Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
//===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the JumpScopeChecker class, which is used to diagnose
// jumps that enter a protected scope in an invalid way.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "llvm/ADT/BitVector.h"
using namespace clang;

namespace {

/// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
/// into VLA and other protected scopes.  For example, this rejects:
///    goto L;
///    int a[n];
///  L:
///
class JumpScopeChecker {
  Sema &S;

  /// Permissive - True when recovering from errors, in which case precautions
  /// are taken to handle incomplete scope information.
  const bool Permissive;

  /// GotoScope - This is a record that we use to keep track of all of the
  /// scopes that are introduced by VLAs and other things that scope jumps like
  /// gotos.  This scope tree has nothing to do with the source scope tree,
  /// because you can have multiple VLA scopes per compound statement, and most
  /// compound statements don't introduce any scopes.
  struct GotoScope {
    /// ParentScope - The index in ScopeMap of the parent scope.  This is 0 for
    /// the parent scope is the function body.
    unsigned ParentScope;

    /// InDiag - The note to emit if there is a jump into this scope.
    unsigned InDiag;

    /// OutDiag - The note to emit if there is an indirect jump out
    /// of this scope.  Direct jumps always clean up their current scope
    /// in an orderly way.
    unsigned OutDiag;

    /// Loc - Location to emit the diagnostic.
    SourceLocation Loc;

    GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
              SourceLocation L)
      : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
  };

  SmallVector<GotoScope, 48> Scopes;
  llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
  SmallVector<Stmt*, 16> Jumps;

  SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
  SmallVector<LabelDecl*, 4> IndirectJumpTargets;
public:
  JumpScopeChecker(Stmt *Body, Sema &S);
private:
  void BuildScopeInformation(Decl *D, unsigned &ParentScope);
  void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl,
                             unsigned &ParentScope);
  void BuildScopeInformation(Stmt *S, unsigned &origParentScope);

  void VerifyJumps();
  void VerifyIndirectJumps();
  void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes);
  void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
                            LabelDecl *Target, unsigned TargetScope);
  void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
                 unsigned JumpDiag, unsigned JumpDiagWarning,
                 unsigned JumpDiagCXX98Compat);
  void CheckGotoStmt(GotoStmt *GS);

  unsigned GetDeepestCommonScope(unsigned A, unsigned B);
};
} // end anonymous namespace

#define CHECK_PERMISSIVE(x) (assert(Permissive || !(x)), (Permissive && (x)))

JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s)
    : S(s), Permissive(s.hasAnyUnrecoverableErrorsInThisFunction()) {
  // Add a scope entry for function scope.
  Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));

  // Build information for the top level compound statement, so that we have a
  // defined scope record for every "goto" and label.
  unsigned BodyParentScope = 0;
  BuildScopeInformation(Body, BodyParentScope);

  // Check that all jumps we saw are kosher.
  VerifyJumps();
  VerifyIndirectJumps();
}

/// GetDeepestCommonScope - Finds the innermost scope enclosing the
/// two scopes.
unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
  while (A != B) {
    // Inner scopes are created after outer scopes and therefore have
    // higher indices.
    if (A < B) {
      assert(Scopes[B].ParentScope < B);
      B = Scopes[B].ParentScope;
    } else {
      assert(Scopes[A].ParentScope < A);
      A = Scopes[A].ParentScope;
    }
  }
  return A;
}

typedef std::pair<unsigned,unsigned> ScopePair;

/// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
/// diagnostic that should be emitted if control goes over it. If not, return 0.
static ScopePair GetDiagForGotoScopeDecl(Sema &S, const Decl *D) {
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    unsigned InDiag = 0;
    unsigned OutDiag = 0;

    if (VD->getType()->isVariablyModifiedType())
      InDiag = diag::note_protected_by_vla;

    if (VD->hasAttr<BlocksAttr>())
      return ScopePair(diag::note_protected_by___block,
                       diag::note_exits___block);

    if (VD->hasAttr<CleanupAttr>())
      return ScopePair(diag::note_protected_by_cleanup,
                       diag::note_exits_cleanup);

    if (VD->hasLocalStorage()) {
      switch (VD->getType().isDestructedType()) {
      case QualType::DK_objc_strong_lifetime:
        return ScopePair(diag::note_protected_by_objc_strong_init,
                         diag::note_exits_objc_strong);

      case QualType::DK_objc_weak_lifetime:
        return ScopePair(diag::note_protected_by_objc_weak_init,
                         diag::note_exits_objc_weak);

      case QualType::DK_nontrivial_c_struct:
        return ScopePair(diag::note_protected_by_non_trivial_c_struct_init,
                         diag::note_exits_dtor);

      case QualType::DK_cxx_destructor:
        OutDiag = diag::note_exits_dtor;
        break;

      case QualType::DK_none:
        break;
      }
    }

    const Expr *Init = VD->getInit();
    if (S.Context.getLangOpts().CPlusPlus && VD->hasLocalStorage() && Init) {
      // C++11 [stmt.dcl]p3:
      //   A program that jumps from a point where a variable with automatic
      //   storage duration is not in scope to a point where it is in scope
      //   is ill-formed unless the variable has scalar type, class type with
      //   a trivial default constructor and a trivial destructor, a
      //   cv-qualified version of one of these types, or an array of one of
      //   the preceding types and is declared without an initializer.

      // C++03 [stmt.dcl.p3:
      //   A program that jumps from a point where a local variable
      //   with automatic storage duration is not in scope to a point
      //   where it is in scope is ill-formed unless the variable has
      //   POD type and is declared without an initializer.

      InDiag = diag::note_protected_by_variable_init;

      // For a variable of (array of) class type declared without an
      // initializer, we will have call-style initialization and the initializer
      // will be the CXXConstructExpr with no intervening nodes.
      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
        const CXXConstructorDecl *Ctor = CCE->getConstructor();
        if (Ctor->isTrivial() && Ctor->isDefaultConstructor() &&
            VD->getInitStyle() == VarDecl::CallInit) {
          if (OutDiag)
            InDiag = diag::note_protected_by_variable_nontriv_destructor;
          else if (!Ctor->getParent()->isPOD())
            InDiag = diag::note_protected_by_variable_non_pod;
          else
            InDiag = 0;
        }
      }
    }

    return ScopePair(InDiag, OutDiag);
  }

  if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    if (TD->getUnderlyingType()->isVariablyModifiedType())
      return ScopePair(isa<TypedefDecl>(TD)
                           ? diag::note_protected_by_vla_typedef
                           : diag::note_protected_by_vla_type_alias,
                       0);
  }

  return ScopePair(0U, 0U);
}

/// Build scope information for a declaration that is part of a DeclStmt.
void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
  // If this decl causes a new scope, push and switch to it.
  std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S, D);
  if (Diags.first || Diags.second) {
    Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
                               D->getLocation()));
    ParentScope = Scopes.size()-1;
  }

  // If the decl has an initializer, walk it with the potentially new
  // scope we just installed.
  if (VarDecl *VD = dyn_cast<VarDecl>(D))
    if (Expr *Init = VD->getInit())
      BuildScopeInformation(Init, ParentScope);
}

/// Build scope information for a captured block literal variables.
void JumpScopeChecker::BuildScopeInformation(VarDecl *D,
                                             const BlockDecl *BDecl,
                                             unsigned &ParentScope) {
  // exclude captured __block variables; there's no destructor
  // associated with the block literal for them.
  if (D->hasAttr<BlocksAttr>())
    return;
  QualType T = D->getType();
  QualType::DestructionKind destructKind = T.isDestructedType();
  if (destructKind != QualType::DK_none) {
    std::pair<unsigned,unsigned> Diags;
    switch (destructKind) {
      case QualType::DK_cxx_destructor:
        Diags = ScopePair(diag::note_enters_block_captures_cxx_obj,
                          diag::note_exits_block_captures_cxx_obj);
        break;
      case QualType::DK_objc_strong_lifetime:
        Diags = ScopePair(diag::note_enters_block_captures_strong,
                          diag::note_exits_block_captures_strong);
        break;
      case QualType::DK_objc_weak_lifetime:
        Diags = ScopePair(diag::note_enters_block_captures_weak,
                          diag::note_exits_block_captures_weak);
        break;
      case QualType::DK_nontrivial_c_struct:
        Diags = ScopePair(diag::note_enters_block_captures_non_trivial_c_struct,
                          diag::note_exits_block_captures_non_trivial_c_struct);
        break;
      case QualType::DK_none:
        llvm_unreachable("non-lifetime captured variable");
    }
    SourceLocation Loc = D->getLocation();
    if (Loc.isInvalid())
      Loc = BDecl->getLocation();
    Scopes.push_back(GotoScope(ParentScope,
                               Diags.first, Diags.second, Loc));
    ParentScope = Scopes.size()-1;
  }
}

/// BuildScopeInformation - The statements from CI to CE are known to form a
/// coherent VLA scope with a specified parent node.  Walk through the
/// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
/// walking the AST as needed.
void JumpScopeChecker::BuildScopeInformation(Stmt *S,
                                             unsigned &origParentScope) {
  // If this is a statement, rather than an expression, scopes within it don't
  // propagate out into the enclosing scope.  Otherwise we have to worry
  // about block literals, which have the lifetime of their enclosing statement.
  unsigned independentParentScope = origParentScope;
  unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S))
                            ? origParentScope : independentParentScope);

  unsigned StmtsToSkip = 0u;

  // If we found a label, remember that it is in ParentScope scope.
  switch (S->getStmtClass()) {
  case Stmt::AddrLabelExprClass:
    IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
    break;

  case Stmt::ObjCForCollectionStmtClass: {
    auto *CS = cast<ObjCForCollectionStmt>(S);
    unsigned Diag = diag::note_protected_by_objc_fast_enumeration;
    unsigned NewParentScope = Scopes.size();
    Scopes.push_back(GotoScope(ParentScope, Diag, 0, S->getBeginLoc()));
    BuildScopeInformation(CS->getBody(), NewParentScope);
    return;
  }

  case Stmt::IndirectGotoStmtClass:
    // "goto *&&lbl;" is a special case which we treat as equivalent
    // to a normal goto.  In addition, we don't calculate scope in the
    // operand (to avoid recording the address-of-label use), which
    // works only because of the restricted set of expressions which
    // we detect as constant targets.
    if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
      LabelAndGotoScopes[S] = ParentScope;
      Jumps.push_back(S);
      return;
    }

    LabelAndGotoScopes[S] = ParentScope;
    IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
    break;

  case Stmt::SwitchStmtClass:
    // Evaluate the C++17 init stmt and condition variable
    // before entering the scope of the switch statement.
    if (Stmt *Init = cast<SwitchStmt>(S)->getInit()) {
      BuildScopeInformation(Init, ParentScope);
      ++StmtsToSkip;
    }
    if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
      BuildScopeInformation(Var, ParentScope);
      ++StmtsToSkip;
    }
    LLVM_FALLTHROUGH;

  case Stmt::GotoStmtClass:
    // Remember both what scope a goto is in as well as the fact that we have
    // it.  This makes the second scan not have to walk the AST again.
    LabelAndGotoScopes[S] = ParentScope;
    Jumps.push_back(S);
    break;

  case Stmt::IfStmtClass: {
    IfStmt *IS = cast<IfStmt>(S);
    if (!(IS->isConstexpr() || IS->isObjCAvailabilityCheck()))
      break;

    unsigned Diag = IS->isConstexpr() ? diag::note_protected_by_constexpr_if
                                      : diag::note_protected_by_if_available;

    if (VarDecl *Var = IS->getConditionVariable())
      BuildScopeInformation(Var, ParentScope);

    // Cannot jump into the middle of the condition.
    unsigned NewParentScope = Scopes.size();
    Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc()));
    BuildScopeInformation(IS->getCond(), NewParentScope);

    // Jumps into either arm of an 'if constexpr' are not allowed.
    NewParentScope = Scopes.size();
    Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc()));
    BuildScopeInformation(IS->getThen(), NewParentScope);
    if (Stmt *Else = IS->getElse()) {
      NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc()));
      BuildScopeInformation(Else, NewParentScope);
    }
    return;
  }

  case Stmt::CXXTryStmtClass: {
    CXXTryStmt *TS = cast<CXXTryStmt>(S);
    {
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_cxx_try,
                                 diag::note_exits_cxx_try,
                                 TS->getSourceRange().getBegin()));
      if (Stmt *TryBlock = TS->getTryBlock())
        BuildScopeInformation(TryBlock, NewParentScope);
    }

    // Jump from the catch into the try is not allowed either.
    for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
      CXXCatchStmt *CS = TS->getHandler(I);
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_cxx_catch,
                                 diag::note_exits_cxx_catch,
                                 CS->getSourceRange().getBegin()));
      BuildScopeInformation(CS->getHandlerBlock(), NewParentScope);
    }
    return;
  }

  case Stmt::SEHTryStmtClass: {
    SEHTryStmt *TS = cast<SEHTryStmt>(S);
    {
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_seh_try,
                                 diag::note_exits_seh_try,
                                 TS->getSourceRange().getBegin()));
      if (Stmt *TryBlock = TS->getTryBlock())
        BuildScopeInformation(TryBlock, NewParentScope);
    }

    // Jump from __except or __finally into the __try are not allowed either.
    if (SEHExceptStmt *Except = TS->getExceptHandler()) {
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_seh_except,
                                 diag::note_exits_seh_except,
                                 Except->getSourceRange().getBegin()));
      BuildScopeInformation(Except->getBlock(), NewParentScope);
    } else if (SEHFinallyStmt *Finally = TS->getFinallyHandler()) {
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_seh_finally,
                                 diag::note_exits_seh_finally,
                                 Finally->getSourceRange().getBegin()));
      BuildScopeInformation(Finally->getBlock(), NewParentScope);
    }

    return;
  }

  case Stmt::DeclStmtClass: {
    // If this is a declstmt with a VLA definition, it defines a scope from here
    // to the end of the containing context.
    DeclStmt *DS = cast<DeclStmt>(S);
    // The decl statement creates a scope if any of the decls in it are VLAs
    // or have the cleanup attribute.
    for (auto *I : DS->decls())
      BuildScopeInformation(I, origParentScope);
    return;
  }

  case Stmt::ObjCAtTryStmtClass: {
    // Disallow jumps into any part of an @try statement by pushing a scope and
    // walking all sub-stmts in that scope.
    ObjCAtTryStmt *AT = cast<ObjCAtTryStmt>(S);
    // Recursively walk the AST for the @try part.
    {
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_objc_try,
                                 diag::note_exits_objc_try,
                                 AT->getAtTryLoc()));
      if (Stmt *TryPart = AT->getTryBody())
        BuildScopeInformation(TryPart, NewParentScope);
    }

    // Jump from the catch to the finally or try is not valid.
    for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
      ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_objc_catch,
                                 diag::note_exits_objc_catch,
                                 AC->getAtCatchLoc()));
      // @catches are nested and it isn't
      BuildScopeInformation(AC->getCatchBody(), NewParentScope);
    }

    // Jump from the finally to the try or catch is not valid.
    if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
      unsigned NewParentScope = Scopes.size();
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_objc_finally,
                                 diag::note_exits_objc_finally,
                                 AF->getAtFinallyLoc()));
      BuildScopeInformation(AF, NewParentScope);
    }

    return;
  }

  case Stmt::ObjCAtSynchronizedStmtClass: {
    // Disallow jumps into the protected statement of an @synchronized, but
    // allow jumps into the object expression it protects.
    ObjCAtSynchronizedStmt *AS = cast<ObjCAtSynchronizedStmt>(S);
    // Recursively walk the AST for the @synchronized object expr, it is
    // evaluated in the normal scope.
    BuildScopeInformation(AS->getSynchExpr(), ParentScope);

    // Recursively walk the AST for the @synchronized part, protected by a new
    // scope.
    unsigned NewParentScope = Scopes.size();
    Scopes.push_back(GotoScope(ParentScope,
                               diag::note_protected_by_objc_synchronized,
                               diag::note_exits_objc_synchronized,
                               AS->getAtSynchronizedLoc()));
    BuildScopeInformation(AS->getSynchBody(), NewParentScope);
    return;
  }

  case Stmt::ObjCAutoreleasePoolStmtClass: {
    // Disallow jumps into the protected statement of an @autoreleasepool.
    ObjCAutoreleasePoolStmt *AS = cast<ObjCAutoreleasePoolStmt>(S);
    // Recursively walk the AST for the @autoreleasepool part, protected by a
    // new scope.
    unsigned NewParentScope = Scopes.size();
    Scopes.push_back(GotoScope(ParentScope,
                               diag::note_protected_by_objc_autoreleasepool,
                               diag::note_exits_objc_autoreleasepool,
                               AS->getAtLoc()));
    BuildScopeInformation(AS->getSubStmt(), NewParentScope);
    return;
  }

  case Stmt::ExprWithCleanupsClass: {
    // Disallow jumps past full-expressions that use blocks with
    // non-trivial cleanups of their captures.  This is theoretically
    // implementable but a lot of work which we haven't felt up to doing.
    ExprWithCleanups *EWC = cast<ExprWithCleanups>(S);
    for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) {
      const BlockDecl *BDecl = EWC->getObject(i);
      for (const auto &CI : BDecl->captures()) {
        VarDecl *variable = CI.getVariable();
        BuildScopeInformation(variable, BDecl, origParentScope);
      }
    }
    break;
  }

  case Stmt::MaterializeTemporaryExprClass: {
    // Disallow jumps out of scopes containing temporaries lifetime-extended to
    // automatic storage duration.
    MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S);
    if (MTE->getStorageDuration() == SD_Automatic) {
      SmallVector<const Expr *, 4> CommaLHS;
      SmallVector<SubobjectAdjustment, 4> Adjustments;
      const Expr *ExtendedObject =
          MTE->GetTemporaryExpr()->skipRValueSubobjectAdjustments(
              CommaLHS, Adjustments);
      if (ExtendedObject->getType().isDestructedType()) {
        Scopes.push_back(GotoScope(ParentScope, 0,
                                   diag::note_exits_temporary_dtor,
                                   ExtendedObject->getExprLoc()));
        origParentScope = Scopes.size()-1;
      }
    }
    break;
  }

  case Stmt::CaseStmtClass:
  case Stmt::DefaultStmtClass:
  case Stmt::LabelStmtClass:
    LabelAndGotoScopes[S] = ParentScope;
    break;

  default:
    break;
  }

  for (Stmt *SubStmt : S->children()) {
    if (!SubStmt)
        continue;
    if (StmtsToSkip) {
      --StmtsToSkip;
      continue;
    }

    // Cases, labels, and defaults aren't "scope parents".  It's also
    // important to handle these iteratively instead of recursively in
    // order to avoid blowing out the stack.
    while (true) {
      Stmt *Next;
      if (SwitchCase *SC = dyn_cast<SwitchCase>(SubStmt))
        Next = SC->getSubStmt();
      else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
        Next = LS->getSubStmt();
      else
        break;

      LabelAndGotoScopes[SubStmt] = ParentScope;
      SubStmt = Next;
    }

    // Recursively walk the AST.
    BuildScopeInformation(SubStmt, ParentScope);
  }
}

/// VerifyJumps - Verify each element of the Jumps array to see if they are
/// valid, emitting diagnostics if not.
void JumpScopeChecker::VerifyJumps() {
  while (!Jumps.empty()) {
    Stmt *Jump = Jumps.pop_back_val();

    // With a goto,
    if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
      // The label may not have a statement if it's coming from inline MS ASM.
      if (GS->getLabel()->getStmt()) {
        CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
                  diag::err_goto_into_protected_scope,
                  diag::ext_goto_into_protected_scope,
                  diag::warn_cxx98_compat_goto_into_protected_scope);
      }
      CheckGotoStmt(GS);
      continue;
    }

    // We only get indirect gotos here when they have a constant target.
    if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
      LabelDecl *Target = IGS->getConstantTarget();
      CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
                diag::err_goto_into_protected_scope,
                diag::ext_goto_into_protected_scope,
                diag::warn_cxx98_compat_goto_into_protected_scope);
      continue;
    }

    SwitchStmt *SS = cast<SwitchStmt>(Jump);
    for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
         SC = SC->getNextSwitchCase()) {
      if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(SC)))
        continue;
      SourceLocation Loc;
      if (CaseStmt *CS = dyn_cast<CaseStmt>(SC))
        Loc = CS->getBeginLoc();
      else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC))
        Loc = DS->getBeginLoc();
      else
        Loc = SC->getBeginLoc();
      CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0,
                diag::warn_cxx98_compat_switch_into_protected_scope);
    }
  }
}

/// VerifyIndirectJumps - Verify whether any possible indirect jump
/// might cross a protection boundary.  Unlike direct jumps, indirect
/// jumps count cleanups as protection boundaries:  since there's no
/// way to know where the jump is going, we can't implicitly run the
/// right cleanups the way we can with direct jumps.
///
/// Thus, an indirect jump is "trivial" if it bypasses no
/// initializations and no teardowns.  More formally, an indirect jump
/// from A to B is trivial if the path out from A to DCA(A,B) is
/// trivial and the path in from DCA(A,B) to B is trivial, where
/// DCA(A,B) is the deepest common ancestor of A and B.
/// Jump-triviality is transitive but asymmetric.
///
/// A path in is trivial if none of the entered scopes have an InDiag.
/// A path out is trivial is none of the exited scopes have an OutDiag.
///
/// Under these definitions, this function checks that the indirect
/// jump between A and B is trivial for every indirect goto statement A
/// and every label B whose address was taken in the function.
void JumpScopeChecker::VerifyIndirectJumps() {
  if (IndirectJumps.empty()) return;

  // If there aren't any address-of-label expressions in this function,
  // complain about the first indirect goto.
  if (IndirectJumpTargets.empty()) {
    S.Diag(IndirectJumps[0]->getGotoLoc(),
           diag::err_indirect_goto_without_addrlabel);
    return;
  }

  // Collect a single representative of every scope containing an
  // indirect goto.  For most code bases, this substantially cuts
  // down on the number of jump sites we'll have to consider later.
  typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
  SmallVector<JumpScope, 32> JumpScopes;
  {
    llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
    for (SmallVectorImpl<IndirectGotoStmt*>::iterator
           I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
      IndirectGotoStmt *IG = *I;
      if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(IG)))
        continue;
      unsigned IGScope = LabelAndGotoScopes[IG];
      IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
      if (!Entry) Entry = IG;
    }
    JumpScopes.reserve(JumpScopesMap.size());
    for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
           I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
      JumpScopes.push_back(*I);
  }

  // Collect a single representative of every scope containing a
  // label whose address was taken somewhere in the function.
  // For most code bases, there will be only one such scope.
  llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
  for (SmallVectorImpl<LabelDecl*>::iterator
         I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
       I != E; ++I) {
    LabelDecl *TheLabel = *I;
    if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(TheLabel->getStmt())))
      continue;
    unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
    LabelDecl *&Target = TargetScopes[LabelScope];
    if (!Target) Target = TheLabel;
  }

  // For each target scope, make sure it's trivially reachable from
  // every scope containing a jump site.
  //
  // A path between scopes always consists of exitting zero or more
  // scopes, then entering zero or more scopes.  We build a set of
  // of scopes S from which the target scope can be trivially
  // entered, then verify that every jump scope can be trivially
  // exitted to reach a scope in S.
  llvm::BitVector Reachable(Scopes.size(), false);
  for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
         TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
    unsigned TargetScope = TI->first;
    LabelDecl *TargetLabel = TI->second;

    Reachable.reset();

    // Mark all the enclosing scopes from which you can safely jump
    // into the target scope.  'Min' will end up being the index of
    // the shallowest such scope.
    unsigned Min = TargetScope;
    while (true) {
      Reachable.set(Min);

      // Don't go beyond the outermost scope.
      if (Min == 0) break;

      // Stop if we can't trivially enter the current scope.
      if (Scopes[Min].InDiag) break;

      Min = Scopes[Min].ParentScope;
    }

    // Walk through all the jump sites, checking that they can trivially
    // reach this label scope.
    for (SmallVectorImpl<JumpScope>::iterator
           I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
      unsigned Scope = I->first;

      // Walk out the "scope chain" for this scope, looking for a scope
      // we've marked reachable.  For well-formed code this amortizes
      // to O(JumpScopes.size() / Scopes.size()):  we only iterate
      // when we see something unmarked, and in well-formed code we
      // mark everything we iterate past.
      bool IsReachable = false;
      while (true) {
        if (Reachable.test(Scope)) {
          // If we find something reachable, mark all the scopes we just
          // walked through as reachable.
          for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
            Reachable.set(S);
          IsReachable = true;
          break;
        }

        // Don't walk out if we've reached the top-level scope or we've
        // gotten shallower than the shallowest reachable scope.
        if (Scope == 0 || Scope < Min) break;

        // Don't walk out through an out-diagnostic.
        if (Scopes[Scope].OutDiag) break;

        Scope = Scopes[Scope].ParentScope;
      }

      // Only diagnose if we didn't find something.
      if (IsReachable) continue;

      DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
    }
  }
}

/// Return true if a particular error+note combination must be downgraded to a
/// warning in Microsoft mode.
static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) {
  return (JumpDiag == diag::err_goto_into_protected_scope &&
         (InDiagNote == diag::note_protected_by_variable_init ||
          InDiagNote == diag::note_protected_by_variable_nontriv_destructor));
}

/// Return true if a particular note should be downgraded to a compatibility
/// warning in C++11 mode.
static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) {
  return S.getLangOpts().CPlusPlus11 &&
         InDiagNote == diag::note_protected_by_variable_non_pod;
}

/// Produce primary diagnostic for an indirect jump statement.
static void DiagnoseIndirectJumpStmt(Sema &S, IndirectGotoStmt *Jump,
                                     LabelDecl *Target, bool &Diagnosed) {
  if (Diagnosed)
    return;
  S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
  S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
  Diagnosed = true;
}

/// Produce note diagnostics for a jump into a protected scope.
void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) {
  if (CHECK_PERMISSIVE(ToScopes.empty()))
    return;
  for (unsigned I = 0, E = ToScopes.size(); I != E; ++I)
    if (Scopes[ToScopes[I]].InDiag)
      S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag);
}

/// Diagnose an indirect jump which is known to cross scopes.
void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
                                            unsigned JumpScope,
                                            LabelDecl *Target,
                                            unsigned TargetScope) {
  if (CHECK_PERMISSIVE(JumpScope == TargetScope))
    return;

  unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
  bool Diagnosed = false;

  // Walk out the scope chain until we reach the common ancestor.
  for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
    if (Scopes[I].OutDiag) {
      DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
      S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
    }

  SmallVector<unsigned, 10> ToScopesCXX98Compat;

  // Now walk into the scopes containing the label whose address was taken.
  for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
    if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
      ToScopesCXX98Compat.push_back(I);
    else if (Scopes[I].InDiag) {
      DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
      S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
    }

  // Diagnose this jump if it would be ill-formed in C++98.
  if (!Diagnosed && !ToScopesCXX98Compat.empty()) {
    S.Diag(Jump->getGotoLoc(),
           diag::warn_cxx98_compat_indirect_goto_in_protected_scope);
    S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
    NoteJumpIntoScopes(ToScopesCXX98Compat);
  }
}

/// CheckJump - Validate that the specified jump statement is valid: that it is
/// jumping within or out of its current scope, not into a deeper one.
void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
                               unsigned JumpDiagError, unsigned JumpDiagWarning,
                                 unsigned JumpDiagCXX98Compat) {
  if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(From)))
    return;
  if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(To)))
    return;

  unsigned FromScope = LabelAndGotoScopes[From];
  unsigned ToScope = LabelAndGotoScopes[To];

  // Common case: exactly the same scope, which is fine.
  if (FromScope == ToScope) return;

  // Warn on gotos out of __finally blocks.
  if (isa<GotoStmt>(From) || isa<IndirectGotoStmt>(From)) {
    // If FromScope > ToScope, FromScope is more nested and the jump goes to a
    // less nested scope.  Check if it crosses a __finally along the way.
    for (unsigned I = FromScope; I > ToScope; I = Scopes[I].ParentScope) {
      if (Scopes[I].InDiag == diag::note_protected_by_seh_finally) {
        S.Diag(From->getBeginLoc(), diag::warn_jump_out_of_seh_finally);
        break;
      }
    }
  }

  unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);

  // It's okay to jump out from a nested scope.
  if (CommonScope == ToScope) return;

  // Pull out (and reverse) any scopes we might need to diagnose skipping.
  SmallVector<unsigned, 10> ToScopesCXX98Compat;
  SmallVector<unsigned, 10> ToScopesError;
  SmallVector<unsigned, 10> ToScopesWarning;
  for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) {
    if (S.getLangOpts().MSVCCompat && JumpDiagWarning != 0 &&
        IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag))
      ToScopesWarning.push_back(I);
    else if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
      ToScopesCXX98Compat.push_back(I);
    else if (Scopes[I].InDiag)
      ToScopesError.push_back(I);
  }

  // Handle warnings.
  if (!ToScopesWarning.empty()) {
    S.Diag(DiagLoc, JumpDiagWarning);
    NoteJumpIntoScopes(ToScopesWarning);
  }

  // Handle errors.
  if (!ToScopesError.empty()) {
    S.Diag(DiagLoc, JumpDiagError);
    NoteJumpIntoScopes(ToScopesError);
  }

  // Handle -Wc++98-compat warnings if the jump is well-formed.
  if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) {
    S.Diag(DiagLoc, JumpDiagCXX98Compat);
    NoteJumpIntoScopes(ToScopesCXX98Compat);
  }
}

void JumpScopeChecker::CheckGotoStmt(GotoStmt *GS) {
  if (GS->getLabel()->isMSAsmLabel()) {
    S.Diag(GS->getGotoLoc(), diag::err_goto_ms_asm_label)
        << GS->getLabel()->getIdentifier();
    S.Diag(GS->getLabel()->getLocation(), diag::note_goto_ms_asm_label)
        << GS->getLabel()->getIdentifier();
  }
}

void Sema::DiagnoseInvalidJumps(Stmt *Body) {
  (void)JumpScopeChecker(Body, *this);
}