  Args.add(RValue::get(ThisPtrForCall), ThisType);

  RequiredArgs required =
      RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);

  // And the rest of the call args
  EmitCallArgs(Args, FPT, E->arguments());
  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
                                                      /*PrefixSize=*/0),
                  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
}

RValue
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
                                               const CXXMethodDecl *MD,
                                               ReturnValueSlot ReturnValue) {
  assert(MD->isInstance() &&
         "Trying to emit a member call expr on a static method!");
  return EmitCXXMemberOrOperatorMemberCallExpr(
      E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
      /*IsArrow=*/false, E->getArg(0));
}

RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
                                               ReturnValueSlot ReturnValue) {
  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
}

static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
                                            Address DestPtr,
                                            const CXXRecordDecl *Base) {
  if (Base->isEmpty())
    return;

  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);

  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
  CharUnits NVSize = Layout.getNonVirtualSize();

  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
  // present, they are initialized by the most derived class before calling the
  // constructor.
  SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
  Stores.emplace_back(CharUnits::Zero(), NVSize);

  // Each store is split by the existence of a vbptr.
  CharUnits VBPtrWidth = CGF.getPointerSize();
  std::vector<CharUnits> VBPtrOffsets =
      CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
  for (CharUnits VBPtrOffset : VBPtrOffsets) {
    // Stop before we hit any virtual base pointers located in virtual bases.
    if (VBPtrOffset >= NVSize)
      break;
    std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
    CharUnits LastStoreOffset = LastStore.first;
    CharUnits LastStoreSize = LastStore.second;

    CharUnits SplitBeforeOffset = LastStoreOffset;
    CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
    assert(!SplitBeforeSize.isNegative() && "negative store size!");
    if (!SplitBeforeSize.isZero())
      Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);

    CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
    CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
    assert(!SplitAfterSize.isNegative() && "negative store size!");
    if (!SplitAfterSize.isZero())
      Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
  }

  // If the type contains a pointer to data member we can't memset it to zero.
  // Instead, create a null constant and copy it to the destination.
  // TODO: there are other patterns besides zero that we can usefully memset,
  // like -1, which happens to be the pattern used by member-pointers.
  // TODO: isZeroInitializable can be over-conservative in the case where a
  // virtual base contains a member pointer.
  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
  if (!NullConstantForBase->isNullValue()) {
    llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
        CGF.CGM.getModule(), NullConstantForBase->getType(),
        /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
        NullConstantForBase, Twine());

    CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
                               DestPtr.getAlignment());
    NullVariable->setAlignment(Align.getQuantity());

    Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);

    // Get and call the appropriate llvm.memcpy overload.
    for (std::pair<CharUnits, CharUnits> Store : Stores) {
      CharUnits StoreOffset = Store.first;
      CharUnits StoreSize = Store.second;
      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
      CGF.Builder.CreateMemCpy(
          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
          CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
          StoreSizeVal);
    }

  // Otherwise, just memset the whole thing to zero.  This is legal
  // because in LLVM, all default initializers (other than the ones we just
  // handled above) are guaranteed to have a bit pattern of all zeros.
  } else {
    for (std::pair<CharUnits, CharUnits> Store : Stores) {
      CharUnits StoreOffset = Store.first;
      CharUnits StoreSize = Store.second;
      llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
      CGF.Builder.CreateMemSet(
          CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
          CGF.Builder.getInt8(0), StoreSizeVal);
    }
  }
}

void
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
                                      AggValueSlot Dest) {
  assert(!Dest.isIgnored() && "Must have a destination!");
  const CXXConstructorDecl *CD = E->getConstructor();

  // If we require zero initialization before (or instead of) calling the
  // constructor, as can be the case with a non-user-provided default
  // constructor, emit the zero initialization now, unless destination is
  // already zeroed.
  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
    switch (E->getConstructionKind()) {
    case CXXConstructExpr::CK_Delegating:
    case CXXConstructExpr::CK_Complete:
      EmitNullInitialization(Dest.getAddress(), E->getType());
      break;
    case CXXConstructExpr::CK_VirtualBase:
    case CXXConstructExpr::CK_NonVirtualBase:
      EmitNullBaseClassInitialization(*this, Dest.getAddress(),
                                      CD->getParent());
      break;
    }
  }

  // If this is a call to a trivial default constructor, do nothing.
  if (CD->isTrivial() && CD->isDefaultConstructor())
    return;

  // Elide the constructor if we're constructing from a temporary.
  // The temporary check is required because Sema sets this on NRVO
  // returns.
  if (getLangOpts().ElideConstructors && E->isElidable()) {
    assert(getContext().hasSameUnqualifiedType(E->getType(),
                                               E->getArg(0)->getType()));
    if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
      EmitAggExpr(E->getArg(0), Dest);
      return;
    }
  }

  if (const ArrayType *arrayType
        = getContext().getAsArrayType(E->getType())) {
    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
                               Dest.isSanitizerChecked());
  } else {
    CXXCtorType Type = Ctor_Complete;
    bool ForVirtualBase = false;
    bool Delegating = false;

    switch (E->getConstructionKind()) {
     case CXXConstructExpr::CK_Delegating:
      // We should be emitting a constructor; GlobalDecl will assert this
      Type = CurGD.getCtorType();
      Delegating = true;
      break;

     case CXXConstructExpr::CK_Complete:
      Type = Ctor_Complete;
      break;

     case CXXConstructExpr::CK_VirtualBase:
      ForVirtualBase = true;
      LLVM_FALLTHROUGH;

     case CXXConstructExpr::CK_NonVirtualBase:
      Type = Ctor_Base;
    }

    // Call the constructor.
    EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
                           Dest.getAddress(), E, Dest.mayOverlap(),
                           Dest.isSanitizerChecked());
  }
}

void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
                                                 const Expr *Exp) {
  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
    Exp = E->getSubExpr();
  assert(isa<CXXConstructExpr>(Exp) &&
         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
  const CXXConstructorDecl *CD = E->getConstructor();
  RunCleanupsScope Scope(*this);

  // If we require zero initialization before (or instead of) calling the
  // constructor, as can be the case with a non-user-provided default
  // constructor, emit the zero initialization now.
  // FIXME. Do I still need this for a copy ctor synthesis?
  if (E->requiresZeroInitialization())
    EmitNullInitialization(Dest, E->getType());

  assert(!getContext().getAsConstantArrayType(E->getType())
         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
}

static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
                                        const CXXNewExpr *E) {
  if (!E->isArray())
    return CharUnits::Zero();

  // No cookie is required if the operator new[] being used is the
  // reserved placement operator new[].
  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
    return CharUnits::Zero();

  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
}

static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
                                        const CXXNewExpr *e,
                                        unsigned minElements,
                                        llvm::Value *&numElements,
                                        llvm::Value *&sizeWithoutCookie) {
  QualType type = e->getAllocatedType();

  if (!e->isArray()) {
    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    sizeWithoutCookie
      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
    return sizeWithoutCookie;
  }

  // The width of size_t.
  unsigned sizeWidth = CGF.SizeTy->getBitWidth();

  // Figure out the cookie size.
  llvm::APInt cookieSize(sizeWidth,
                         CalculateCookiePadding(CGF, e).getQuantity());

  // Emit the array size expression.
  // We multiply the size of all dimensions for NumElements.
  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
  numElements =
    ConstantEmitter(CGF).tryEmitAbstract(e->getArraySize(), e->getType());
  if (!numElements)
    numElements = CGF.EmitScalarExpr(e->getArraySize());
  assert(isa<llvm::IntegerType>(numElements->getType()));

  // The number of elements can be have an arbitrary integer type;
  // essentially, we need to multiply it by a constant factor, add a
  // cookie size, and verify that the result is representable as a
  // size_t.  That's just a gloss, though, and it's wrong in one
  // important way: if the count is negative, it's an error even if
  // the cookie size would bring the total size >= 0.
  bool isSigned
    = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
  llvm::IntegerType *numElementsType
    = cast<llvm::IntegerType>(numElements->getType());
  unsigned numElementsWidth = numElementsType->getBitWidth();

  // Compute the constant factor.
  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
  while (const ConstantArrayType *CAT
             = CGF.getContext().getAsConstantArrayType(type)) {
    type = CAT->getElementType();
    arraySizeMultiplier *= CAT->getSize();
  }

  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
  typeSizeMultiplier *= arraySizeMultiplier;

  // This will be a size_t.
  llvm::Value *size;

  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
  // Don't bloat the -O0 code.
  if (llvm::ConstantInt *numElementsC =
        dyn_cast<llvm::ConstantInt>(numElements)) {
    const llvm::APInt &count = numElementsC->getValue();

    bool hasAnyOverflow = false;

    // If 'count' was a negative number, it's an overflow.
    if (isSigned && count.isNegative())
      hasAnyOverflow = true;

    // We want to do all this arithmetic in size_t.  If numElements is
    // wider than that, check whether it's already too big, and if so,
    // overflow.
    else if (numElementsWidth > sizeWidth &&
             numElementsWidth - sizeWidth > count.countLeadingZeros())
      hasAnyOverflow = true;

    // Okay, compute a count at the right width.
    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);

    // If there is a brace-initializer, we cannot allocate fewer elements than
    // there are initializers. If we do, that's treated like an overflow.
    if (adjustedCount.ult(minElements))
      hasAnyOverflow = true;

    // Scale numElements by that.  This might overflow, but we don't
    // care because it only overflows if allocationSize does, too, and
    // if that overflows then we shouldn't use this.
    numElements = llvm::ConstantInt::get(CGF.SizeTy,
                                         adjustedCount * arraySizeMultiplier);

    // Compute the size before cookie, and track whether it overflowed.
    bool overflow;
    llvm::APInt allocationSize
      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
    hasAnyOverflow |= overflow;

    // Add in the cookie, and check whether it's overflowed.
    if (cookieSize != 0) {
      // Save the current size without a cookie.  This shouldn't be
      // used if there was overflow.
      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);

      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
      hasAnyOverflow |= overflow;
    }

    // On overflow, produce a -1 so operator new will fail.
    if (hasAnyOverflow) {
      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
    } else {
      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    }

  // Otherwise, we might need to use the overflow intrinsics.
  } else {
    // There are up to five conditions we need to test for:
    // 1) if isSigned, we need to check whether numElements is negative;
    // 2) if numElementsWidth > sizeWidth, we need to check whether
    //   numElements is larger than something representable in size_t;
    // 3) if minElements > 0, we need to check whether numElements is smaller
    //    than that.
    // 4) we need to compute
    //      sizeWithoutCookie := numElements * typeSizeMultiplier
    //    and check whether it overflows; and
    // 5) if we need a cookie, we need to compute
    //      size := sizeWithoutCookie + cookieSize
    //    and check whether it overflows.

    llvm::Value *hasOverflow = nullptr;

    // If numElementsWidth > sizeWidth, then one way or another, we're
    // going to have to do a comparison for (2), and this happens to
    // take care of (1), too.
    if (numElementsWidth > sizeWidth) {
      llvm::APInt threshold(numElementsWidth, 1);
      threshold <<= sizeWidth;

      llvm::Value *thresholdV
        = llvm::ConstantInt::get(numElementsType, threshold);

      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);

    // Otherwise, if we're signed, we want to sext up to size_t.
    } else if (isSigned) {
      if (numElementsWidth < sizeWidth)
        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);

      // If there's a non-1 type size multiplier, then we can do the
      // signedness check at the same time as we do the multiply
      // because a negative number times anything will cause an
      // unsigned overflow.  Otherwise, we have to do it here. But at least
      // in this case, we can subsume the >= minElements check.
      if (typeSizeMultiplier == 1)
        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));

    // Otherwise, zext up to size_t if necessary.
    } else if (numElementsWidth < sizeWidth) {
      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
    }

    assert(numElements->getType() == CGF.SizeTy);

    if (minElements) {
      // Don't allow allocation of fewer elements than we have initializers.
      if (!hasOverflow) {
        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
      } else if (numElementsWidth > sizeWidth) {
        // The other existing overflow subsumes this check.
        // We do an unsigned comparison, since any signed value < -1 is
        // taken care of either above or below.
        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
                          CGF.Builder.CreateICmpULT(numElements,
                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
      }
    }

    size = numElements;

    // Multiply by the type size if necessary.  This multiplier
    // includes all the factors for nested arrays.
    //
    // This step also causes numElements to be scaled up by the
    // nested-array factor if necessary.  Overflow on this computation
    // can be ignored because the result shouldn't be used if
    // allocation fails.
    if (typeSizeMultiplier != 1) {
      llvm::Value *umul_with_overflow
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);

      llvm::Value *tsmV =
        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
      llvm::Value *result =
          CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});

      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
      if (hasOverflow)
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
      else
        hasOverflow = overflowed;

      size = CGF.Builder.CreateExtractValue(result, 0);

      // Also scale up numElements by the array size multiplier.
      if (arraySizeMultiplier != 1) {
        // If the base element type size is 1, then we can re-use the
        // multiply we just did.
        if (typeSize.isOne()) {
          assert(arraySizeMultiplier == typeSizeMultiplier);
          numElements = size;

        // Otherwise we need a separate multiply.
        } else {
          llvm::Value *asmV =
            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
          numElements = CGF.Builder.CreateMul(numElements, asmV);
        }
      }
    } else {
      // numElements doesn't need to be scaled.
      assert(arraySizeMultiplier == 1);
    }

    // Add in the cookie size if necessary.
    if (cookieSize != 0) {
      sizeWithoutCookie = size;

      llvm::Value *uadd_with_overflow
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);

      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
      llvm::Value *result =
          CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});

      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
      if (hasOverflow)
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
      else
        hasOverflow = overflowed;

      size = CGF.Builder.CreateExtractValue(result, 0);
    }

    // If we had any possibility of dynamic overflow, make a select to
    // overwrite 'size' with an all-ones value, which should cause
    // operator new to throw.
    if (hasOverflow)
      size = CGF.Builder.CreateSelect(hasOverflow,
                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
                                      size);
  }

  if (cookieSize == 0)
    sizeWithoutCookie = size;
  else
    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");

  return size;
}

static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
                                    QualType AllocType, Address NewPtr,
                                    AggValueSlot::Overlap_t MayOverlap) {
  // FIXME: Refactor with EmitExprAsInit.
  switch (CGF.getEvaluationKind(AllocType)) {
  case TEK_Scalar:
    CGF.EmitScalarInit(Init, nullptr,
                       CGF.MakeAddrLValue(NewPtr, AllocType), false);
    return;
  case TEK_Complex:
    CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
                                  /*isInit*/ true);
    return;
  case TEK_Aggregate: {
    AggValueSlot Slot
      = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
                              AggValueSlot::IsDestructed,
                              AggValueSlot::DoesNotNeedGCBarriers,
                              AggValueSlot::IsNotAliased,
                              MayOverlap, AggValueSlot::IsNotZeroed,
                              AggValueSlot::IsSanitizerChecked);
    CGF.EmitAggExpr(Init, Slot);
    return;
  }
  }
  llvm_unreachable("bad evaluation kind");
}

void CodeGenFunction::EmitNewArrayInitializer(
    const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
    Address BeginPtr, llvm::Value *NumElements,
    llvm::Value *AllocSizeWithoutCookie) {
  // If we have a type with trivial initialization and no initializer,
  // there's nothing to do.
  if (!E->hasInitializer())
    return;

  Address CurPtr = BeginPtr;

  unsigned InitListElements = 0;

  const Expr *Init = E->getInitializer();
  Address EndOfInit = Address::invalid();
  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
  EHScopeStack::stable_iterator Cleanup;
  llvm::Instruction *CleanupDominator = nullptr;

  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
  CharUnits ElementAlign =
    BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);

  // Attempt to perform zero-initialization using memset.
  auto TryMemsetInitialization = [&]() -> bool {
    // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
    // we can initialize with a memset to -1.
    if (!CGM.getTypes().isZeroInitializable(ElementType))
      return false;

    // Optimization: since zero initialization will just set the memory
    // to all zeroes, generate a single memset to do it in one shot.

    // Subtract out the size of any elements we've already initialized.
    auto *RemainingSize = AllocSizeWithoutCookie;
    if (InitListElements) {
      // We know this can't overflow; we check this when doing the allocation.
      auto *InitializedSize = llvm::ConstantInt::get(
          RemainingSize->getType(),
          getContext().getTypeSizeInChars(ElementType).getQuantity() *
              InitListElements);
      RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
    }

    // Create the memset.
    Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
    return true;
  };

  // If the initializer is an initializer list, first do the explicit elements.
  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
    // Initializing from a (braced) string literal is a special case; the init
    // list element does not initialize a (single) array element.
    if (ILE->isStringLiteralInit()) {
      // Initialize the initial portion of length equal to that of the string
      // literal. The allocation must be for at least this much; we emitted a
      // check for that earlier.
      AggValueSlot Slot =
          AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
                                AggValueSlot::IsDestructed,
                                AggValueSlot::DoesNotNeedGCBarriers,
                                AggValueSlot::IsNotAliased,
                                AggValueSlot::DoesNotOverlap,
                                AggValueSlot::IsNotZeroed,
                                AggValueSlot::IsSanitizerChecked);
      EmitAggExpr(ILE->getInit(0), Slot);

      // Move past these elements.
      InitListElements =
          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
              ->getSize().getZExtValue();
      CurPtr =
          Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
                                            Builder.getSize(InitListElements),
                                            "string.init.end"),
                  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
                                                          ElementSize));

      // Zero out the rest, if any remain.
      llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
      if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
        bool OK = TryMemsetInitialization();
        (void)OK;
        assert(OK && "couldn't memset character type?");
      }
      return;
    }

    InitListElements = ILE->getNumInits();

    // If this is a multi-dimensional array new, we will initialize multiple
    // elements with each init list element.
    QualType AllocType = E->getAllocatedType();
    if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
            AllocType->getAsArrayTypeUnsafe())) {
      ElementTy = ConvertTypeForMem(AllocType);
      CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
      InitListElements *= getContext().getConstantArrayElementCount(CAT);
    }

    // Enter a partial-destruction Cleanup if necessary.
    if (needsEHCleanup(DtorKind)) {
      // In principle we could tell the Cleanup where we are more
      // directly, but the control flow can get so varied here that it
      // would actually be quite complex.  Therefore we go through an
      // alloca.
      EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
                                   "array.init.end");
      CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
      pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
                                       ElementType, ElementAlign,
                                       getDestroyer(DtorKind));
      Cleanup = EHStack.stable_begin();
    }

    CharUnits StartAlign = CurPtr.getAlignment();
    for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
      // Tell the cleanup that it needs to destroy up to this
      // element.  TODO: some of these stores can be trivially
      // observed to be unnecessary.
      if (EndOfInit.isValid()) {
        auto FinishedPtr =
          Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
        Builder.CreateStore(FinishedPtr, EndOfInit);
      }
      // FIXME: If the last initializer is an incomplete initializer list for
      // an array, and we have an array filler, we can fold together the two
      // initialization loops.
      StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
                              ILE->getInit(i)->getType(), CurPtr,
                              AggValueSlot::DoesNotOverlap);
      CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
                                                 Builder.getSize(1),
                                                 "array.exp.next"),
                       StartAlign.alignmentAtOffset((i + 1) * ElementSize));
    }

    // The remaining elements are filled with the array filler expression.
    Init = ILE->getArrayFiller();

    // Extract the initializer for the individual array elements by pulling
    // out the array filler from all the nested initializer lists. This avoids
    // generating a nested loop for the initialization.
    while (Init && Init->getType()->isConstantArrayType()) {
      auto *SubILE = dyn_cast<InitListExpr>(Init);
      if (!SubILE)
        break;
      assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
      Init = SubILE->getArrayFiller();
    }

    // Switch back to initializing one base element at a time.
    CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
  }

  // If all elements have already been initialized, skip any further
  // initialization.
  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
    // If there was a Cleanup, deactivate it.
    if (CleanupDominator)
      DeactivateCleanupBlock(Cleanup, CleanupDominator);
    return;
  }

  assert(Init && "have trailing elements to initialize but no initializer");

  // If this is a constructor call, try to optimize it out, and failing that
  // emit a single loop to initialize all remaining elements.
  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
    CXXConstructorDecl *Ctor = CCE->getConstructor();
    if (Ctor->isTrivial()) {
      // If new expression did not specify value-initialization, then there
      // is no initialization.
      if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
        return;

      if (TryMemsetInitialization())
        return;
    }

    // Store the new Cleanup position for irregular Cleanups.
    //
    // FIXME: Share this cleanup with the constructor call emission rather than
    // having it create a cleanup of its own.
    if (EndOfInit.isValid())
      Builder.CreateStore(CurPtr.getPointer(), EndOfInit);

    // Emit a constructor call loop to initialize the remaining elements.
    if (InitListElements)
      NumElements = Builder.CreateSub(
          NumElements,
          llvm::ConstantInt::get(NumElements->getType(), InitListElements));
    EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
                               /*NewPointerIsChecked*/true,
                               CCE->requiresZeroInitialization());
    return;
  }

  // If this is value-initialization, we can usually use memset.
  ImplicitValueInitExpr IVIE(ElementType);
  if (isa<ImplicitValueInitExpr>(Init)) {
    if (TryMemsetInitialization())
      return;

    // Switch to an ImplicitValueInitExpr for the element type. This handles
    // only one case: multidimensional array new of pointers to members. In
    // all other cases, we already have an initializer for the array element.
    Init = &IVIE;
  }

  // At this point we should have found an initializer for the individual
  // elements of the array.
  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
         "got wrong type of element to initialize");

  // If we have an empty initializer list, we can usually use memset.
  if (auto *ILE = dyn_cast<InitListExpr>(Init))
    if (ILE->getNumInits() == 0 && TryMemsetInitialization())
      return;

  // If we have a struct whose every field is value-initialized, we can
  // usually use memset.
  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
    if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
      if (RType->getDecl()->isStruct()) {
        unsigned NumElements = 0;
        if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
          NumElements = CXXRD->getNumBases();
        for (auto *Field : RType->getDecl()->fields())
          if (!Field->isUnnamedBitfield())
            ++NumElements;
        // FIXME: Recurse into nested InitListExprs.
        if (ILE->getNumInits() == NumElements)
          for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
            if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
              --NumElements;
        if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
          return;
      }
    }
  }

  // Create the loop blocks.
  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");

  // Find the end of the array, hoisted out of the loop.
  llvm::Value *EndPtr =
    Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");

  // If the number of elements isn't constant, we have to now check if there is
  // anything left to initialize.
  if (!ConstNum) {
    llvm::Value *IsEmpty =
      Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
    Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
  }

  // Enter the loop.
  EmitBlock(LoopBB);

  // Set up the current-element phi.
  llvm::PHINode *CurPtrPhi =
    Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);

  CurPtr = Address(CurPtrPhi, ElementAlign);

  // Store the new Cleanup position for irregular Cleanups.
  if (EndOfInit.isValid())
    Builder.CreateStore(CurPtr.getPointer(), EndOfInit);

  // Enter a partial-destruction Cleanup if necessary.
  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
    pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
                                   ElementType, ElementAlign,
                                   getDestroyer(DtorKind));
    Cleanup = EHStack.stable_begin();
    CleanupDominator = Builder.CreateUnreachable();
  }

  // Emit the initializer into this element.
  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
                          AggValueSlot::DoesNotOverlap);

  // Leave the Cleanup if we entered one.
  if (CleanupDominator) {
    DeactivateCleanupBlock(Cleanup, CleanupDominator);
    CleanupDominator->eraseFromParent();
  }

  // Advance to the next element by adjusting the pointer type as necessary.
  llvm::Value *NextPtr =
    Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
                                       "array.next");

  // Check whether we've gotten to the end of the array and, if so,
  // exit the loop.
  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());

  EmitBlock(ContBB);
}

static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
                               QualType ElementType, llvm::Type *ElementTy,
                               Address NewPtr, llvm::Value *NumElements,
                               llvm::Value *AllocSizeWithoutCookie) {
  ApplyDebugLocation DL(CGF, E);
  if (E->isArray())
    CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
                                AllocSizeWithoutCookie);
  else if (const Expr *Init = E->getInitializer())
    StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
                            AggValueSlot::DoesNotOverlap);
}

/// Emit a call to an operator new or operator delete function, as implicitly
/// created by new-expressions and delete-expressions.
static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
                                const FunctionDecl *CalleeDecl,
                                const FunctionProtoType *CalleeType,
                                const CallArgList &Args) {
  llvm::Instruction *CallOrInvoke;
  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
  RValue RV =
      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
                       Args, CalleeType, /*chainCall=*/false),
                   Callee, ReturnValueSlot(), Args, &CallOrInvoke);

  /// C++1y [expr.new]p10:
  ///   [In a new-expression,] an implementation is allowed to omit a call
  ///   to a replaceable global allocation function.
  ///
  /// We model such elidable calls with the 'builtin' attribute.
  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
      Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
    // FIXME: Add addAttribute to CallSite.
    if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
      CI->addAttribute(llvm::AttributeList::FunctionIndex,
                       llvm::Attribute::Builtin);
    else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
      II->addAttribute(llvm::AttributeList::FunctionIndex,
                       llvm::Attribute::Builtin);
    else
      llvm_unreachable("unexpected kind of call instruction");
  }

  return RV;
}

RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
                                                 const CallExpr *TheCall,
                                                 bool IsDelete) {
  CallArgList Args;
  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
  // Find the allocation or deallocation function that we're calling.
  ASTContext &Ctx = getContext();
  DeclarationName Name = Ctx.DeclarationNames
      .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);

  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
    if (auto *FD = dyn_cast<FunctionDecl>(Decl))
      if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
        return EmitNewDeleteCall(*this, FD, Type, Args);
  llvm_unreachable("predeclared global operator new/delete is missing");
}

namespace {
/// The parameters to pass to a usual operator delete.
struct UsualDeleteParams {
  bool DestroyingDelete = false;
  bool Size = false;
  bool Alignment = false;
};
}

static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
  UsualDeleteParams Params;

  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();

  // The first argument is always a void*.
  ++AI;

  // The next parameter may be a std::destroying_delete_t.
  if (FD->isDestroyingOperatorDelete()) {
    Params.DestroyingDelete = true;
    assert(AI != AE);
    ++AI;
  }

  // Figure out what other parameters we should be implicitly passing.
  if (AI != AE && (*AI)->isIntegerType()) {
    Params.Size = true;
    ++AI;
  }

  if (AI != AE && (*AI)->isAlignValT()) {
    Params.Alignment = true;
    ++AI;
  }

  assert(AI == AE && "unexpected usual deallocation function parameter");
  return Params;
}

namespace {
  /// A cleanup to call the given 'operator delete' function upon abnormal
  /// exit from a new expression. Templated on a traits type that deals with
  /// ensuring that the arguments dominate the cleanup if necessary.
  template<typename Traits>
  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
    /// Type used to hold llvm::Value*s.
    typedef typename Traits::ValueTy ValueTy;
    /// Type used to hold RValues.
    typedef typename Traits::RValueTy RValueTy;
    struct PlacementArg {
      RValueTy ArgValue;
      QualType ArgType;
    };

    unsigned NumPlacementArgs : 31;
    unsigned PassAlignmentToPlacementDelete : 1;
    const FunctionDecl *OperatorDelete;
    ValueTy Ptr;
    ValueTy AllocSize;
    CharUnits AllocAlign;

    PlacementArg *getPlacementArgs() {
      return reinterpret_cast<PlacementArg *>(this + 1);
    }

  public:
    static size_t getExtraSize(size_t NumPlacementArgs) {
      return NumPlacementArgs * sizeof(PlacementArg);
    }

    CallDeleteDuringNew(size_t NumPlacementArgs,
                        const FunctionDecl *OperatorDelete, ValueTy Ptr,
                        ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
                        CharUnits AllocAlign)
      : NumPlacementArgs(NumPlacementArgs),
        PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
        OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
        AllocAlign(AllocAlign) {}

    void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
      assert(I < NumPlacementArgs && "index out of range");
      getPlacementArgs()[I] = {Arg, Type};
    }

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      const FunctionProtoType *FPT =
          OperatorDelete->getType()->getAs<FunctionProtoType>();
      CallArgList DeleteArgs;

      // The first argument is always a void* (or C* for a destroying operator
      // delete for class type C).
      DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));

      // Figure out what other parameters we should be implicitly passing.
      UsualDeleteParams Params;
      if (NumPlacementArgs) {
        // A placement deallocation function is implicitly passed an alignment
        // if the placement allocation function was, but is never passed a size.
        Params.Alignment = PassAlignmentToPlacementDelete;
      } else {
        // For a non-placement new-expression, 'operator delete' can take a
        // size and/or an alignment if it has the right parameters.
        Params = getUsualDeleteParams(OperatorDelete);
      }

      assert(!Params.DestroyingDelete &&
             "should not call destroying delete in a new-expression");

      // The second argument can be a std::size_t (for non-placement delete).
      if (Params.Size)
        DeleteArgs.add(Traits::get(CGF, AllocSize),
                       CGF.getContext().getSizeType());

      // The next (second or third) argument can be a std::align_val_t, which
      // is an enum whose underlying type is std::size_t.
      // FIXME: Use the right type as the parameter type. Note that in a call
      // to operator delete(size_t, ...), we may not have it available.
      if (Params.Alignment)
        DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
                           CGF.SizeTy, AllocAlign.getQuantity())),
                       CGF.getContext().getSizeType());

      // Pass the rest of the arguments, which must match exactly.
      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
        auto Arg = getPlacementArgs()[I];
        DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
      }

      // Call 'operator delete'.
      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
    }
  };
}

/// Enter a cleanup to call 'operator delete' if the initializer in a
/// new-expression throws.
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
                                  const CXXNewExpr *E,
                                  Address NewPtr,
                                  llvm::Value *AllocSize,
                                  CharUnits AllocAlign,
                                  const CallArgList &NewArgs) {
  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;

  // If we're not inside a conditional branch, then the cleanup will
  // dominate and we can do the easier (and more efficient) thing.
  if (!CGF.isInConditionalBranch()) {
    struct DirectCleanupTraits {
      typedef llvm::Value *ValueTy;
      typedef RValue RValueTy;
      static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
      static RValue get(CodeGenFunction &, RValueTy V) { return V; }
    };

    typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;

    DirectCleanup *Cleanup = CGF.EHStack
      .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
                                           E->getNumPlacementArgs(),
                                           E->getOperatorDelete(),
                                           NewPtr.getPointer(),
                                           AllocSize,
                                           E->passAlignment(),
                                           AllocAlign);
    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
      auto &Arg = NewArgs[I + NumNonPlacementArgs];
      Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
    }

    return;
  }

  // Otherwise, we need to save all this stuff.
  DominatingValue<RValue>::saved_type SavedNewPtr =
    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
  DominatingValue<RValue>::saved_type SavedAllocSize =
    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));

  struct ConditionalCleanupTraits {
    typedef DominatingValue<RValue>::saved_type ValueTy;
    typedef DominatingValue<RValue>::saved_type RValueTy;
    static RValue get(CodeGenFunction &CGF, ValueTy V) {
      return V.restore(CGF);
    }
  };
  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;

  ConditionalCleanup *Cleanup = CGF.EHStack
    .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
                                              E->getNumPlacementArgs(),
                                              E->getOperatorDelete(),
                                              SavedNewPtr,
                                              SavedAllocSize,
                                              E->passAlignment(),
                                              AllocAlign);
  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
    auto &Arg = NewArgs[I + NumNonPlacementArgs];
    Cleanup->setPlacementArg(
        I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
  }

  CGF.initFullExprCleanup();
}

llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
  // The element type being allocated.
  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());

  // 1. Build a call to the allocation function.
  FunctionDecl *allocator = E->getOperatorNew();

  // If there is a brace-initializer, cannot allocate fewer elements than inits.
  unsigned minElements = 0;
  if (E->isArray() && E->hasInitializer()) {
    const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
    if (ILE && ILE->isStringLiteralInit())
      minElements =
          cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
              ->getSize().getZExtValue();
    else if (ILE)
      minElements = ILE->getNumInits();
  }

  llvm::Value *numElements = nullptr;
  llvm::Value *allocSizeWithoutCookie = nullptr;
  llvm::Value *allocSize =
    EmitCXXNewAllocSize(*this, E, minElements, numElements,
                        allocSizeWithoutCookie);
  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);

  // Emit the allocation call.  If the allocator is a global placement
  // operator, just "inline" it directly.
  Address allocation = Address::invalid();
  CallArgList allocatorArgs;
  if (allocator->isReservedGlobalPlacementOperator()) {
    assert(E->getNumPlacementArgs() == 1);
    const Expr *arg = *E->placement_arguments().begin();

    LValueBaseInfo BaseInfo;
    allocation = EmitPointerWithAlignment(arg, &BaseInfo);

    // The pointer expression will, in many cases, be an opaque void*.
    // In these cases, discard the computed alignment and use the
    // formal alignment of the allocated type.
    if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
      allocation = Address(allocation.getPointer(), allocAlign);

    // Set up allocatorArgs for the call to operator delete if it's not
    // the reserved global operator.
    if (E->getOperatorDelete() &&
        !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
      allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
      allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
    }

  } else {
    const FunctionProtoType *allocatorType =
      allocator->getType()->castAs<FunctionProtoType>();
    unsigned ParamsToSkip = 0;

    // The allocation size is the first argument.
    QualType sizeType = getContext().getSizeType();
    allocatorArgs.add(RValue::get(allocSize), sizeType);
    ++ParamsToSkip;

    if (allocSize != allocSizeWithoutCookie) {
      CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
      allocAlign = std::max(allocAlign, cookieAlign);
    }

    // The allocation alignment may be passed as the second argument.
    if (E->passAlignment()) {
      QualType AlignValT = sizeType;
      if (allocatorType->getNumParams() > 1) {
        AlignValT = allocatorType->getParamType(1);
        assert(getContext().hasSameUnqualifiedType(
                   AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
                   sizeType) &&
               "wrong type for alignment parameter");
        ++ParamsToSkip;
      } else {
        // Corner case, passing alignment to 'operator new(size_t, ...)'.
        assert(allocator->isVariadic() && "can't pass alignment to allocator");
      }
      allocatorArgs.add(
          RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
          AlignValT);
    }

    // FIXME: Why do we not pass a CalleeDecl here?
    EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
                 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);

    RValue RV =
      EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);

    // If this was a call to a global replaceable allocation function that does
    // not take an alignment argument, the allocator is known to produce
    // storage that's suitably aligned for any object that fits, up to a known
    // threshold. Otherwise assume it's suitably aligned for the allocated type.
    CharUnits allocationAlign = allocAlign;
    if (!E->passAlignment() &&
        allocator->isReplaceableGlobalAllocationFunction()) {
      unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
          Target.getNewAlign(), getContext().getTypeSize(allocType)));
      allocationAlign = std::max(
          allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
    }

    allocation = Address(RV.getScalarVal(), allocationAlign);
  }

  // Emit a null check on the allocation result if the allocation
  // function is allowed to return null (because it has a non-throwing
  // exception spec or is the reserved placement new) and we have an
  // interesting initializer will be running sanitizers on the initialization.
  bool nullCheck = E->shouldNullCheckAllocation() &&
                   (!allocType.isPODType(getContext()) || E->hasInitializer() ||
                    sanitizePerformTypeCheck());

  llvm::BasicBlock *nullCheckBB = nullptr;
  llvm::BasicBlock *contBB = nullptr;

  // The null-check means that the initializer is conditionally
  // evaluated.
  ConditionalEvaluation conditional(*this);

  if (nullCheck) {
    conditional.begin(*this);

    nullCheckBB = Builder.GetInsertBlock();
    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
    contBB = createBasicBlock("new.cont");

    llvm::Value *isNull =
      Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
    Builder.CreateCondBr(isNull, contBB, notNullBB);
    EmitBlock(notNullBB);
  }

  // If there's an operator delete, enter a cleanup to call it if an
  // exception is thrown.
  EHScopeStack::stable_iterator operatorDeleteCleanup;
  llvm::Instruction *cleanupDominator = nullptr;
  if (E->getOperatorDelete() &&
      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
                          allocatorArgs);
    operatorDeleteCleanup = EHStack.stable_begin();
    cleanupDominator = Builder.CreateUnreachable();
  }

  assert((allocSize == allocSizeWithoutCookie) ==
         CalculateCookiePadding(*this, E).isZero());
  if (allocSize != allocSizeWithoutCookie) {
    assert(E->isArray());
    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
                                                       numElements,
                                                       E, allocType);
  }

  llvm::Type *elementTy = ConvertTypeForMem(allocType);
  Address result = Builder.CreateElementBitCast(allocation, elementTy);

  // Passing pointer through launder.invariant.group to avoid propagation of
  // vptrs information which may be included in previous type.
  // To not break LTO with different optimizations levels, we do it regardless
  // of optimization level.
  if (CGM.getCodeGenOpts().StrictVTablePointers &&
      allocator->isReservedGlobalPlacementOperator())
    result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
                     result.getAlignment());

  // Emit sanitizer checks for pointer value now, so that in the case of an
  // array it was checked only once and not at each constructor call.
  EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
      E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
      result.getPointer(), allocType);

  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
                     allocSizeWithoutCookie);
  if (E->isArray()) {
    // NewPtr is a pointer to the base element type.  If we're
    // allocating an array of arrays, we'll need to cast back to the
    // array pointer type.
    llvm::Type *resultType = ConvertTypeForMem(E->getType());
    if (result.getType() != resultType)
      result = Builder.CreateBitCast(result, resultType);
  }

  // Deactivate the 'operator delete' cleanup if we finished
  // initialization.
  if (operatorDeleteCleanup.isValid()) {
    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
    cleanupDominator->eraseFromParent();
  }

  llvm::Value *resultPtr = result.getPointer();
  if (nullCheck) {
    conditional.end(*this);

    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    EmitBlock(contBB);

    llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
    PHI->addIncoming(resultPtr, notNullBB);
    PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
                     nullCheckBB);

    resultPtr = PHI;
  }

  return resultPtr;
}

void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
                                     llvm::Value *Ptr, QualType DeleteTy,
                                     llvm::Value *NumElements,
                                     CharUnits CookieSize) {
  assert((!NumElements && CookieSize.isZero()) ||
         DeleteFD->getOverloadedOperator() == OO_Array_Delete);

  const FunctionProtoType *DeleteFTy =
    DeleteFD->getType()->getAs<FunctionProtoType>();

  CallArgList DeleteArgs;

  auto Params = getUsualDeleteParams(DeleteFD);
  auto ParamTypeIt = DeleteFTy->param_type_begin();

  // Pass the pointer itself.
  QualType ArgTy = *ParamTypeIt++;
  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);

  // Pass the std::destroying_delete tag if present.
  if (Params.DestroyingDelete) {
    QualType DDTag = *ParamTypeIt++;
    // Just pass an 'undef'. We expect the tag type to be an empty struct.
    auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
    DeleteArgs.add(RValue::get(V), DDTag);
  }

  // Pass the size if the delete function has a size_t parameter.
  if (Params.Size) {
    QualType SizeType = *ParamTypeIt++;
    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
    llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
                                               DeleteTypeSize.getQuantity());

    // For array new, multiply by the number of elements.
    if (NumElements)
      Size = Builder.CreateMul(Size, NumElements);

    // If there is a cookie, add the cookie size.
    if (!CookieSize.isZero())
      Size = Builder.CreateAdd(
          Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));

    DeleteArgs.add(RValue::get(Size), SizeType);
  }

  // Pass the alignment if the delete function has an align_val_t parameter.
  if (Params.Alignment) {
    QualType AlignValType = *ParamTypeIt++;
    CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
        getContext().getTypeAlignIfKnown(DeleteTy));
    llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
                                                DeleteTypeAlign.getQuantity());
    DeleteArgs.add(RValue::get(Align), AlignValType);
  }

  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
         "unknown parameter to usual delete function");

  // Emit the call to delete.
  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
}

namespace {
  /// Calls the given 'operator delete' on a single object.
  struct CallObjectDelete final : EHScopeStack::Cleanup {
    llvm::Value *Ptr;
    const FunctionDecl *OperatorDelete;
    QualType ElementType;

    CallObjectDelete(llvm::Value *Ptr,
                     const FunctionDecl *OperatorDelete,
                     QualType ElementType)
      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
    }
  };
}

void
CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
                                             llvm::Value *CompletePtr,
                                             QualType ElementType) {
  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
                                        OperatorDelete, ElementType);
}

/// Emit the code for deleting a single object with a destroying operator
/// delete. If the element type has a non-virtual destructor, Ptr has already
/// been converted to the type of the parameter of 'operator delete'. Otherwise
/// Ptr points to an object of the static type.
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
                                       const CXXDeleteExpr *DE, Address Ptr,
                                       QualType ElementType) {
  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
  if (Dtor && Dtor->isVirtual())
    CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
                                                Dtor);
  else
    CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
}

/// Emit the code for deleting a single object.
static void EmitObjectDelete(CodeGenFunction &CGF,
                             const CXXDeleteExpr *DE,
                             Address Ptr,
                             QualType ElementType) {
  // C++11 [expr.delete]p3:
  //   If the static type of the object to be deleted is different from its
  //   dynamic type, the static type shall be a base class of the dynamic type
  //   of the object to be deleted and the static type shall have a virtual
  //   destructor or the behavior is undefined.
  CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
                    DE->getExprLoc(), Ptr.getPointer(),
                    ElementType);

  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
  assert(!OperatorDelete->isDestroyingOperatorDelete());

  // Find the destructor for the type, if applicable.  If the
  // destructor is virtual, we'll just emit the vcall and return.
  const CXXDestructorDecl *Dtor = nullptr;
  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
      Dtor = RD->getDestructor();

      if (Dtor->isVirtual()) {
        CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
                                                    Dtor);
        return;
      }
    }
  }

  // Make sure that we call delete even if the dtor throws.
  // This doesn't have to a conditional cleanup because we're going
  // to pop it off in a second.
  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
                                            Ptr.getPointer(),
                                            OperatorDelete, ElementType);

  if (Dtor)
    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
                              /*ForVirtualBase=*/false,
                              /*Delegating=*/false,
                              Ptr);
  else if (auto Lifetime = ElementType.getObjCLifetime()) {
    switch (Lifetime) {
    case Qualifiers::OCL_None:
    case Qualifiers::OCL_ExplicitNone:
    case Qualifiers::OCL_Autoreleasing:
      break;

    case Qualifiers::OCL_Strong:
      CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
      break;

    case Qualifiers::OCL_Weak:
      CGF.EmitARCDestroyWeak(Ptr);
      break;
    }
  }

  CGF.PopCleanupBlock();
}

namespace {
  /// Calls the given 'operator delete' on an array of objects.
  struct CallArrayDelete final : EHScopeStack::Cleanup {
    llvm::Value *Ptr;
    const FunctionDecl *OperatorDelete;
    llvm::Value *NumElements;
    QualType ElementType;
    CharUnits CookieSize;

    CallArrayDelete(llvm::Value *Ptr,
                    const FunctionDecl *OperatorDelete,
                    llvm::Value *NumElements,
                    QualType ElementType,
                    CharUnits CookieSize)
      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
        ElementType(ElementType), CookieSize(CookieSize) {}

    void Emit(CodeGenFunction &CGF, Flags flags) override {
      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
                         CookieSize);
    }
  };
}

/// Emit the code for deleting an array of objects.
static void EmitArrayDelete(CodeGenFunction &CGF,
                            const CXXDeleteExpr *E,
                            Address deletedPtr,
                            QualType elementType) {
  llvm::Value *numElements = nullptr;
  llvm::Value *allocatedPtr = nullptr;
  CharUnits cookieSize;
  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
                                      numElements, allocatedPtr, cookieSize);

  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");

  // Make sure that we call delete even if one of the dtors throws.
  const FunctionDecl *operatorDelete = E->getOperatorDelete();
  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
                                           allocatedPtr, operatorDelete,
                                           numElements, elementType,
                                           cookieSize);

  // Destroy the elements.
  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
    assert(numElements && "no element count for a type with a destructor!");

    CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
    CharUnits elementAlign =
      deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);

    llvm::Value *arrayBegin = deletedPtr.getPointer();
    llvm::Value *arrayEnd =
      CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");

    // Note that it is legal to allocate a zero-length array, and we
    // can never fold the check away because the length should always
    // come from a cookie.
    CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
                         CGF.getDestroyer(dtorKind),
                         /*checkZeroLength*/ true,
                         CGF.needsEHCleanup(dtorKind));
  }

  // Pop the cleanup block.
  CGF.PopCleanupBlock();
}

void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
  const Expr *Arg = E->getArgument();
  Address Ptr = EmitPointerWithAlignment(Arg);

  // Null check the pointer.
  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");

  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");

  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
  EmitBlock(DeleteNotNull);

  QualType DeleteTy = E->getDestroyedType();

  // A destroying operator delete overrides the entire operation of the
  // delete expression.
  if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
    EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
    EmitBlock(DeleteEnd);
    return;
  }

  // We might be deleting a pointer to array.  If so, GEP down to the
  // first non-array element.
  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
  if (DeleteTy->isConstantArrayType()) {
    llvm::Value *Zero = Builder.getInt32(0);
    SmallVector<llvm::Value*,8> GEP;

    GEP.push_back(Zero); // point at the outermost array

    // For each layer of array type we're pointing at:
    while (const ConstantArrayType *Arr
             = getContext().getAsConstantArrayType(DeleteTy)) {
      // 1. Unpeel the array type.
      DeleteTy = Arr->getElementType();

      // 2. GEP to the first element of the array.
      GEP.push_back(Zero);
    }

    Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
                  Ptr.getAlignment());
  }

  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());

  if (E->isArrayForm()) {
    EmitArrayDelete(*this, E, Ptr, DeleteTy);
  } else {
    EmitObjectDelete(*this, E, Ptr, DeleteTy);
  }

  EmitBlock(DeleteEnd);
}

static bool isGLValueFromPointerDeref(const Expr *E) {
  E = E->IgnoreParens();

  if (const auto *CE = dyn_cast<CastExpr>(E)) {
    if (!CE->getSubExpr()->isGLValue())
      return false;
    return isGLValueFromPointerDeref(CE->getSubExpr());
  }

  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
    return isGLValueFromPointerDeref(OVE->getSourceExpr());

  if (const auto *BO = dyn_cast<BinaryOperator>(E))
    if (BO->getOpcode() == BO_Comma)
      return isGLValueFromPointerDeref(BO->getRHS());

  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
    return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
           isGLValueFromPointerDeref(ACO->getFalseExpr());

  // C++11 [expr.sub]p1:
  //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
  if (isa<ArraySubscriptExpr>(E))
    return true;

  if (const auto *UO = dyn_cast<UnaryOperator>(E))
    if (UO->getOpcode() == UO_Deref)
      return true;

  return false;
}

static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
                                         llvm::Type *StdTypeInfoPtrTy) {
  // Get the vtable pointer.
  Address ThisPtr = CGF.EmitLValue(E).getAddress();

  QualType SrcRecordTy = E->getType();

  // C++ [class.cdtor]p4:
  //   If the operand of typeid refers to the object under construction or
  //   destruction and the static type of the operand is neither the constructor
  //   or destructor’s class nor one of its bases, the behavior is undefined.
  CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
                    ThisPtr.getPointer(), SrcRecordTy);

  // C++ [expr.typeid]p2:
  //   If the glvalue expression is obtained by applying the unary * operator to
  //   a pointer and the pointer is a null pointer value, the typeid expression
  //   throws the std::bad_typeid exception.
  //
  // However, this paragraph's intent is not clear.  We choose a very generous
  // interpretation which implores us to consider comma operators, conditional
  // operators, parentheses and other such constructs.
  if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
          isGLValueFromPointerDeref(E), SrcRecordTy)) {
    llvm::BasicBlock *BadTypeidBlock =
        CGF.createBasicBlock("typeid.bad_typeid");
    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");

    llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
    CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);

    CGF.EmitBlock(BadTypeidBlock);
    CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
    CGF.EmitBlock(EndBlock);
  }

  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
                                        StdTypeInfoPtrTy);
}

llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
  llvm::Type *StdTypeInfoPtrTy =
    ConvertType(E->getType())->getPointerTo();

  if (E->isTypeOperand()) {
    llvm::Constant *TypeInfo =
        CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
  }

  // C++ [expr.typeid]p2:
  //   When typeid is applied to a glvalue expression whose type is a
  //   polymorphic class type, the result refers to a std::type_info object
  //   representing the type of the most derived object (that is, the dynamic
  //   type) to which the glvalue refers.
  if (E->isPotentiallyEvaluated())
    return EmitTypeidFromVTable(*this, E->getExprOperand(),
                                StdTypeInfoPtrTy);

  QualType OperandTy = E->getExprOperand()->getType();
  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
                               StdTypeInfoPtrTy);
}

static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
                                          QualType DestTy) {
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
  if (DestTy->isPointerType())
    return llvm::Constant::getNullValue(DestLTy);

  /// C++ [expr.dynamic.cast]p9:
  ///   A failed cast to reference type throws std::bad_cast
  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
    return nullptr;

  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
  return llvm::UndefValue::get(DestLTy);
}

llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
                                              const CXXDynamicCastExpr *DCE) {
  CGM.EmitExplicitCastExprType(DCE, this);
  QualType DestTy = DCE->getTypeAsWritten();

  QualType SrcTy = DCE->getSubExpr()->getType();

  // C++ [expr.dynamic.cast]p7:
  //   If T is "pointer to cv void," then the result is a pointer to the most
  //   derived object pointed to by v.
  const PointerType *DestPTy = DestTy->getAs<PointerType>();

  bool isDynamicCastToVoid;
  QualType SrcRecordTy;
  QualType DestRecordTy;
  if (DestPTy) {
    isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
    DestRecordTy = DestPTy->getPointeeType();
  } else {
    isDynamicCastToVoid = false;
    SrcRecordTy = SrcTy;
    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
  }

  // C++ [class.cdtor]p5:
  //   If the operand of the dynamic_cast refers to the object under
  //   construction or destruction and the static type of the operand is not a
  //   pointer to or object of the constructor or destructor’s own class or one
  //   of its bases, the dynamic_cast results in undefined behavior.
  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
                SrcRecordTy);

  if (DCE->isAlwaysNull())
    if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
      return T;

  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");

  // C++ [expr.dynamic.cast]p4:
  //   If the value of v is a null pointer value in the pointer case, the result
  //   is the null pointer value of type T.
  bool ShouldNullCheckSrcValue =
      CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
                                                         SrcRecordTy);

  llvm::BasicBlock *CastNull = nullptr;
  llvm::BasicBlock *CastNotNull = nullptr;
  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");

  if (ShouldNullCheckSrcValue) {
    CastNull = createBasicBlock("dynamic_cast.null");
    CastNotNull = createBasicBlock("dynamic_cast.notnull");

    llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    EmitBlock(CastNotNull);
  }

  llvm::Value *Value;
  if (isDynamicCastToVoid) {
    Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
                                                  DestTy);
  } else {
    assert(DestRecordTy->isRecordType() &&
           "destination type must be a record type!");
    Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
                                                DestTy, DestRecordTy, CastEnd);
    CastNotNull = Builder.GetInsertBlock();
  }

  if (ShouldNullCheckSrcValue) {
    EmitBranch(CastEnd);

    EmitBlock(CastNull);
    EmitBranch(CastEnd);
  }

  EmitBlock(CastEnd);

  if (ShouldNullCheckSrcValue) {
    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    PHI->addIncoming(Value, CastNotNull);
    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);

    Value = PHI;
  }

  return Value;
}

void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
  LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());

  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
  for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
                                               e = E->capture_init_end();
       i != e; ++i, ++CurField) {
    // Emit initialization
    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
    if (CurField->hasCapturedVLAType()) {
      auto VAT = CurField->getCapturedVLAType();
      EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
    } else {
      EmitInitializerForField(*CurField, LV, *i);
    }
  }
}