Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expression parsing implementation for C++.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "llvm/Support/ErrorHandling.h"


using namespace clang;

static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
  switch (Kind) {
    // template name
    case tok::unknown:             return 0;
    // casts
    case tok::kw_const_cast:       return 1;
    case tok::kw_dynamic_cast:     return 2;
    case tok::kw_reinterpret_cast: return 3;
    case tok::kw_static_cast:      return 4;
    default:
      llvm_unreachable("Unknown type for digraph error message.");
  }
}

// Are the two tokens adjacent in the same source file?
bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
  SourceManager &SM = PP.getSourceManager();
  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
}

// Suggest fixit for "<::" after a cast.
static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
  // Pull '<:' and ':' off token stream.
  if (!AtDigraph)
    PP.Lex(DigraphToken);
  PP.Lex(ColonToken);

  SourceRange Range;
  Range.setBegin(DigraphToken.getLocation());
  Range.setEnd(ColonToken.getLocation());
  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
      << SelectDigraphErrorMessage(Kind)
      << FixItHint::CreateReplacement(Range, "< ::");

  // Update token information to reflect their change in token type.
  ColonToken.setKind(tok::coloncolon);
  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
  ColonToken.setLength(2);
  DigraphToken.setKind(tok::less);
  DigraphToken.setLength(1);

  // Push new tokens back to token stream.
  PP.EnterToken(ColonToken);
  if (!AtDigraph)
    PP.EnterToken(DigraphToken);
}

// Check for '<::' which should be '< ::' instead of '[:' when following
// a template name.
void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
                                        bool EnteringContext,
                                        IdentifierInfo &II, CXXScopeSpec &SS) {
  if (!Next.is(tok::l_square) || Next.getLength() != 2)
    return;

  Token SecondToken = GetLookAheadToken(2);
  if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
    return;

  TemplateTy Template;
  UnqualifiedId TemplateName;
  TemplateName.setIdentifier(&II, Tok.getLocation());
  bool MemberOfUnknownSpecialization;
  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
                              TemplateName, ObjectType, EnteringContext,
                              Template, MemberOfUnknownSpecialization))
    return;

  FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
             /*AtDigraph*/false);
}

/// Parse global scope or nested-name-specifier if present.
///
/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
/// may be preceded by '::'). Note that this routine will not parse ::new or
/// ::delete; it will just leave them in the token stream.
///
///       '::'[opt] nested-name-specifier
///       '::'
///
///       nested-name-specifier:
///         type-name '::'
///         namespace-name '::'
///         nested-name-specifier identifier '::'
///         nested-name-specifier 'template'[opt] simple-template-id '::'
///
///
/// \param SS the scope specifier that will be set to the parsed
/// nested-name-specifier (or empty)
///
/// \param ObjectType if this nested-name-specifier is being parsed following
/// the "." or "->" of a member access expression, this parameter provides the
/// type of the object whose members are being accessed.
///
/// \param EnteringContext whether we will be entering into the context of
/// the nested-name-specifier after parsing it.
///
/// \param MayBePseudoDestructor When non-NULL, points to a flag that
/// indicates whether this nested-name-specifier may be part of a
/// pseudo-destructor name. In this case, the flag will be set false
/// if we don't actually end up parsing a destructor name. Moreorover,
/// if we do end up determining that we are parsing a destructor name,
/// the last component of the nested-name-specifier is not parsed as
/// part of the scope specifier.
///
/// \param IsTypename If \c true, this nested-name-specifier is known to be
/// part of a type name. This is used to improve error recovery.
///
/// \param LastII When non-NULL, points to an IdentifierInfo* that will be
/// filled in with the leading identifier in the last component of the
/// nested-name-specifier, if any.
///
/// \param OnlyNamespace If true, only considers namespaces in lookup.
///
/// \returns true if there was an error parsing a scope specifier
bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
                                            ParsedType ObjectType,
                                            bool EnteringContext,
                                            bool *MayBePseudoDestructor,
                                            bool IsTypename,
                                            IdentifierInfo **LastII,
                                            bool OnlyNamespace) {
  assert(getLangOpts().CPlusPlus &&
         "Call sites of this function should be guarded by checking for C++");

  if (Tok.is(tok::annot_cxxscope)) {
    assert(!LastII && "want last identifier but have already annotated scope");
    assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
                                                 Tok.getAnnotationRange(),
                                                 SS);
    ConsumeAnnotationToken();
    return false;
  }

  if (Tok.is(tok::annot_template_id)) {
    // If the current token is an annotated template id, it may already have
    // a scope specifier. Restore it.
    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
    SS = TemplateId->SS;
  }

  // Has to happen before any "return false"s in this function.
  bool CheckForDestructor = false;
  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
    CheckForDestructor = true;
    *MayBePseudoDestructor = false;
  }

  if (LastII)
    *LastII = nullptr;

  bool HasScopeSpecifier = false;

  if (Tok.is(tok::coloncolon)) {
    // ::new and ::delete aren't nested-name-specifiers.
    tok::TokenKind NextKind = NextToken().getKind();
    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
      return false;

    if (NextKind == tok::l_brace) {
      // It is invalid to have :: {, consume the scope qualifier and pretend
      // like we never saw it.
      Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
    } else {
      // '::' - Global scope qualifier.
      if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
        return true;

      HasScopeSpecifier = true;
    }
  }

  if (Tok.is(tok::kw___super)) {
    SourceLocation SuperLoc = ConsumeToken();
    if (!Tok.is(tok::coloncolon)) {
      Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
      return true;
    }

    return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
  }

  if (!HasScopeSpecifier &&
      Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
    DeclSpec DS(AttrFactory);
    SourceLocation DeclLoc = Tok.getLocation();
    SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);

    SourceLocation CCLoc;
    // Work around a standard defect: 'decltype(auto)::' is not a
    // nested-name-specifier.
    if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
        !TryConsumeToken(tok::coloncolon, CCLoc)) {
      AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
      return false;
    }

    if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
      SS.SetInvalid(SourceRange(DeclLoc, CCLoc));

    HasScopeSpecifier = true;
  }

  while (true) {
    if (HasScopeSpecifier) {
      if (Tok.is(tok::code_completion)) {
        // Code completion for a nested-name-specifier, where the code
        // completion token follows the '::'.
        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
                                        ObjectType.get());
        // Include code completion token into the range of the scope otherwise
        // when we try to annotate the scope tokens the dangling code completion
        // token will cause assertion in
        // Preprocessor::AnnotatePreviousCachedTokens.
        SS.setEndLoc(Tok.getLocation());
        cutOffParsing();
        return true;
      }

      // C++ [basic.lookup.classref]p5:
      //   If the qualified-id has the form
      //
      //       ::class-name-or-namespace-name::...
      //
      //   the class-name-or-namespace-name is looked up in global scope as a
      //   class-name or namespace-name.
      //
      // To implement this, we clear out the object type as soon as we've
      // seen a leading '::' or part of a nested-name-specifier.
      ObjectType = nullptr;
    }

    // nested-name-specifier:
    //   nested-name-specifier 'template'[opt] simple-template-id '::'

    // Parse the optional 'template' keyword, then make sure we have
    // 'identifier <' after it.
    if (Tok.is(tok::kw_template)) {
      // If we don't have a scope specifier or an object type, this isn't a
      // nested-name-specifier, since they aren't allowed to start with
      // 'template'.
      if (!HasScopeSpecifier && !ObjectType)
        break;

      TentativeParsingAction TPA(*this);
      SourceLocation TemplateKWLoc = ConsumeToken();

      UnqualifiedId TemplateName;
      if (Tok.is(tok::identifier)) {
        // Consume the identifier.
        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
        ConsumeToken();
      } else if (Tok.is(tok::kw_operator)) {
        // We don't need to actually parse the unqualified-id in this case,
        // because a simple-template-id cannot start with 'operator', but
        // go ahead and parse it anyway for consistency with the case where
        // we already annotated the template-id.
        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
                                       TemplateName)) {
          TPA.Commit();
          break;
        }

        if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
            TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
          Diag(TemplateName.getSourceRange().getBegin(),
               diag::err_id_after_template_in_nested_name_spec)
            << TemplateName.getSourceRange();
          TPA.Commit();
          break;
        }
      } else {
        TPA.Revert();
        break;
      }

      // If the next token is not '<', we have a qualified-id that refers
      // to a template name, such as T::template apply, but is not a
      // template-id.
      if (Tok.isNot(tok::less)) {
        TPA.Revert();
        break;
      }

      // Commit to parsing the template-id.
      TPA.Commit();
      TemplateTy Template;
      if (TemplateNameKind TNK = Actions.ActOnDependentTemplateName(
              getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
              EnteringContext, Template, /*AllowInjectedClassName*/ true)) {
        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
                                    TemplateName, false))
          return true;
      } else
        return true;

      continue;
    }

    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
      // We have
      //
      //   template-id '::'
      //
      // So we need to check whether the template-id is a simple-template-id of
      // the right kind (it should name a type or be dependent), and then
      // convert it into a type within the nested-name-specifier.
      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
        *MayBePseudoDestructor = true;
        return false;
      }

      if (LastII)
        *LastII = TemplateId->Name;

      // Consume the template-id token.
      ConsumeAnnotationToken();

      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
      SourceLocation CCLoc = ConsumeToken();

      HasScopeSpecifier = true;

      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
                                         TemplateId->NumArgs);

      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
                                              SS,
                                              TemplateId->TemplateKWLoc,
                                              TemplateId->Template,
                                              TemplateId->TemplateNameLoc,
                                              TemplateId->LAngleLoc,
                                              TemplateArgsPtr,
                                              TemplateId->RAngleLoc,
                                              CCLoc,
                                              EnteringContext)) {
        SourceLocation StartLoc
          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
                                      : TemplateId->TemplateNameLoc;
        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
      }

      continue;
    }

    // The rest of the nested-name-specifier possibilities start with
    // tok::identifier.
    if (Tok.isNot(tok::identifier))
      break;

    IdentifierInfo &II = *Tok.getIdentifierInfo();

    // nested-name-specifier:
    //   type-name '::'
    //   namespace-name '::'
    //   nested-name-specifier identifier '::'
    Token Next = NextToken();
    Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
                                    ObjectType);

    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
    // and emit a fixit hint for it.
    if (Next.is(tok::colon) && !ColonIsSacred) {
      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
                                            EnteringContext) &&
          // If the token after the colon isn't an identifier, it's still an
          // error, but they probably meant something else strange so don't
          // recover like this.
          PP.LookAhead(1).is(tok::identifier)) {
        Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
          << FixItHint::CreateReplacement(Next.getLocation(), "::");
        // Recover as if the user wrote '::'.
        Next.setKind(tok::coloncolon);
      }
    }

    if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
      // It is invalid to have :: {, consume the scope qualifier and pretend
      // like we never saw it.
      Token Identifier = Tok; // Stash away the identifier.
      ConsumeToken();         // Eat the identifier, current token is now '::'.
      Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
          << tok::identifier;
      UnconsumeToken(Identifier); // Stick the identifier back.
      Next = NextToken();         // Point Next at the '{' token.
    }

    if (Next.is(tok::coloncolon)) {
      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, IdInfo)) {
        *MayBePseudoDestructor = true;
        return false;
      }

      if (ColonIsSacred) {
        const Token &Next2 = GetLookAheadToken(2);
        if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
            Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
          Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
              << Next2.getName()
              << FixItHint::CreateReplacement(Next.getLocation(), ":");
          Token ColonColon;
          PP.Lex(ColonColon);
          ColonColon.setKind(tok::colon);
          PP.EnterToken(ColonColon);
          break;
        }
      }

      if (LastII)
        *LastII = &II;

      // We have an identifier followed by a '::'. Lookup this name
      // as the name in a nested-name-specifier.
      Token Identifier = Tok;
      SourceLocation IdLoc = ConsumeToken();
      assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
             "NextToken() not working properly!");
      Token ColonColon = Tok;
      SourceLocation CCLoc = ConsumeToken();

      bool IsCorrectedToColon = false;
      bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
      if (Actions.ActOnCXXNestedNameSpecifier(
              getCurScope(), IdInfo, EnteringContext, SS, false,
              CorrectionFlagPtr, OnlyNamespace)) {
        // Identifier is not recognized as a nested name, but we can have
        // mistyped '::' instead of ':'.
        if (CorrectionFlagPtr && IsCorrectedToColon) {
          ColonColon.setKind(tok::colon);
          PP.EnterToken(Tok);
          PP.EnterToken(ColonColon);
          Tok = Identifier;
          break;
        }
        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
      }
      HasScopeSpecifier = true;
      continue;
    }

    CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);

    // nested-name-specifier:
    //   type-name '<'
    if (Next.is(tok::less)) {
      TemplateTy Template;
      UnqualifiedId TemplateName;
      TemplateName.setIdentifier(&II, Tok.getLocation());
      bool MemberOfUnknownSpecialization;
      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
                                              /*hasTemplateKeyword=*/false,
                                                        TemplateName,
                                                        ObjectType,
                                                        EnteringContext,
                                                        Template,
                                              MemberOfUnknownSpecialization)) {
        // We have found a template name, so annotate this token
        // with a template-id annotation. We do not permit the
        // template-id to be translated into a type annotation,
        // because some clients (e.g., the parsing of class template
        // specializations) still want to see the original template-id
        // token.
        ConsumeToken();
        if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
                                    TemplateName, false))
          return true;
        continue;
      }

      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
          (IsTypename || IsTemplateArgumentList(1))) {
        // We have something like t::getAs<T>, where getAs is a
        // member of an unknown specialization. However, this will only
        // parse correctly as a template, so suggest the keyword 'template'
        // before 'getAs' and treat this as a dependent template name.
        unsigned DiagID = diag::err_missing_dependent_template_keyword;
        if (getLangOpts().MicrosoftExt)
          DiagID = diag::warn_missing_dependent_template_keyword;

        Diag(Tok.getLocation(), DiagID)
          << II.getName()
          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");

        if (TemplateNameKind TNK = Actions.ActOnDependentTemplateName(
                getCurScope(), SS, Tok.getLocation(), TemplateName, ObjectType,
                EnteringContext, Template, /*AllowInjectedClassName*/ true)) {
          // Consume the identifier.
          ConsumeToken();
          if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
                                      TemplateName, false))
            return true;
        }
        else
          return true;

        continue;
      }
    }

    // We don't have any tokens that form the beginning of a
    // nested-name-specifier, so we're done.
    break;
  }

  // Even if we didn't see any pieces of a nested-name-specifier, we
  // still check whether there is a tilde in this position, which
  // indicates a potential pseudo-destructor.
  if (CheckForDestructor && Tok.is(tok::tilde))
    *MayBePseudoDestructor = true;

  return false;
}

ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
                                           Token &Replacement) {
  SourceLocation TemplateKWLoc;
  UnqualifiedId Name;
  if (ParseUnqualifiedId(SS,
                         /*EnteringContext=*/false,
                         /*AllowDestructorName=*/false,
                         /*AllowConstructorName=*/false,
                         /*AllowDeductionGuide=*/false,
                         /*ObjectType=*/nullptr, &TemplateKWLoc, Name))
    return ExprError();

  // This is only the direct operand of an & operator if it is not
  // followed by a postfix-expression suffix.
  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
    isAddressOfOperand = false;

  ExprResult E = Actions.ActOnIdExpression(
      getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
      isAddressOfOperand, nullptr, /*IsInlineAsmIdentifier=*/false,
      &Replacement);
  if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
    checkPotentialAngleBracket(E);
  return E;
}

/// ParseCXXIdExpression - Handle id-expression.
///
///       id-expression:
///         unqualified-id
///         qualified-id
///
///       qualified-id:
///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
///         '::' identifier
///         '::' operator-function-id
///         '::' template-id
///
/// NOTE: The standard specifies that, for qualified-id, the parser does not
/// expect:
///
///   '::' conversion-function-id
///   '::' '~' class-name
///
/// This may cause a slight inconsistency on diagnostics:
///
/// class C {};
/// namespace A {}
/// void f() {
///   :: A :: ~ C(); // Some Sema error about using destructor with a
///                  // namespace.
///   :: ~ C(); // Some Parser error like 'unexpected ~'.
/// }
///
/// We simplify the parser a bit and make it work like:
///
///       qualified-id:
///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
///         '::' unqualified-id
///
/// That way Sema can handle and report similar errors for namespaces and the
/// global scope.
///
/// The isAddressOfOperand parameter indicates that this id-expression is a
/// direct operand of the address-of operator. This is, besides member contexts,
/// the only place where a qualified-id naming a non-static class member may
/// appear.
///
ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
  // qualified-id:
  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
  //   '::' unqualified-id
  //
  CXXScopeSpec SS;
  ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/false);

  Token Replacement;
  ExprResult Result =
      tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
  if (Result.isUnset()) {
    // If the ExprResult is valid but null, then typo correction suggested a
    // keyword replacement that needs to be reparsed.
    UnconsumeToken(Replacement);
    Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
  }
  assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
                              "for a previous keyword suggestion");
  return Result;
}

/// ParseLambdaExpression - Parse a C++11 lambda expression.
///
///       lambda-expression:
///         lambda-introducer lambda-declarator[opt] compound-statement
///
///       lambda-introducer:
///         '[' lambda-capture[opt] ']'
///
///       lambda-capture:
///         capture-default
///         capture-list
///         capture-default ',' capture-list
///
///       capture-default:
///         '&'
///         '='
///
///       capture-list:
///         capture
///         capture-list ',' capture
///
///       capture:
///         simple-capture
///         init-capture     [C++1y]
///
///       simple-capture:
///         identifier
///         '&' identifier
///         'this'
///
///       init-capture:      [C++1y]
///         identifier initializer
///         '&' identifier initializer
///
///       lambda-declarator:
///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
///           'mutable'[opt] exception-specification[opt]
///           trailing-return-type[opt]
///
ExprResult Parser::ParseLambdaExpression() {
  // Parse lambda-introducer.
  LambdaIntroducer Intro;
  Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
  if (DiagID) {
    Diag(Tok, DiagID.getValue());
    SkipUntil(tok::r_square, StopAtSemi);
    SkipUntil(tok::l_brace, StopAtSemi);
    SkipUntil(tok::r_brace, StopAtSemi);
    return ExprError();
  }

  return ParseLambdaExpressionAfterIntroducer(Intro);
}

/// TryParseLambdaExpression - Use lookahead and potentially tentative
/// parsing to determine if we are looking at a C++0x lambda expression, and parse
/// it if we are.
///
/// If we are not looking at a lambda expression, returns ExprError().
ExprResult Parser::TryParseLambdaExpression() {
  assert(getLangOpts().CPlusPlus11
         && Tok.is(tok::l_square)
         && "Not at the start of a possible lambda expression.");

  const Token Next = NextToken();
  if (Next.is(tok::eof)) // Nothing else to lookup here...
    return ExprEmpty();

  const Token After = GetLookAheadToken(2);
  // If lookahead indicates this is a lambda...
  if (Next.is(tok::r_square) ||     // []
      Next.is(tok::equal) ||        // [=
      (Next.is(tok::amp) &&         // [&] or [&,
       (After.is(tok::r_square) ||
        After.is(tok::comma))) ||
      (Next.is(tok::identifier) &&  // [identifier]
       After.is(tok::r_square))) {
    return ParseLambdaExpression();
  }

  // If lookahead indicates an ObjC message send...
  // [identifier identifier
  if (Next.is(tok::identifier) && After.is(tok::identifier)) {
    return ExprEmpty();
  }

  // Here, we're stuck: lambda introducers and Objective-C message sends are
  // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
  // writing two routines to parse a lambda introducer, just try to parse
  // a lambda introducer first, and fall back if that fails.
  // (TryParseLambdaIntroducer never produces any diagnostic output.)
  LambdaIntroducer Intro;
  if (TryParseLambdaIntroducer(Intro))
    return ExprEmpty();

  return ParseLambdaExpressionAfterIntroducer(Intro);
}

/// Parse a lambda introducer.
/// \param Intro A LambdaIntroducer filled in with information about the
///        contents of the lambda-introducer.
/// \param SkippedInits If non-null, we are disambiguating between an Obj-C
///        message send and a lambda expression. In this mode, we will
///        sometimes skip the initializers for init-captures and not fully
///        populate \p Intro. This flag will be set to \c true if we do so.
/// \return A DiagnosticID if it hit something unexpected. The location for
///         the diagnostic is that of the current token.
Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
                                                 bool *SkippedInits) {
  typedef Optional<unsigned> DiagResult;

  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
  BalancedDelimiterTracker T(*this, tok::l_square);
  T.consumeOpen();

  Intro.Range.setBegin(T.getOpenLocation());

  bool first = true;

  // Parse capture-default.
  if (Tok.is(tok::amp) &&
      (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
    Intro.Default = LCD_ByRef;
    Intro.DefaultLoc = ConsumeToken();
    first = false;
  } else if (Tok.is(tok::equal)) {
    Intro.Default = LCD_ByCopy;
    Intro.DefaultLoc = ConsumeToken();
    first = false;
  }

  while (Tok.isNot(tok::r_square)) {
    if (!first) {
      if (Tok.isNot(tok::comma)) {
        // Provide a completion for a lambda introducer here. Except
        // in Objective-C, where this is Almost Surely meant to be a message
        // send. In that case, fail here and let the ObjC message
        // expression parser perform the completion.
        if (Tok.is(tok::code_completion) &&
            !(getLangOpts().ObjC && Intro.Default == LCD_None &&
              !Intro.Captures.empty())) {
          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
                                               /*AfterAmpersand=*/false);
          cutOffParsing();
          break;
        }

        return DiagResult(diag::err_expected_comma_or_rsquare);
      }
      ConsumeToken();
    }

    if (Tok.is(tok::code_completion)) {
      // If we're in Objective-C++ and we have a bare '[', then this is more
      // likely to be a message receiver.
      if (getLangOpts().ObjC && first)
        Actions.CodeCompleteObjCMessageReceiver(getCurScope());
      else
        Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
                                             /*AfterAmpersand=*/false);
      cutOffParsing();
      break;
    }

    first = false;

    // Parse capture.
    LambdaCaptureKind Kind = LCK_ByCopy;
    LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
    SourceLocation Loc;
    IdentifierInfo *Id = nullptr;
    SourceLocation EllipsisLoc;
    ExprResult Init;
    SourceLocation LocStart = Tok.getLocation();

    if (Tok.is(tok::star)) {
      Loc = ConsumeToken();
      if (Tok.is(tok::kw_this)) {
        ConsumeToken();
        Kind = LCK_StarThis;
      } else {
        return DiagResult(diag::err_expected_star_this_capture);
      }
    } else if (Tok.is(tok::kw_this)) {
      Kind = LCK_This;
      Loc = ConsumeToken();
    } else {
      if (Tok.is(tok::amp)) {
        Kind = LCK_ByRef;
        ConsumeToken();

        if (Tok.is(tok::code_completion)) {
          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
                                               /*AfterAmpersand=*/true);
          cutOffParsing();
          break;
        }
      }

      if (Tok.is(tok::identifier)) {
        Id = Tok.getIdentifierInfo();
        Loc = ConsumeToken();
      } else if (Tok.is(tok::kw_this)) {
        // FIXME: If we want to suggest a fixit here, will need to return more
        // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
        // Clear()ed to prevent emission in case of tentative parsing?
        return DiagResult(diag::err_this_captured_by_reference);
      } else {
        return DiagResult(diag::err_expected_capture);
      }

      if (Tok.is(tok::l_paren)) {
        BalancedDelimiterTracker Parens(*this, tok::l_paren);
        Parens.consumeOpen();

        InitKind = LambdaCaptureInitKind::DirectInit;

        ExprVector Exprs;
        CommaLocsTy Commas;
        if (SkippedInits) {
          Parens.skipToEnd();
          *SkippedInits = true;
        } else if (ParseExpressionList(Exprs, Commas)) {
          Parens.skipToEnd();
          Init = ExprError();
        } else {
          Parens.consumeClose();
          Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
                                            Parens.getCloseLocation(),
                                            Exprs);
        }
      } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
        // Each lambda init-capture forms its own full expression, which clears
        // Actions.MaybeODRUseExprs. So create an expression evaluation context
        // to save the necessary state, and restore it later.
        EnterExpressionEvaluationContext EC(
            Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);

        if (TryConsumeToken(tok::equal))
          InitKind = LambdaCaptureInitKind::CopyInit;
        else
          InitKind = LambdaCaptureInitKind::ListInit;

        if (!SkippedInits) {
          Init = ParseInitializer();
        } else if (Tok.is(tok::l_brace)) {
          BalancedDelimiterTracker Braces(*this, tok::l_brace);
          Braces.consumeOpen();
          Braces.skipToEnd();
          *SkippedInits = true;
        } else {
          // We're disambiguating this:
          //
          //   [..., x = expr
          //
          // We need to find the end of the following expression in order to
          // determine whether this is an Obj-C message send's receiver, a
          // C99 designator, or a lambda init-capture.
          //
          // Parse the expression to find where it ends, and annotate it back
          // onto the tokens. We would have parsed this expression the same way
          // in either case: both the RHS of an init-capture and the RHS of an
          // assignment expression are parsed as an initializer-clause, and in
          // neither case can anything be added to the scope between the '[' and
          // here.
          //
          // FIXME: This is horrible. Adding a mechanism to skip an expression
          // would be much cleaner.
          // FIXME: If there is a ',' before the next ']' or ':', we can skip to
          // that instead. (And if we see a ':' with no matching '?', we can
          // classify this as an Obj-C message send.)
          SourceLocation StartLoc = Tok.getLocation();
          InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
          Init = ParseInitializer();
          if (!Init.isInvalid())
            Init = Actions.CorrectDelayedTyposInExpr(Init.get());

          if (Tok.getLocation() != StartLoc) {
            // Back out the lexing of the token after the initializer.
            PP.RevertCachedTokens(1);

            // Replace the consumed tokens with an appropriate annotation.
            Tok.setLocation(StartLoc);
            Tok.setKind(tok::annot_primary_expr);
            setExprAnnotation(Tok, Init);
            Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
            PP.AnnotateCachedTokens(Tok);

            // Consume the annotated initializer.
            ConsumeAnnotationToken();
          }
        }
      } else
        TryConsumeToken(tok::ellipsis, EllipsisLoc);
    }
    // If this is an init capture, process the initialization expression
    // right away.  For lambda init-captures such as the following:
    // const int x = 10;
    //  auto L = [i = x+1](int a) {
    //    return [j = x+2,
    //           &k = x](char b) { };
    //  };
    // keep in mind that each lambda init-capture has to have:
    //  - its initialization expression executed in the context
    //    of the enclosing/parent decl-context.
    //  - but the variable itself has to be 'injected' into the
    //    decl-context of its lambda's call-operator (which has
    //    not yet been created).
    // Each init-expression is a full-expression that has to get
    // Sema-analyzed (for capturing etc.) before its lambda's
    // call-operator's decl-context, scope & scopeinfo are pushed on their
    // respective stacks.  Thus if any variable is odr-used in the init-capture
    // it will correctly get captured in the enclosing lambda, if one exists.
    // The init-variables above are created later once the lambdascope and
    // call-operators decl-context is pushed onto its respective stack.

    // Since the lambda init-capture's initializer expression occurs in the
    // context of the enclosing function or lambda, therefore we can not wait
    // till a lambda scope has been pushed on before deciding whether the
    // variable needs to be captured.  We also need to process all
    // lvalue-to-rvalue conversions and discarded-value conversions,
    // so that we can avoid capturing certain constant variables.
    // For e.g.,
    //  void test() {
    //   const int x = 10;
    //   auto L = [&z = x](char a) { <-- don't capture by the current lambda
    //     return [y = x](int i) { <-- don't capture by enclosing lambda
    //          return y;
    //     }
    //   };
    // }
    // If x was not const, the second use would require 'L' to capture, and
    // that would be an error.

    ParsedType InitCaptureType;
    if (!Init.isInvalid())
      Init = Actions.CorrectDelayedTyposInExpr(Init.get());
    if (Init.isUsable()) {
      // Get the pointer and store it in an lvalue, so we can use it as an
      // out argument.
      Expr *InitExpr = Init.get();
      // This performs any lvalue-to-rvalue conversions if necessary, which
      // can affect what gets captured in the containing decl-context.
      InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
          Loc, Kind == LCK_ByRef, Id, InitKind, InitExpr);
      Init = InitExpr;
    }

    SourceLocation LocEnd = PrevTokLocation;

    Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
                     InitCaptureType, SourceRange(LocStart, LocEnd));
  }

  T.consumeClose();
  Intro.Range.setEnd(T.getCloseLocation());
  return DiagResult();
}

/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
///
/// Returns true if it hit something unexpected.
bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
  {
    bool SkippedInits = false;
    TentativeParsingAction PA1(*this);

    if (ParseLambdaIntroducer(Intro, &SkippedInits)) {
      PA1.Revert();
      return true;
    }

    if (!SkippedInits) {
      PA1.Commit();
      return false;
    }

    PA1.Revert();
  }

  // Try to parse it again, but this time parse the init-captures too.
  Intro = LambdaIntroducer();
  TentativeParsingAction PA2(*this);

  if (!ParseLambdaIntroducer(Intro)) {
    PA2.Commit();
    return false;
  }

  PA2.Revert();
  return true;
}

static void
tryConsumeMutableOrConstexprToken(Parser &P, SourceLocation &MutableLoc,
                                  SourceLocation &ConstexprLoc,
                                  SourceLocation &DeclEndLoc) {
  assert(MutableLoc.isInvalid());
  assert(ConstexprLoc.isInvalid());
  // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
  // to the final of those locations. Emit an error if we have multiple
  // copies of those keywords and recover.

  while (true) {
    switch (P.getCurToken().getKind()) {
    case tok::kw_mutable: {
      if (MutableLoc.isValid()) {
        P.Diag(P.getCurToken().getLocation(),
               diag::err_lambda_decl_specifier_repeated)
            << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
      }
      MutableLoc = P.ConsumeToken();
      DeclEndLoc = MutableLoc;
      break /*switch*/;
    }
    case tok::kw_constexpr:
      if (ConstexprLoc.isValid()) {
        P.Diag(P.getCurToken().getLocation(),
               diag::err_lambda_decl_specifier_repeated)
            << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
      }
      ConstexprLoc = P.ConsumeToken();
      DeclEndLoc = ConstexprLoc;
      break /*switch*/;
    default:
      return;
    }
  }
}

static void
addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
                                  DeclSpec &DS) {
  if (ConstexprLoc.isValid()) {
    P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
                             ? diag::ext_constexpr_on_lambda_cxx17
                             : diag::warn_cxx14_compat_constexpr_on_lambda);
    const char *PrevSpec = nullptr;
    unsigned DiagID = 0;
    DS.SetConstexprSpec(ConstexprLoc, PrevSpec, DiagID);
    assert(PrevSpec == nullptr && DiagID == 0 &&
           "Constexpr cannot have been set previously!");
  }
}

/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
/// expression.
ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
                     LambdaIntroducer &Intro) {
  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);

  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
                                "lambda expression parsing");



  // FIXME: Call into Actions to add any init-capture declarations to the
  // scope while parsing the lambda-declarator and compound-statement.

  // Parse lambda-declarator[opt].
  DeclSpec DS(AttrFactory);
  Declarator D(DS, DeclaratorContext::LambdaExprContext);
  TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
  Actions.PushLambdaScope();

  ParsedAttributes Attr(AttrFactory);
  SourceLocation DeclLoc = Tok.getLocation();
  if (getLangOpts().CUDA) {
    // In CUDA code, GNU attributes are allowed to appear immediately after the
    // "[...]", even if there is no "(...)" before the lambda body.
    MaybeParseGNUAttributes(D);
  }

  // Helper to emit a warning if we see a CUDA host/device/global attribute
  // after '(...)'. nvcc doesn't accept this.
  auto WarnIfHasCUDATargetAttr = [&] {
    if (getLangOpts().CUDA)
      for (const ParsedAttr &A : Attr)
        if (A.getKind() == ParsedAttr::AT_CUDADevice ||
            A.getKind() == ParsedAttr::AT_CUDAHost ||
            A.getKind() == ParsedAttr::AT_CUDAGlobal)
          Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
              << A.getName()->getName();
  };

  TypeResult TrailingReturnType;
  if (Tok.is(tok::l_paren)) {
    ParseScope PrototypeScope(this,
                              Scope::FunctionPrototypeScope |
                              Scope::FunctionDeclarationScope |
                              Scope::DeclScope);

    BalancedDelimiterTracker T(*this, tok::l_paren);
    T.consumeOpen();
    SourceLocation LParenLoc = T.getOpenLocation();

    // Parse parameter-declaration-clause.
    SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
    SourceLocation EllipsisLoc;

    if (Tok.isNot(tok::r_paren)) {
      Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
      ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
      // For a generic lambda, each 'auto' within the parameter declaration
      // clause creates a template type parameter, so increment the depth.
      if (Actions.getCurGenericLambda())
        ++CurTemplateDepthTracker;
    }
    T.consumeClose();
    SourceLocation RParenLoc = T.getCloseLocation();
    SourceLocation DeclEndLoc = RParenLoc;

    // GNU-style attributes must be parsed before the mutable specifier to be
    // compatible with GCC.
    MaybeParseGNUAttributes(Attr, &DeclEndLoc);

    // MSVC-style attributes must be parsed before the mutable specifier to be
    // compatible with MSVC.
    MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc);

    // Parse mutable-opt and/or constexpr-opt, and update the DeclEndLoc.
    SourceLocation MutableLoc;
    SourceLocation ConstexprLoc;
    tryConsumeMutableOrConstexprToken(*this, MutableLoc, ConstexprLoc,
                                      DeclEndLoc);

    addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);

    // Parse exception-specification[opt].
    ExceptionSpecificationType ESpecType = EST_None;
    SourceRange ESpecRange;
    SmallVector<ParsedType, 2> DynamicExceptions;
    SmallVector<SourceRange, 2> DynamicExceptionRanges;
    ExprResult NoexceptExpr;
    CachedTokens *ExceptionSpecTokens;
    ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
                                               ESpecRange,
                                               DynamicExceptions,
                                               DynamicExceptionRanges,
                                               NoexceptExpr,
                                               ExceptionSpecTokens);

    if (ESpecType != EST_None)
      DeclEndLoc = ESpecRange.getEnd();

    // Parse attribute-specifier[opt].
    MaybeParseCXX11Attributes(Attr, &DeclEndLoc);

    SourceLocation FunLocalRangeEnd = DeclEndLoc;

    // Parse trailing-return-type[opt].
    if (Tok.is(tok::arrow)) {
      FunLocalRangeEnd = Tok.getLocation();
      SourceRange Range;
      TrailingReturnType =
          ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit*/ false);
      if (Range.getEnd().isValid())
        DeclEndLoc = Range.getEnd();
    }

    PrototypeScope.Exit();

    WarnIfHasCUDATargetAttr();

    SourceLocation NoLoc;
    D.AddTypeInfo(DeclaratorChunk::getFunction(
                      /*hasProto=*/true,
                      /*isAmbiguous=*/false, LParenLoc, ParamInfo.data(),
                      ParamInfo.size(), EllipsisLoc, RParenLoc,
                      /*RefQualifierIsLValueRef=*/true,
                      /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType,
                      ESpecRange, DynamicExceptions.data(),
                      DynamicExceptionRanges.data(), DynamicExceptions.size(),
                      NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
                      /*ExceptionSpecTokens*/ nullptr,
                      /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
                      TrailingReturnType),
                  std::move(Attr), DeclEndLoc);
  } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
                         tok::kw_constexpr) ||
             (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
    // It's common to forget that one needs '()' before 'mutable', an attribute
    // specifier, or the result type. Deal with this.
    unsigned TokKind = 0;
    switch (Tok.getKind()) {
    case tok::kw_mutable: TokKind = 0; break;
    case tok::arrow: TokKind = 1; break;
    case tok::kw___attribute:
    case tok::l_square: TokKind = 2; break;
    case tok::kw_constexpr: TokKind = 3; break;
    default: llvm_unreachable("Unknown token kind");
    }

    Diag(Tok, diag::err_lambda_missing_parens)
      << TokKind
      << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
    SourceLocation DeclEndLoc = DeclLoc;

    // GNU-style attributes must be parsed before the mutable specifier to be
    // compatible with GCC.
    MaybeParseGNUAttributes(Attr, &DeclEndLoc);

    // Parse 'mutable', if it's there.
    SourceLocation MutableLoc;
    if (Tok.is(tok::kw_mutable)) {
      MutableLoc = ConsumeToken();
      DeclEndLoc = MutableLoc;
    }

    // Parse attribute-specifier[opt].
    MaybeParseCXX11Attributes(Attr, &DeclEndLoc);

    // Parse the return type, if there is one.
    if (Tok.is(tok::arrow)) {
      SourceRange Range;
      TrailingReturnType =
          ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit*/ false);
      if (Range.getEnd().isValid())
        DeclEndLoc = Range.getEnd();
    }

    WarnIfHasCUDATargetAttr();

    SourceLocation NoLoc;
    D.AddTypeInfo(DeclaratorChunk::getFunction(
                      /*hasProto=*/true,
                      /*isAmbiguous=*/false,
                      /*LParenLoc=*/NoLoc,
                      /*Params=*/nullptr,
                      /*NumParams=*/0,
                      /*EllipsisLoc=*/NoLoc,
                      /*RParenLoc=*/NoLoc,
                      /*RefQualifierIsLValueRef=*/true,
                      /*RefQualifierLoc=*/NoLoc, MutableLoc, EST_None,
                      /*ESpecRange=*/SourceRange(),
                      /*Exceptions=*/nullptr,
                      /*ExceptionRanges=*/nullptr,
                      /*NumExceptions=*/0,
                      /*NoexceptExpr=*/nullptr,
                      /*ExceptionSpecTokens=*/nullptr,
                      /*DeclsInPrototype=*/None, DeclLoc, DeclEndLoc, D,
                      TrailingReturnType),
                  std::move(Attr), DeclEndLoc);
  }

  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
  // it.
  unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
                        Scope::CompoundStmtScope;
  ParseScope BodyScope(this, ScopeFlags);

  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());

  // Parse compound-statement.
  if (!Tok.is(tok::l_brace)) {
    Diag(Tok, diag::err_expected_lambda_body);
    Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
    return ExprError();
  }

  StmtResult Stmt(ParseCompoundStatementBody());
  BodyScope.Exit();

  if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
    return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());

  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
  return ExprError();
}

/// ParseCXXCasts - This handles the various ways to cast expressions to another
/// type.
///
///       postfix-expression: [C++ 5.2p1]
///         'dynamic_cast' '<' type-name '>' '(' expression ')'
///         'static_cast' '<' type-name '>' '(' expression ')'
///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
///         'const_cast' '<' type-name '>' '(' expression ')'
///
ExprResult Parser::ParseCXXCasts() {
  tok::TokenKind Kind = Tok.getKind();
  const char *CastName = nullptr; // For error messages

  switch (Kind) {
  default: llvm_unreachable("Unknown C++ cast!");
  case tok::kw_const_cast:       CastName = "const_cast";       break;
  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
  case tok::kw_static_cast:      CastName = "static_cast";      break;
  }

  SourceLocation OpLoc = ConsumeToken();
  SourceLocation LAngleBracketLoc = Tok.getLocation();

  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
  // diagnose error, suggest fix, and recover parsing.
  if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
    Token Next = NextToken();
    if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
      FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
  }

  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
    return ExprError();

  // Parse the common declaration-specifiers piece.
  DeclSpec DS(AttrFactory);
  ParseSpecifierQualifierList(DS);

  // Parse the abstract-declarator, if present.
  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
  ParseDeclarator(DeclaratorInfo);

  SourceLocation RAngleBracketLoc = Tok.getLocation();

  if (ExpectAndConsume(tok::greater))
    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);

  BalancedDelimiterTracker T(*this, tok::l_paren);

  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
    return ExprError();

  ExprResult Result = ParseExpression();

  // Match the ')'.
  T.consumeClose();

  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
                                       LAngleBracketLoc, DeclaratorInfo,
                                       RAngleBracketLoc,
                                       T.getOpenLocation(), Result.get(),
                                       T.getCloseLocation());

  return Result;
}

/// ParseCXXTypeid - This handles the C++ typeid expression.
///
///       postfix-expression: [C++ 5.2p1]
///         'typeid' '(' expression ')'
///         'typeid' '(' type-id ')'
///
ExprResult Parser::ParseCXXTypeid() {
  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");

  SourceLocation OpLoc = ConsumeToken();
  SourceLocation LParenLoc, RParenLoc;
  BalancedDelimiterTracker T(*this, tok::l_paren);

  // typeid expressions are always parenthesized.
  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
    return ExprError();
  LParenLoc = T.getOpenLocation();

  ExprResult Result;

  // C++0x [expr.typeid]p3:
  //   When typeid is applied to an expression other than an lvalue of a
  //   polymorphic class type [...] The expression is an unevaluated
  //   operand (Clause 5).
  //
  // Note that we can't tell whether the expression is an lvalue of a
  // polymorphic class type until after we've parsed the expression; we
  // speculatively assume the subexpression is unevaluated, and fix it up
  // later.
  //
  // We enter the unevaluated context before trying to determine whether we
  // have a type-id, because the tentative parse logic will try to resolve
  // names, and must treat them as unevaluated.
  EnterExpressionEvaluationContext Unevaluated(
      Actions, Sema::ExpressionEvaluationContext::Unevaluated,
      Sema::ReuseLambdaContextDecl);

  if (isTypeIdInParens()) {
    TypeResult Ty = ParseTypeName();

    // Match the ')'.
    T.consumeClose();
    RParenLoc = T.getCloseLocation();
    if (Ty.isInvalid() || RParenLoc.isInvalid())
      return ExprError();

    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
                                    Ty.get().getAsOpaquePtr(), RParenLoc);
  } else {
    Result = ParseExpression();

    // Match the ')'.
    if (Result.isInvalid())
      SkipUntil(tok::r_paren, StopAtSemi);
    else {
      T.consumeClose();
      RParenLoc = T.getCloseLocation();
      if (RParenLoc.isInvalid())
        return ExprError();

      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
                                      Result.get(), RParenLoc);
    }
  }

  return Result;
}

/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
///
///         '__uuidof' '(' expression ')'
///         '__uuidof' '(' type-id ')'
///
ExprResult Parser::ParseCXXUuidof() {
  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");

  SourceLocation OpLoc = ConsumeToken();
  BalancedDelimiterTracker T(*this, tok::l_paren);

  // __uuidof expressions are always parenthesized.
  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
    return ExprError();

  ExprResult Result;

  if (isTypeIdInParens()) {
    TypeResult Ty = ParseTypeName();

    // Match the ')'.
    T.consumeClose();

    if (Ty.isInvalid())
      return ExprError();

    Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
                                    Ty.get().getAsOpaquePtr(),
                                    T.getCloseLocation());
  } else {
    EnterExpressionEvaluationContext Unevaluated(
        Actions, Sema::ExpressionEvaluationContext::Unevaluated);
    Result = ParseExpression();

    // Match the ')'.
    if (Result.isInvalid())
      SkipUntil(tok::r_paren, StopAtSemi);
    else {
      T.consumeClose();

      Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
                                      /*isType=*/false,
                                      Result.get(), T.getCloseLocation());
    }
  }

  return Result;
}

/// Parse a C++ pseudo-destructor expression after the base,
/// . or -> operator, and nested-name-specifier have already been
/// parsed.
///
///       postfix-expression: [C++ 5.2]
///         postfix-expression . pseudo-destructor-name
///         postfix-expression -> pseudo-destructor-name
///
///       pseudo-destructor-name:
///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
///         ::[opt] nested-name-specifier template simple-template-id ::
///                 ~type-name
///         ::[opt] nested-name-specifier[opt] ~type-name
///
ExprResult
Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
                                 tok::TokenKind OpKind,
                                 CXXScopeSpec &SS,
                                 ParsedType ObjectType) {
  // We're parsing either a pseudo-destructor-name or a dependent
  // member access that has the same form as a
  // pseudo-destructor-name. We parse both in the same way and let
  // the action model sort them out.
  //
  // Note that the ::[opt] nested-name-specifier[opt] has already
  // been parsed, and if there was a simple-template-id, it has
  // been coalesced into a template-id annotation token.
  UnqualifiedId FirstTypeName;
  SourceLocation CCLoc;
  if (Tok.is(tok::identifier)) {
    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
    ConsumeToken();
    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
    CCLoc = ConsumeToken();
  } else if (Tok.is(tok::annot_template_id)) {
    // FIXME: retrieve TemplateKWLoc from template-id annotation and
    // store it in the pseudo-dtor node (to be used when instantiating it).
    FirstTypeName.setTemplateId(
                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
    ConsumeAnnotationToken();
    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
    CCLoc = ConsumeToken();
  } else {
    FirstTypeName.setIdentifier(nullptr, SourceLocation());
  }

  // Parse the tilde.
  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
  SourceLocation TildeLoc = ConsumeToken();

  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
    DeclSpec DS(AttrFactory);
    ParseDecltypeSpecifier(DS);
    if (DS.getTypeSpecType() == TST_error)
      return ExprError();
    return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
                                             TildeLoc, DS);
  }

  if (!Tok.is(tok::identifier)) {
    Diag(Tok, diag::err_destructor_tilde_identifier);
    return ExprError();
  }

  // Parse the second type.
  UnqualifiedId SecondTypeName;
  IdentifierInfo *Name = Tok.getIdentifierInfo();
  SourceLocation NameLoc = ConsumeToken();
  SecondTypeName.setIdentifier(Name, NameLoc);

  // If there is a '<', the second type name is a template-id. Parse
  // it as such.
  if (Tok.is(tok::less) &&
      ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
                                   Name, NameLoc,
                                   false, ObjectType, SecondTypeName,
                                   /*AssumeTemplateName=*/true))
    return ExprError();

  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
                                           SS, FirstTypeName, CCLoc, TildeLoc,
                                           SecondTypeName);
}

/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
///
///       boolean-literal: [C++ 2.13.5]
///         'true'
///         'false'
ExprResult Parser::ParseCXXBoolLiteral() {
  tok::TokenKind Kind = Tok.getKind();
  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
}

/// ParseThrowExpression - This handles the C++ throw expression.
///
///       throw-expression: [C++ 15]
///         'throw' assignment-expression[opt]
ExprResult Parser::ParseThrowExpression() {
  assert(Tok.is(tok::kw_throw) && "Not throw!");
  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.

  // If the current token isn't the start of an assignment-expression,
  // then the expression is not present.  This handles things like:
  //   "C ? throw : (void)42", which is crazy but legal.
  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
  case tok::semi:
  case tok::r_paren:
  case tok::r_square:
  case tok::r_brace:
  case tok::colon:
  case tok::comma:
    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);

  default:
    ExprResult Expr(ParseAssignmentExpression());
    if (Expr.isInvalid()) return Expr;
    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
  }
}

/// Parse the C++ Coroutines co_yield expression.
///
///       co_yield-expression:
///         'co_yield' assignment-expression[opt]
ExprResult Parser::ParseCoyieldExpression() {
  assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");

  SourceLocation Loc = ConsumeToken();
  ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
                                         : ParseAssignmentExpression();
  if (!Expr.isInvalid())
    Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
  return Expr;
}

/// ParseCXXThis - This handles the C++ 'this' pointer.
///
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
/// a non-lvalue expression whose value is the address of the object for which
/// the function is called.
ExprResult Parser::ParseCXXThis() {
  assert(Tok.is(tok::kw_this) && "Not 'this'!");
  SourceLocation ThisLoc = ConsumeToken();
  return Actions.ActOnCXXThis(ThisLoc);
}

/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
/// See [C++ 5.2.3].
///
///       postfix-expression: [C++ 5.2p1]
///         simple-type-specifier '(' expression-list[opt] ')'
/// [C++0x] simple-type-specifier braced-init-list
///         typename-specifier '(' expression-list[opt] ')'
/// [C++0x] typename-specifier braced-init-list
///
/// In C++1z onwards, the type specifier can also be a template-name.
ExprResult
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
  Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCastContext);
  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();

  assert((Tok.is(tok::l_paren) ||
          (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
         && "Expected '(' or '{'!");

  if (Tok.is(tok::l_brace)) {
    ExprResult Init = ParseBraceInitializer();
    if (Init.isInvalid())
      return Init;
    Expr *InitList = Init.get();
    return Actions.ActOnCXXTypeConstructExpr(
        TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
        InitList->getEndLoc(), /*ListInitialization=*/true);
  } else {
    BalancedDelimiterTracker T(*this, tok::l_paren);
    T.consumeOpen();

    ExprVector Exprs;
    CommaLocsTy CommaLocs;

    if (Tok.isNot(tok::r_paren)) {
      if (ParseExpressionList(Exprs, CommaLocs, [&] {
            QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
                getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
                DS.getEndLoc(), Exprs, T.getOpenLocation());
            CalledSignatureHelp = true;
            Actions.CodeCompleteExpression(getCurScope(), PreferredType);
          })) {
        if (PP.isCodeCompletionReached() && !CalledSignatureHelp) {
          Actions.ProduceConstructorSignatureHelp(
              getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
              DS.getEndLoc(), Exprs, T.getOpenLocation());
          CalledSignatureHelp = true;
        }
        SkipUntil(tok::r_paren, StopAtSemi);
        return ExprError();
      }
    }

    // Match the ')'.
    T.consumeClose();

    // TypeRep could be null, if it references an invalid typedef.
    if (!TypeRep)
      return ExprError();

    assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
           "Unexpected number of commas!");
    return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
                                             Exprs, T.getCloseLocation(),
                                             /*ListInitialization=*/false);
  }
}

/// ParseCXXCondition - if/switch/while condition expression.
///
///       condition:
///         expression
///         type-specifier-seq declarator '=' assignment-expression
/// [C++11] type-specifier-seq declarator '=' initializer-clause
/// [C++11] type-specifier-seq declarator braced-init-list
/// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
///             brace-or-equal-initializer
/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
///             '=' assignment-expression
///
/// In C++1z, a condition may in some contexts be preceded by an
/// optional init-statement. This function will parse that too.
///
/// \param InitStmt If non-null, an init-statement is permitted, and if present
/// will be parsed and stored here.
///
/// \param Loc The location of the start of the statement that requires this
/// condition, e.g., the "for" in a for loop.
///
/// \param FRI If non-null, a for range declaration is permitted, and if
/// present will be parsed and stored here, and a null result will be returned.
///
/// \returns The parsed condition.
Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
                                                SourceLocation Loc,
                                                Sema::ConditionKind CK,
                                                ForRangeInfo *FRI) {
  ParenBraceBracketBalancer BalancerRAIIObj(*this);

  if (Tok.is(tok::code_completion)) {
    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
    cutOffParsing();
    return Sema::ConditionError();
  }

  ParsedAttributesWithRange attrs(AttrFactory);
  MaybeParseCXX11Attributes(attrs);

  const auto WarnOnInit = [this, &CK] {
    Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
                                ? diag::warn_cxx14_compat_init_statement
                                : diag::ext_init_statement)
        << (CK == Sema::ConditionKind::Switch);
  };

  // Determine what kind of thing we have.
  switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
  case ConditionOrInitStatement::Expression: {
    ProhibitAttributes(attrs);

    // We can have an empty expression here.
    //   if (; true);
    if (InitStmt && Tok.is(tok::semi)) {
      WarnOnInit();
      SourceLocation SemiLoc = Tok.getLocation();
      if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
        Diag(SemiLoc, diag::warn_empty_init_statement)
            << (CK == Sema::ConditionKind::Switch)
            << FixItHint::CreateRemoval(SemiLoc);
      }
      ConsumeToken();
      *InitStmt = Actions.ActOnNullStmt(SemiLoc);
      return ParseCXXCondition(nullptr, Loc, CK);
    }

    // Parse the expression.
    ExprResult Expr = ParseExpression(); // expression
    if (Expr.isInvalid())
      return Sema::ConditionError();

    if (InitStmt && Tok.is(tok::semi)) {
      WarnOnInit();
      *InitStmt = Actions.ActOnExprStmt(Expr.get());
      ConsumeToken();
      return ParseCXXCondition(nullptr, Loc, CK);
    }

    return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
  }

  case ConditionOrInitStatement::InitStmtDecl: {
    WarnOnInit();
    SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
    DeclGroupPtrTy DG =
        ParseSimpleDeclaration(DeclaratorContext::InitStmtContext, DeclEnd,
                               attrs, /*RequireSemi=*/true);
    *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
    return ParseCXXCondition(nullptr, Loc, CK);
  }

  case ConditionOrInitStatement::ForRangeDecl: {
    assert(FRI && "should not parse a for range declaration here");
    SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
    DeclGroupPtrTy DG = ParseSimpleDeclaration(
        DeclaratorContext::ForContext, DeclEnd, attrs, false, FRI);
    FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
    return Sema::ConditionResult();
  }

  case ConditionOrInitStatement::ConditionDecl:
  case ConditionOrInitStatement::Error:
    break;
  }

  // type-specifier-seq
  DeclSpec DS(AttrFactory);
  DS.takeAttributesFrom(attrs);
  ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);

  // declarator
  Declarator DeclaratorInfo(DS, DeclaratorContext::ConditionContext);
  ParseDeclarator(DeclaratorInfo);

  // simple-asm-expr[opt]
  if (Tok.is(tok::kw_asm)) {
    SourceLocation Loc;
    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
    if (AsmLabel.isInvalid()) {
      SkipUntil(tok::semi, StopAtSemi);
      return Sema::ConditionError();
    }
    DeclaratorInfo.setAsmLabel(AsmLabel.get());
    DeclaratorInfo.SetRangeEnd(Loc);
  }

  // If attributes are present, parse them.
  MaybeParseGNUAttributes(DeclaratorInfo);

  // Type-check the declaration itself.
  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
                                                        DeclaratorInfo);
  if (Dcl.isInvalid())
    return Sema::ConditionError();
  Decl *DeclOut = Dcl.get();

  // '=' assignment-expression
  // If a '==' or '+=' is found, suggest a fixit to '='.
  bool CopyInitialization = isTokenEqualOrEqualTypo();
  if (CopyInitialization)
    ConsumeToken();

  ExprResult InitExpr = ExprError();
  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
    Diag(Tok.getLocation(),
         diag::warn_cxx98_compat_generalized_initializer_lists);
    InitExpr = ParseBraceInitializer();
  } else if (CopyInitialization) {
    InitExpr = ParseAssignmentExpression();
  } else if (Tok.is(tok::l_paren)) {
    // This was probably an attempt to initialize the variable.
    SourceLocation LParen = ConsumeParen(), RParen = LParen;
    if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
      RParen = ConsumeParen();
    Diag(DeclOut->getLocation(),
         diag::err_expected_init_in_condition_lparen)
      << SourceRange(LParen, RParen);
  } else {
    Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
  }

  if (!InitExpr.isInvalid())
    Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
  else
    Actions.ActOnInitializerError(DeclOut);

  Actions.FinalizeDeclaration(DeclOut);
  return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
}

/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
///
///       simple-type-specifier:
///         '::'[opt] nested-name-specifier[opt] type-name
///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
///         char
///         wchar_t
///         bool
///         short
///         int
///         long
///         signed
///         unsigned
///         float
///         double
///         void
/// [GNU]   typeof-specifier
/// [C++0x] auto               [TODO]
///
///       type-name:
///         class-name
///         enum-name
///         typedef-name
///
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
  DS.SetRangeStart(Tok.getLocation());
  const char *PrevSpec;
  unsigned DiagID;
  SourceLocation Loc = Tok.getLocation();
  const clang::PrintingPolicy &Policy =
      Actions.getASTContext().getPrintingPolicy();

  switch (Tok.getKind()) {
  case tok::identifier:   // foo::bar
  case tok::coloncolon:   // ::foo::bar
    llvm_unreachable("Annotation token should already be formed!");
  default:
    llvm_unreachable("Not a simple-type-specifier token!");

  // type-name
  case tok::annot_typename: {
    if (getTypeAnnotation(Tok))
      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
                         getTypeAnnotation(Tok), Policy);
    else
      DS.SetTypeSpecError();

    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
    ConsumeAnnotationToken();

    DS.Finish(Actions, Policy);
    return;
  }

  // builtin types
  case tok::kw_short:
    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_long:
    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw___int64:
    DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_signed:
    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
    break;
  case tok::kw_unsigned:
    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
    break;
  case tok::kw_void:
    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_char:
    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_int:
    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw___int128:
    DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_half:
    DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_float:
    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_double:
    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw__Float16:
    DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw___float128:
    DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_wchar_t:
    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_char8_t:
    DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_char16_t:
    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_char32_t:
    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::kw_bool:
    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
    break;
  case tok::annot_decltype:
  case tok::kw_decltype:
    DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
    return DS.Finish(Actions, Policy);

  // GNU typeof support.
  case tok::kw_typeof:
    ParseTypeofSpecifier(DS);
    DS.Finish(Actions, Policy);
    return;
  }
  ConsumeAnyToken();
  DS.SetRangeEnd(PrevTokLocation);
  DS.Finish(Actions, Policy);
}

/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
/// e.g., "const short int". Note that the DeclSpec is *not* finished
/// by parsing the type-specifier-seq, because these sequences are
/// typically followed by some form of declarator. Returns true and
/// emits diagnostics if this is not a type-specifier-seq, false
/// otherwise.
///
///   type-specifier-seq: [C++ 8.1]
///     type-specifier type-specifier-seq[opt]
///
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
  ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
  DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
  return false;
}

/// Finish parsing a C++ unqualified-id that is a template-id of
/// some form.
///
/// This routine is invoked when a '<' is encountered after an identifier or
/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
/// whether the unqualified-id is actually a template-id. This routine will
/// then parse the template arguments and form the appropriate template-id to
/// return to the caller.
///
/// \param SS the nested-name-specifier that precedes this template-id, if
/// we're actually parsing a qualified-id.
///
/// \param Name for constructor and destructor names, this is the actual
/// identifier that may be a template-name.
///
/// \param NameLoc the location of the class-name in a constructor or
/// destructor.
///
/// \param EnteringContext whether we're entering the scope of the
/// nested-name-specifier.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Id as input, describes the template-name or operator-function-id
/// that precedes the '<'. If template arguments were parsed successfully,
/// will be updated with the template-id.
///
/// \param AssumeTemplateId When true, this routine will assume that the name
/// refers to a template without performing name lookup to verify.
///
/// \returns true if a parse error occurred, false otherwise.
bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
                                          SourceLocation TemplateKWLoc,
                                          IdentifierInfo *Name,
                                          SourceLocation NameLoc,
                                          bool EnteringContext,
                                          ParsedType ObjectType,
                                          UnqualifiedId &Id,
                                          bool AssumeTemplateId) {
  assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");

  TemplateTy Template;
  TemplateNameKind TNK = TNK_Non_template;
  switch (Id.getKind()) {
  case UnqualifiedIdKind::IK_Identifier:
  case UnqualifiedIdKind::IK_OperatorFunctionId:
  case UnqualifiedIdKind::IK_LiteralOperatorId:
    if (AssumeTemplateId) {
      // We defer the injected-class-name checks until we've found whether
      // this template-id is used to form a nested-name-specifier or not.
      TNK = Actions.ActOnDependentTemplateName(
          getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
          Template, /*AllowInjectedClassName*/ true);
      if (TNK == TNK_Non_template)
        return true;
    } else {
      bool MemberOfUnknownSpecialization;
      TNK = Actions.isTemplateName(getCurScope(), SS,
                                   TemplateKWLoc.isValid(), Id,
                                   ObjectType, EnteringContext, Template,
                                   MemberOfUnknownSpecialization);

      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
          ObjectType && IsTemplateArgumentList()) {
        // We have something like t->getAs<T>(), where getAs is a
        // member of an unknown specialization. However, this will only
        // parse correctly as a template, so suggest the keyword 'template'
        // before 'getAs' and treat this as a dependent template name.
        std::string Name;
        if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
          Name = Id.Identifier->getName();
        else {
          Name = "operator ";
          if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
          else
            Name += Id.Identifier->getName();
        }
        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
          << Name
          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
        TNK = Actions.ActOnDependentTemplateName(
            getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
            Template, /*AllowInjectedClassName*/ true);
        if (TNK == TNK_Non_template)
          return true;
      }
    }
    break;

  case UnqualifiedIdKind::IK_ConstructorName: {
    UnqualifiedId TemplateName;
    bool MemberOfUnknownSpecialization;
    TemplateName.setIdentifier(Name, NameLoc);
    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
                                 TemplateName, ObjectType,
                                 EnteringContext, Template,
                                 MemberOfUnknownSpecialization);
    break;
  }

  case UnqualifiedIdKind::IK_DestructorName: {
    UnqualifiedId TemplateName;
    bool MemberOfUnknownSpecialization;
    TemplateName.setIdentifier(Name, NameLoc);
    if (ObjectType) {
      TNK = Actions.ActOnDependentTemplateName(
          getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
          EnteringContext, Template, /*AllowInjectedClassName*/ true);
      if (TNK == TNK_Non_template)
        return true;
    } else {
      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
                                   TemplateName, ObjectType,
                                   EnteringContext, Template,
                                   MemberOfUnknownSpecialization);

      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
        Diag(NameLoc, diag::err_destructor_template_id)
          << Name << SS.getRange();
        return true;
      }
    }
    break;
  }

  default:
    return false;
  }

  if (TNK == TNK_Non_template)
    return false;

  // Parse the enclosed template argument list.
  SourceLocation LAngleLoc, RAngleLoc;
  TemplateArgList TemplateArgs;
  if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
                                       RAngleLoc))
    return true;

  if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
      Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
      Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
    // Form a parsed representation of the template-id to be stored in the
    // UnqualifiedId.

    // FIXME: Store name for literal operator too.
    IdentifierInfo *TemplateII =
        Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
                                                         : nullptr;
    OverloadedOperatorKind OpKind =
        Id.getKind() == UnqualifiedIdKind::IK_Identifier
            ? OO_None
            : Id.OperatorFunctionId.Operator;

    TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
        SS, TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
        LAngleLoc, RAngleLoc, TemplateArgs, TemplateIds);

    Id.setTemplateId(TemplateId);
    return false;
  }

  // Bundle the template arguments together.
  ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);

  // Constructor and destructor names.
  TypeResult Type
    = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
                                  Template, Name, NameLoc,
                                  LAngleLoc, TemplateArgsPtr, RAngleLoc,
                                  /*IsCtorOrDtorName=*/true);
  if (Type.isInvalid())
    return true;

  if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
  else
    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);

  return false;
}

/// Parse an operator-function-id or conversion-function-id as part
/// of a C++ unqualified-id.
///
/// This routine is responsible only for parsing the operator-function-id or
/// conversion-function-id; it does not handle template arguments in any way.
///
/// \code
///       operator-function-id: [C++ 13.5]
///         'operator' operator
///
///       operator: one of
///            new   delete  new[]   delete[]
///            +     -    *  /    %  ^    &   |   ~
///            !     =    <  >    += -=   *=  /=  %=
///            ^=    &=   |= <<   >> >>= <<=  ==  !=
///            <=    >=   && ||   ++ --   ,   ->* ->
///            ()    []   <=>
///
///       conversion-function-id: [C++ 12.3.2]
///         operator conversion-type-id
///
///       conversion-type-id:
///         type-specifier-seq conversion-declarator[opt]
///
///       conversion-declarator:
///         ptr-operator conversion-declarator[opt]
/// \endcode
///
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
                                        ParsedType ObjectType,
                                        UnqualifiedId &Result) {
  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");

  // Consume the 'operator' keyword.
  SourceLocation KeywordLoc = ConsumeToken();

  // Determine what kind of operator name we have.
  unsigned SymbolIdx = 0;
  SourceLocation SymbolLocations[3];
  OverloadedOperatorKind Op = OO_None;
  switch (Tok.getKind()) {
    case tok::kw_new:
    case tok::kw_delete: {
      bool isNew = Tok.getKind() == tok::kw_new;
      // Consume the 'new' or 'delete'.
      SymbolLocations[SymbolIdx++] = ConsumeToken();
      // Check for array new/delete.
      if (Tok.is(tok::l_square) &&
          (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
        // Consume the '[' and ']'.
        BalancedDelimiterTracker T(*this, tok::l_square);
        T.consumeOpen();
        T.consumeClose();
        if (T.getCloseLocation().isInvalid())
          return true;

        SymbolLocations[SymbolIdx++] = T.getOpenLocation();
        SymbolLocations[SymbolIdx++] = T.getCloseLocation();
        Op = isNew? OO_Array_New : OO_Array_Delete;
      } else {
        Op = isNew? OO_New : OO_Delete;
      }
      break;
    }

#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
    case tok::Token:                                                     \
      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
      Op = OO_##Name;                                                    \
      break;
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"

    case tok::l_paren: {
      // Consume the '(' and ')'.
      BalancedDelimiterTracker T(*this, tok::l_paren);
      T.consumeOpen();
      T.consumeClose();
      if (T.getCloseLocation().isInvalid())
        return true;

      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
      Op = OO_Call;
      break;
    }

    case tok::l_square: {
      // Consume the '[' and ']'.
      BalancedDelimiterTracker T(*this, tok::l_square);
      T.consumeOpen();
      T.consumeClose();
      if (T.getCloseLocation().isInvalid())
        return true;

      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
      Op = OO_Subscript;
      break;
    }

    case tok::code_completion: {
      // Code completion for the operator name.
      Actions.CodeCompleteOperatorName(getCurScope());
      cutOffParsing();
      // Don't try to parse any further.
      return true;
    }

    default:
      break;
  }

  if (Op != OO_None) {
    // We have parsed an operator-function-id.
    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
    return false;
  }

  // Parse a literal-operator-id.
  //
  //   literal-operator-id: C++11 [over.literal]
  //     operator string-literal identifier
  //     operator user-defined-string-literal

  if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
    Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);

    SourceLocation DiagLoc;
    unsigned DiagId = 0;

    // We're past translation phase 6, so perform string literal concatenation
    // before checking for "".
    SmallVector<Token, 4> Toks;
    SmallVector<SourceLocation, 4> TokLocs;
    while (isTokenStringLiteral()) {
      if (!Tok.is(tok::string_literal) && !DiagId) {
        // C++11 [over.literal]p1:
        //   The string-literal or user-defined-string-literal in a
        //   literal-operator-id shall have no encoding-prefix [...].
        DiagLoc = Tok.getLocation();
        DiagId = diag::err_literal_operator_string_prefix;
      }
      Toks.push_back(Tok);
      TokLocs.push_back(ConsumeStringToken());
    }

    StringLiteralParser Literal(Toks, PP);
    if (Literal.hadError)
      return true;

    // Grab the literal operator's suffix, which will be either the next token
    // or a ud-suffix from the string literal.
    IdentifierInfo *II = nullptr;
    SourceLocation SuffixLoc;
    if (!Literal.getUDSuffix().empty()) {
      II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
      SuffixLoc =
        Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
                                       Literal.getUDSuffixOffset(),
                                       PP.getSourceManager(), getLangOpts());
    } else if (Tok.is(tok::identifier)) {
      II = Tok.getIdentifierInfo();
      SuffixLoc = ConsumeToken();
      TokLocs.push_back(SuffixLoc);
    } else {
      Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
      return true;
    }

    // The string literal must be empty.
    if (!Literal.GetString().empty() || Literal.Pascal) {
      // C++11 [over.literal]p1:
      //   The string-literal or user-defined-string-literal in a
      //   literal-operator-id shall [...] contain no characters
      //   other than the implicit terminating '\0'.
      DiagLoc = TokLocs.front();
      DiagId = diag::err_literal_operator_string_not_empty;
    }

    if (DiagId) {
      // This isn't a valid literal-operator-id, but we think we know
      // what the user meant. Tell them what they should have written.
      SmallString<32> Str;
      Str += "\"\"";
      Str += II->getName();
      Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
          SourceRange(TokLocs.front(), TokLocs.back()), Str);
    }

    Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);

    return Actions.checkLiteralOperatorId(SS, Result);
  }

  // Parse a conversion-function-id.
  //
  //   conversion-function-id: [C++ 12.3.2]
  //     operator conversion-type-id
  //
  //   conversion-type-id:
  //     type-specifier-seq conversion-declarator[opt]
  //
  //   conversion-declarator:
  //     ptr-operator conversion-declarator[opt]

  // Parse the type-specifier-seq.
  DeclSpec DS(AttrFactory);
  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
    return true;

  // Parse the conversion-declarator, which is merely a sequence of
  // ptr-operators.
  Declarator D(DS, DeclaratorContext::ConversionIdContext);
  ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);

  // Finish up the type.
  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
  if (Ty.isInvalid())
    return true;

  // Note that this is a conversion-function-id.
  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
                                 D.getSourceRange().getEnd());
  return false;
}

/// Parse a C++ unqualified-id (or a C identifier), which describes the
/// name of an entity.
///
/// \code
///       unqualified-id: [C++ expr.prim.general]
///         identifier
///         operator-function-id
///         conversion-function-id
/// [C++0x] literal-operator-id [TODO]
///         ~ class-name
///         template-id
///
/// \endcode
///
/// \param SS The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param AllowDestructorName whether we allow parsing of a destructor name.
///
/// \param AllowConstructorName whether we allow parsing a constructor name.
///
/// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
                                bool AllowDestructorName,
                                bool AllowConstructorName,
                                bool AllowDeductionGuide,
                                ParsedType ObjectType,
                                SourceLocation *TemplateKWLoc,
                                UnqualifiedId &Result) {
  if (TemplateKWLoc)
    *TemplateKWLoc = SourceLocation();

  // Handle 'A::template B'. This is for template-ids which have not
  // already been annotated by ParseOptionalCXXScopeSpecifier().
  bool TemplateSpecified = false;
  if (Tok.is(tok::kw_template)) {
    if (TemplateKWLoc && (ObjectType || SS.isSet())) {
      TemplateSpecified = true;
      *TemplateKWLoc = ConsumeToken();
    } else {
      SourceLocation TemplateLoc = ConsumeToken();
      Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
        << FixItHint::CreateRemoval(TemplateLoc);
    }
  }

  // unqualified-id:
  //   identifier
  //   template-id (when it hasn't already been annotated)
  if (Tok.is(tok::identifier)) {
    // Consume the identifier.
    IdentifierInfo *Id = Tok.getIdentifierInfo();
    SourceLocation IdLoc = ConsumeToken();

    if (!getLangOpts().CPlusPlus) {
      // If we're not in C++, only identifiers matter. Record the
      // identifier and return.
      Result.setIdentifier(Id, IdLoc);
      return false;
    }

    ParsedTemplateTy TemplateName;
    if (AllowConstructorName &&
        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
      // We have parsed a constructor name.
      ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
                                                 EnteringContext);
      if (!Ty)
        return true;
      Result.setConstructorName(Ty, IdLoc, IdLoc);
    } else if (getLangOpts().CPlusPlus17 &&
               AllowDeductionGuide && SS.isEmpty() &&
               Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
                                            &TemplateName)) {
      // We have parsed a template-name naming a deduction guide.
      Result.setDeductionGuideName(TemplateName, IdLoc);
    } else {
      // We have parsed an identifier.
      Result.setIdentifier(Id, IdLoc);
    }

    // If the next token is a '<', we may have a template.
    TemplateTy Template;
    if (Tok.is(tok::less))
      return ParseUnqualifiedIdTemplateId(
          SS, TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
          EnteringContext, ObjectType, Result, TemplateSpecified);
    else if (TemplateSpecified &&
             Actions.ActOnDependentTemplateName(
                 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
                 EnteringContext, Template,
                 /*AllowInjectedClassName*/ true) == TNK_Non_template)
      return true;

    return false;
  }

  // unqualified-id:
  //   template-id (already parsed and annotated)
  if (Tok.is(tok::annot_template_id)) {
    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);

    // If the template-name names the current class, then this is a constructor
    if (AllowConstructorName && TemplateId->Name &&
        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
      if (SS.isSet()) {
        // C++ [class.qual]p2 specifies that a qualified template-name
        // is taken as the constructor name where a constructor can be
        // declared. Thus, the template arguments are extraneous, so
        // complain about them and remove them entirely.
        Diag(TemplateId->TemplateNameLoc,
             diag::err_out_of_line_constructor_template_id)
          << TemplateId->Name
          << FixItHint::CreateRemoval(
                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
        ParsedType Ty = Actions.getConstructorName(
            *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
            EnteringContext);
        if (!Ty)
          return true;
        Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
                                  TemplateId->RAngleLoc);
        ConsumeAnnotationToken();
        return false;
      }

      Result.setConstructorTemplateId(TemplateId);
      ConsumeAnnotationToken();
      return false;
    }

    // We have already parsed a template-id; consume the annotation token as
    // our unqualified-id.
    Result.setTemplateId(TemplateId);
    SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
    if (TemplateLoc.isValid()) {
      if (TemplateKWLoc && (ObjectType || SS.isSet()))
        *TemplateKWLoc = TemplateLoc;
      else
        Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
            << FixItHint::CreateRemoval(TemplateLoc);
    }
    ConsumeAnnotationToken();
    return false;
  }

  // unqualified-id:
  //   operator-function-id
  //   conversion-function-id
  if (Tok.is(tok::kw_operator)) {
    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
      return true;

    // If we have an operator-function-id or a literal-operator-id and the next
    // token is a '<', we may have a
    //
    //   template-id:
    //     operator-function-id < template-argument-list[opt] >
    TemplateTy Template;
    if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
         Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
        Tok.is(tok::less))
      return ParseUnqualifiedIdTemplateId(
          SS, TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
          SourceLocation(), EnteringContext, ObjectType, Result,
          TemplateSpecified);
    else if (TemplateSpecified &&
             Actions.ActOnDependentTemplateName(
                 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
                 EnteringContext, Template,
                 /*AllowInjectedClassName*/ true) == TNK_Non_template)
      return true;

    return false;
  }

  if (getLangOpts().CPlusPlus &&
      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
    // C++ [expr.unary.op]p10:
    //   There is an ambiguity in the unary-expression ~X(), where X is a
    //   class-name. The ambiguity is resolved in favor of treating ~ as a
    //    unary complement rather than treating ~X as referring to a destructor.

    // Parse the '~'.
    SourceLocation TildeLoc = ConsumeToken();

    if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
      DeclSpec DS(AttrFactory);
      SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
      if (ParsedType Type =
              Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
        Result.setDestructorName(TildeLoc, Type, EndLoc);
        return false;
      }
      return true;
    }

    // Parse the class-name.
    if (Tok.isNot(tok::identifier)) {
      Diag(Tok, diag::err_destructor_tilde_identifier);
      return true;
    }

    // If the user wrote ~T::T, correct it to T::~T.
    DeclaratorScopeObj DeclScopeObj(*this, SS);
    if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
      // Don't let ParseOptionalCXXScopeSpecifier() "correct"
      // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
      // it will confuse this recovery logic.
      ColonProtectionRAIIObject ColonRAII(*this, false);

      if (SS.isSet()) {
        AnnotateScopeToken(SS, /*NewAnnotation*/true);
        SS.clear();
      }
      if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
        return true;
      if (SS.isNotEmpty())
        ObjectType = nullptr;
      if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
          !SS.isSet()) {
        Diag(TildeLoc, diag::err_destructor_tilde_scope);
        return true;
      }

      // Recover as if the tilde had been written before the identifier.
      Diag(TildeLoc, diag::err_destructor_tilde_scope)
        << FixItHint::CreateRemoval(TildeLoc)
        << FixItHint::CreateInsertion(Tok.getLocation(), "~");

      // Temporarily enter the scope for the rest of this function.
      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
        DeclScopeObj.EnterDeclaratorScope();
    }

    // Parse the class-name (or template-name in a simple-template-id).
    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
    SourceLocation ClassNameLoc = ConsumeToken();

    if (Tok.is(tok::less)) {
      Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
      return ParseUnqualifiedIdTemplateId(
          SS, TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
          ClassNameLoc, EnteringContext, ObjectType, Result, TemplateSpecified);
    }

    // Note that this is a destructor name.
    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
                                              ClassNameLoc, getCurScope(),
                                              SS, ObjectType,
                                              EnteringContext);
    if (!Ty)
      return true;

    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
    return false;
  }

  Diag(Tok, diag::err_expected_unqualified_id)
    << getLangOpts().CPlusPlus;
  return true;
}

/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
/// memory in a typesafe manner and call constructors.
///
/// This method is called to parse the new expression after the optional :: has
/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
/// is its location.  Otherwise, "Start" is the location of the 'new' token.
///
///        new-expression:
///                   '::'[opt] 'new' new-placement[opt] new-type-id
///                                     new-initializer[opt]
///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
///                                     new-initializer[opt]
///
///        new-placement:
///                   '(' expression-list ')'
///
///        new-type-id:
///                   type-specifier-seq new-declarator[opt]
/// [GNU]             attributes type-specifier-seq new-declarator[opt]
///
///        new-declarator:
///                   ptr-operator new-declarator[opt]
///                   direct-new-declarator
///
///        new-initializer:
///                   '(' expression-list[opt] ')'
/// [C++0x]           braced-init-list
///
ExprResult
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
  assert(Tok.is(tok::kw_new) && "expected 'new' token");
  ConsumeToken();   // Consume 'new'

  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
  // second form of new-expression. It can't be a new-type-id.

  ExprVector PlacementArgs;
  SourceLocation PlacementLParen, PlacementRParen;

  SourceRange TypeIdParens;
  DeclSpec DS(AttrFactory);
  Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNewContext);
  if (Tok.is(tok::l_paren)) {
    // If it turns out to be a placement, we change the type location.
    BalancedDelimiterTracker T(*this, tok::l_paren);
    T.consumeOpen();
    PlacementLParen = T.getOpenLocation();
    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
      SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
      return ExprError();
    }

    T.consumeClose();
    PlacementRParen = T.getCloseLocation();
    if (PlacementRParen.isInvalid()) {
      SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
      return ExprError();
    }

    if (PlacementArgs.empty()) {
      // Reset the placement locations. There was no placement.
      TypeIdParens = T.getRange();
      PlacementLParen = PlacementRParen = SourceLocation();
    } else {
      // We still need the type.
      if (Tok.is(tok::l_paren)) {
        BalancedDelimiterTracker T(*this, tok::l_paren);
        T.consumeOpen();
        MaybeParseGNUAttributes(DeclaratorInfo);
        ParseSpecifierQualifierList(DS);
        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
        ParseDeclarator(DeclaratorInfo);
        T.consumeClose();
        TypeIdParens = T.getRange();
      } else {
        MaybeParseGNUAttributes(DeclaratorInfo);
        if (ParseCXXTypeSpecifierSeq(DS))
          DeclaratorInfo.setInvalidType(true);
        else {
          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
          ParseDeclaratorInternal(DeclaratorInfo,
                                  &Parser::ParseDirectNewDeclarator);
        }
      }
    }
  } else {
    // A new-type-id is a simplified type-id, where essentially the
    // direct-declarator is replaced by a direct-new-declarator.
    MaybeParseGNUAttributes(DeclaratorInfo);
    if (ParseCXXTypeSpecifierSeq(DS))
      DeclaratorInfo.setInvalidType(true);
    else {
      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
      ParseDeclaratorInternal(DeclaratorInfo,
                              &Parser::ParseDirectNewDeclarator);
    }
  }
  if (DeclaratorInfo.isInvalidType()) {
    SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
    return ExprError();
  }

  ExprResult Initializer;

  if (Tok.is(tok::l_paren)) {
    SourceLocation ConstructorLParen, ConstructorRParen;
    ExprVector ConstructorArgs;
    BalancedDelimiterTracker T(*this, tok::l_paren);
    T.consumeOpen();
    ConstructorLParen = T.getOpenLocation();
    if (Tok.isNot(tok::r_paren)) {
      CommaLocsTy CommaLocs;
      if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
            ParsedType TypeRep =
                Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
            QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
                getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
                DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
            CalledSignatureHelp = true;
            Actions.CodeCompleteExpression(getCurScope(), PreferredType);
          })) {
        if (PP.isCodeCompletionReached() && !CalledSignatureHelp) {
          ParsedType TypeRep =
              Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
          Actions.ProduceConstructorSignatureHelp(
              getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
              DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
          CalledSignatureHelp = true;
        }
        SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
        return ExprError();
      }
    }
    T.consumeClose();
    ConstructorRParen = T.getCloseLocation();
    if (ConstructorRParen.isInvalid()) {
      SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
      return ExprError();
    }
    Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
                                             ConstructorRParen,
                                             ConstructorArgs);
  } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
    Diag(Tok.getLocation(),
         diag::warn_cxx98_compat_generalized_initializer_lists);
    Initializer = ParseBraceInitializer();
  }
  if (Initializer.isInvalid())
    return Initializer;

  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
                             PlacementArgs, PlacementRParen,
                             TypeIdParens, DeclaratorInfo, Initializer.get());
}

/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
/// passed to ParseDeclaratorInternal.
///
///        direct-new-declarator:
///                   '[' expression ']'
///                   direct-new-declarator '[' constant-expression ']'
///
void Parser::ParseDirectNewDeclarator(Declarator &D) {
  // Parse the array dimensions.
  bool first = true;
  while (Tok.is(tok::l_square)) {
    // An array-size expression can't start with a lambda.
    if (CheckProhibitedCXX11Attribute())
      continue;

    BalancedDelimiterTracker T(*this, tok::l_square);
    T.consumeOpen();

    ExprResult Size(first ? ParseExpression()
                                : ParseConstantExpression());
    if (Size.isInvalid()) {
      // Recover
      SkipUntil(tok::r_square, StopAtSemi);
      return;
    }
    first = false;

    T.consumeClose();

    // Attributes here appertain to the array type. C++11 [expr.new]p5.
    ParsedAttributes Attrs(AttrFactory);
    MaybeParseCXX11Attributes(Attrs);

    D.AddTypeInfo(DeclaratorChunk::getArray(0,
                                            /*static=*/false, /*star=*/false,
                                            Size.get(), T.getOpenLocation(),
                                            T.getCloseLocation()),
                  std::move(Attrs), T.getCloseLocation());

    if (T.getCloseLocation().isInvalid())
      return;
  }
}

/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
/// This ambiguity appears in the syntax of the C++ new operator.
///
///        new-expression:
///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
///                                     new-initializer[opt]
///
///        new-placement:
///                   '(' expression-list ')'
///
bool Parser::ParseExpressionListOrTypeId(
                                   SmallVectorImpl<Expr*> &PlacementArgs,
                                         Declarator &D) {
  // The '(' was already consumed.
  if (isTypeIdInParens()) {
    ParseSpecifierQualifierList(D.getMutableDeclSpec());
    D.SetSourceRange(D.getDeclSpec().getSourceRange());
    ParseDeclarator(D);
    return D.isInvalidType();
  }

  // It's not a type, it has to be an expression list.
  // Discard the comma locations - ActOnCXXNew has enough parameters.
  CommaLocsTy CommaLocs;
  return ParseExpressionList(PlacementArgs, CommaLocs);
}

/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
/// to free memory allocated by new.
///
/// This method is called to parse the 'delete' expression after the optional
/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
/// and "Start" is its location.  Otherwise, "Start" is the location of the
/// 'delete' token.
///
///        delete-expression:
///                   '::'[opt] 'delete' cast-expression
///                   '::'[opt] 'delete' '[' ']' cast-expression
ExprResult
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
  ConsumeToken(); // Consume 'delete'

  // Array delete?
  bool ArrayDelete = false;
  if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
    // C++11 [expr.delete]p1:
    //   Whenever the delete keyword is followed by empty square brackets, it
    //   shall be interpreted as [array delete].
    //   [Footnote: A lambda expression with a lambda-introducer that consists
    //              of empty square brackets can follow the delete keyword if
    //              the lambda expression is enclosed in parentheses.]
    // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
    //        lambda-introducer.
    ArrayDelete = true;
    BalancedDelimiterTracker T(*this, tok::l_square);

    T.consumeOpen();
    T.consumeClose();
    if (T.getCloseLocation().isInvalid())
      return ExprError();
  }

  ExprResult Operand(ParseCastExpression(false));
  if (Operand.isInvalid())
    return Operand;

  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
}

static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
  switch (kind) {
  default: llvm_unreachable("Not a known type trait");
#define TYPE_TRAIT_1(Spelling, Name, Key) \
case tok::kw_ ## Spelling: return UTT_ ## Name;
#define TYPE_TRAIT_2(Spelling, Name, Key) \
case tok::kw_ ## Spelling: return BTT_ ## Name;
#include "clang/Basic/TokenKinds.def"
#define TYPE_TRAIT_N(Spelling, Name, Key) \
  case tok::kw_ ## Spelling: return TT_ ## Name;
#include "clang/Basic/TokenKinds.def"
  }
}

static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
  switch(kind) {
  default: llvm_unreachable("Not a known binary type trait");
  case tok::kw___array_rank:                 return ATT_ArrayRank;
  case tok::kw___array_extent:               return ATT_ArrayExtent;
  }
}

static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
  switch(kind) {
  default: llvm_unreachable("Not a known unary expression trait.");
  case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
  case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
  }
}

static unsigned TypeTraitArity(tok::TokenKind kind) {
  switch (kind) {
    default: llvm_unreachable("Not a known type trait");
#define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
#include "clang/Basic/TokenKinds.def"
  }
}

/// Parse the built-in type-trait pseudo-functions that allow
/// implementation of the TR1/C++11 type traits templates.
///
///       primary-expression:
///          unary-type-trait '(' type-id ')'
///          binary-type-trait '(' type-id ',' type-id ')'
///          type-trait '(' type-id-seq ')'
///
///       type-id-seq:
///          type-id ...[opt] type-id-seq[opt]
///
ExprResult Parser::ParseTypeTrait() {
  tok::TokenKind Kind = Tok.getKind();
  unsigned Arity = TypeTraitArity(Kind);

  SourceLocation Loc = ConsumeToken();

  BalancedDelimiterTracker Parens(*this, tok::l_paren);
  if (Parens.expectAndConsume())
    return ExprError();

  SmallVector<ParsedType, 2> Args;
  do {
    // Parse the next type.
    TypeResult Ty = ParseTypeName();
    if (Ty.isInvalid()) {
      Parens.skipToEnd();
      return ExprError();
    }

    // Parse the ellipsis, if present.
    if (Tok.is(tok::ellipsis)) {
      Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
      if (Ty.isInvalid()) {
        Parens.skipToEnd();
        return ExprError();
      }
    }

    // Add this type to the list of arguments.
    Args.push_back(Ty.get());
  } while (TryConsumeToken(tok::comma));

  if (Parens.consumeClose())
    return ExprError();

  SourceLocation EndLoc = Parens.getCloseLocation();

  if (Arity && Args.size() != Arity) {
    Diag(EndLoc, diag::err_type_trait_arity)
      << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
    return ExprError();
  }

  if (!Arity && Args.empty()) {
    Diag(EndLoc, diag::err_type_trait_arity)
      << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
    return ExprError();
  }

  return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
}

/// ParseArrayTypeTrait - Parse the built-in array type-trait
/// pseudo-functions.
///
///       primary-expression:
/// [Embarcadero]     '__array_rank' '(' type-id ')'
/// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
///
ExprResult Parser::ParseArrayTypeTrait() {
  ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
  SourceLocation Loc = ConsumeToken();

  BalancedDelimiterTracker T(*this, tok::l_paren);
  if (T.expectAndConsume())
    return ExprError();

  TypeResult Ty = ParseTypeName();
  if (Ty.isInvalid()) {
    SkipUntil(tok::comma, StopAtSemi);
    SkipUntil(tok::r_paren, StopAtSemi);
    return ExprError();
  }

  switch (ATT) {
  case ATT_ArrayRank: {
    T.consumeClose();
    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
                                       T.getCloseLocation());
  }
  case ATT_ArrayExtent: {
    if (ExpectAndConsume(tok::comma)) {
      SkipUntil(tok::r_paren, StopAtSemi);
      return ExprError();
    }

    ExprResult DimExpr = ParseExpression();
    T.consumeClose();

    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
                                       T.getCloseLocation());
  }
  }
  llvm_unreachable("Invalid ArrayTypeTrait!");
}

/// ParseExpressionTrait - Parse built-in expression-trait
/// pseudo-functions like __is_lvalue_expr( xxx ).
///
///       primary-expression:
/// [Embarcadero]     expression-trait '(' expression ')'
///
ExprResult Parser::ParseExpressionTrait() {
  ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
  SourceLocation Loc = ConsumeToken();

  BalancedDelimiterTracker T(*this, tok::l_paren);
  if (T.expectAndConsume())
    return ExprError();

  ExprResult Expr = ParseExpression();

  T.consumeClose();

  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
                                      T.getCloseLocation());
}


/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
/// based on the context past the parens.
ExprResult
Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
                                         ParsedType &CastTy,
                                         BalancedDelimiterTracker &Tracker,
                                         ColonProtectionRAIIObject &ColonProt) {
  assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
  assert(isTypeIdInParens() && "Not a type-id!");

  ExprResult Result(true);
  CastTy = nullptr;

  // We need to disambiguate a very ugly part of the C++ syntax:
  //
  // (T())x;  - type-id
  // (T())*x; - type-id
  // (T())/x; - expression
  // (T());   - expression
  //
  // The bad news is that we cannot use the specialized tentative parser, since
  // it can only verify that the thing inside the parens can be parsed as
  // type-id, it is not useful for determining the context past the parens.
  //
  // The good news is that the parser can disambiguate this part without
  // making any unnecessary Action calls.
  //
  // It uses a scheme similar to parsing inline methods. The parenthesized
  // tokens are cached, the context that follows is determined (possibly by
  // parsing a cast-expression), and then we re-introduce the cached tokens
  // into the token stream and parse them appropriately.

  ParenParseOption ParseAs;
  CachedTokens Toks;

  // Store the tokens of the parentheses. We will parse them after we determine
  // the context that follows them.
  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
    // We didn't find the ')' we expected.
    Tracker.consumeClose();
    return ExprError();
  }

  if (Tok.is(tok::l_brace)) {
    ParseAs = CompoundLiteral;
  } else {
    bool NotCastExpr;
    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
      NotCastExpr = true;
    } else {
      // Try parsing the cast-expression that may follow.
      // If it is not a cast-expression, NotCastExpr will be true and no token
      // will be consumed.
      ColonProt.restore();
      Result = ParseCastExpression(false/*isUnaryExpression*/,
                                   false/*isAddressofOperand*/,
                                   NotCastExpr,
                                   // type-id has priority.
                                   IsTypeCast);
    }

    // If we parsed a cast-expression, it's really a type-id, otherwise it's
    // an expression.
    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
  }

  // Create a fake EOF to mark end of Toks buffer.
  Token AttrEnd;
  AttrEnd.startToken();
  AttrEnd.setKind(tok::eof);
  AttrEnd.setLocation(Tok.getLocation());
  AttrEnd.setEofData(Toks.data());
  Toks.push_back(AttrEnd);

  // The current token should go after the cached tokens.
  Toks.push_back(Tok);
  // Re-enter the stored parenthesized tokens into the token stream, so we may
  // parse them now.
  PP.EnterTokenStream(Toks, true /*DisableMacroExpansion*/);
  // Drop the current token and bring the first cached one. It's the same token
  // as when we entered this function.
  ConsumeAnyToken();

  if (ParseAs >= CompoundLiteral) {
    // Parse the type declarator.
    DeclSpec DS(AttrFactory);
    Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
    {
      ColonProtectionRAIIObject InnerColonProtection(*this);
      ParseSpecifierQualifierList(DS);
      ParseDeclarator(DeclaratorInfo);
    }

    // Match the ')'.
    Tracker.consumeClose();
    ColonProt.restore();

    // Consume EOF marker for Toks buffer.
    assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
    ConsumeAnyToken();

    if (ParseAs == CompoundLiteral) {
      ExprType = CompoundLiteral;
      if (DeclaratorInfo.isInvalidType())
        return ExprError();

      TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
      return ParseCompoundLiteralExpression(Ty.get(),
                                            Tracker.getOpenLocation(),
                                            Tracker.getCloseLocation());
    }

    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
    assert(ParseAs == CastExpr);

    if (DeclaratorInfo.isInvalidType())
      return ExprError();

    // Result is what ParseCastExpression returned earlier.
    if (!Result.isInvalid())
      Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
                                    DeclaratorInfo, CastTy,
                                    Tracker.getCloseLocation(), Result.get());
    return Result;
  }

  // Not a compound literal, and not followed by a cast-expression.
  assert(ParseAs == SimpleExpr);

  ExprType = SimpleExpr;
  Result = ParseExpression();
  if (!Result.isInvalid() && Tok.is(tok::r_paren))
    Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
                                    Tok.getLocation(), Result.get());

  // Match the ')'.
  if (Result.isInvalid()) {
    while (Tok.isNot(tok::eof))
      ConsumeAnyToken();
    assert(Tok.getEofData() == AttrEnd.getEofData());
    ConsumeAnyToken();
    return ExprError();
  }

  Tracker.consumeClose();
  // Consume EOF marker for Toks buffer.
  assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
  ConsumeAnyToken();
  return Result;
}