Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
//===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// CodeGenMapTable provides functionality for the TabelGen to create
// relation mapping between instructions. Relation models are defined using
// InstrMapping as a base class. This file implements the functionality which
// parses these definitions and generates relation maps using the information
// specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc
// file along with the functions to query them.
//
// A relationship model to relate non-predicate instructions with their
// predicated true/false forms can be defined as follows:
//
// def getPredOpcode : InstrMapping {
//  let FilterClass = "PredRel";
//  let RowFields = ["BaseOpcode"];
//  let ColFields = ["PredSense"];
//  let KeyCol = ["none"];
//  let ValueCols = [["true"], ["false"]]; }
//
// CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc
// file that contains the instructions modeling this relationship. This table
// is defined in the function
// "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)"
// that can be used to retrieve the predicated form of the instruction by
// passing its opcode value and the predicate sense (true/false) of the desired
// instruction as arguments.
//
// Short description of the algorithm:
//
// 1) Iterate through all the records that derive from "InstrMapping" class.
// 2) For each record, filter out instructions based on the FilterClass value.
// 3) Iterate through this set of instructions and insert them into
// RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the
// vector of RowFields values and contains vectors of Records (instructions) as
// values. RowFields is a list of fields that are required to have the same
// values for all the instructions appearing in the same row of the relation
// table. All the instructions in a given row of the relation table have some
// sort of relationship with the key instruction defined by the corresponding
// relationship model.
//
// Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ]
// Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for
// RowFields. These groups of instructions are later matched against ValueCols
// to determine the column they belong to, if any.
//
// While building the RowInstrMap map, collect all the key instructions in
// KeyInstrVec. These are the instructions having the same values as KeyCol
// for all the fields listed in ColFields.
//
// For Example:
//
// Relate non-predicate instructions with their predicated true/false forms.
//
// def getPredOpcode : InstrMapping {
//  let FilterClass = "PredRel";
//  let RowFields = ["BaseOpcode"];
//  let ColFields = ["PredSense"];
//  let KeyCol = ["none"];
//  let ValueCols = [["true"], ["false"]]; }
//
// Here, only instructions that have "none" as PredSense will be selected as key
// instructions.
//
// 4) For each key instruction, get the group of instructions that share the
// same key-value as the key instruction from RowInstrMap. Iterate over the list
// of columns in ValueCols (it is defined as a list<list<string> >. Therefore,
// it can specify multi-column relationships). For each column, find the
// instruction from the group that matches all the values for the column.
// Multiple matches are not allowed.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "llvm/Support/Format.h"
#include "llvm/TableGen/Error.h"
using namespace llvm;
typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy;

typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy;

namespace {

//===----------------------------------------------------------------------===//
// This class is used to represent InstrMapping class defined in Target.td file.
class InstrMap {
private:
  std::string Name;
  std::string FilterClass;
  ListInit *RowFields;
  ListInit *ColFields;
  ListInit *KeyCol;
  std::vector<ListInit*> ValueCols;

public:
  InstrMap(Record* MapRec) {
    Name = MapRec->getName();

    // FilterClass - It's used to reduce the search space only to the
    // instructions that define the kind of relationship modeled by
    // this InstrMapping object/record.
    const RecordVal *Filter = MapRec->getValue("FilterClass");
    FilterClass = Filter->getValue()->getAsUnquotedString();

    // List of fields/attributes that need to be same across all the
    // instructions in a row of the relation table.
    RowFields = MapRec->getValueAsListInit("RowFields");

    // List of fields/attributes that are constant across all the instruction
    // in a column of the relation table. Ex: ColFields = 'predSense'
    ColFields = MapRec->getValueAsListInit("ColFields");

    // Values for the fields/attributes listed in 'ColFields'.
    // Ex: KeyCol = 'noPred' -- key instruction is non-predicated
    KeyCol = MapRec->getValueAsListInit("KeyCol");

    // List of values for the fields/attributes listed in 'ColFields', one for
    // each column in the relation table.
    //
    // Ex: ValueCols = [['true'],['false']] -- it results two columns in the
    // table. First column requires all the instructions to have predSense
    // set to 'true' and second column requires it to be 'false'.
    ListInit *ColValList = MapRec->getValueAsListInit("ValueCols");

    // Each instruction map must specify at least one column for it to be valid.
    if (ColValList->empty())
      PrintFatalError(MapRec->getLoc(), "InstrMapping record `" +
        MapRec->getName() + "' has empty " + "`ValueCols' field!");

    for (Init *I : ColValList->getValues()) {
      ListInit *ColI = dyn_cast<ListInit>(I);

      // Make sure that all the sub-lists in 'ValueCols' have same number of
      // elements as the fields in 'ColFields'.
      if (ColI->size() != ColFields->size())
        PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() +
          "', field `ValueCols' entries don't match with " +
          " the entries in 'ColFields'!");
      ValueCols.push_back(ColI);
    }
  }

  std::string getName() const {
    return Name;
  }

  std::string getFilterClass() {
    return FilterClass;
  }

  ListInit *getRowFields() const {
    return RowFields;
  }

  ListInit *getColFields() const {
    return ColFields;
  }

  ListInit *getKeyCol() const {
    return KeyCol;
  }

  const std::vector<ListInit*> &getValueCols() const {
    return ValueCols;
  }
};
} // End anonymous namespace.


//===----------------------------------------------------------------------===//
// class MapTableEmitter : It builds the instruction relation maps using
// the information provided in InstrMapping records. It outputs these
// relationship maps as tables into XXXGenInstrInfo.inc file along with the
// functions to query them.

namespace {
class MapTableEmitter {
private:
//  std::string TargetName;
  const CodeGenTarget &Target;
  // InstrMapDesc - InstrMapping record to be processed.
  InstrMap InstrMapDesc;

  // InstrDefs - list of instructions filtered using FilterClass defined
  // in InstrMapDesc.
  std::vector<Record*> InstrDefs;

  // RowInstrMap - maps RowFields values to the instructions. It's keyed by the
  // values of the row fields and contains vector of records as values.
  RowInstrMapTy RowInstrMap;

  // KeyInstrVec - list of key instructions.
  std::vector<Record*> KeyInstrVec;
  DenseMap<Record*, std::vector<Record*> > MapTable;

public:
  MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec):
                  Target(Target), InstrMapDesc(IMRec) {
    const std::string FilterClass = InstrMapDesc.getFilterClass();
    InstrDefs = Records.getAllDerivedDefinitions(FilterClass);
  }

  void buildRowInstrMap();

  // Returns true if an instruction is a key instruction, i.e., its ColFields
  // have same values as KeyCol.
  bool isKeyColInstr(Record* CurInstr);

  // Find column instruction corresponding to a key instruction based on the
  // constraints for that column.
  Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol);

  // Find column instructions for each key instruction based
  // on ValueCols and store them into MapTable.
  void buildMapTable();

  void emitBinSearch(raw_ostream &OS, unsigned TableSize);
  void emitTablesWithFunc(raw_ostream &OS);
  unsigned emitBinSearchTable(raw_ostream &OS);

  // Lookup functions to query binary search tables.
  void emitMapFuncBody(raw_ostream &OS, unsigned TableSize);

};
} // End anonymous namespace.


//===----------------------------------------------------------------------===//
// Process all the instructions that model this relation (alreday present in
// InstrDefs) and insert them into RowInstrMap which is keyed by the values of
// the fields listed as RowFields. It stores vectors of records as values.
// All the related instructions have the same values for the RowFields thus are
// part of the same key-value pair.
//===----------------------------------------------------------------------===//

void MapTableEmitter::buildRowInstrMap() {
  for (Record *CurInstr : InstrDefs) {
    std::vector<Init*> KeyValue;
    ListInit *RowFields = InstrMapDesc.getRowFields();
    for (Init *RowField : RowFields->getValues()) {
      RecordVal *RecVal = CurInstr->getValue(RowField);
      if (RecVal == nullptr)
        PrintFatalError(CurInstr->getLoc(), "No value " +
                        RowField->getAsString() + " found in \"" +
                        CurInstr->getName() + "\" instruction description.");
      Init *CurInstrVal = RecVal->getValue();
      KeyValue.push_back(CurInstrVal);
    }

    // Collect key instructions into KeyInstrVec. Later, these instructions are
    // processed to assign column position to the instructions sharing
    // their KeyValue in RowInstrMap.
    if (isKeyColInstr(CurInstr))
      KeyInstrVec.push_back(CurInstr);

    RowInstrMap[KeyValue].push_back(CurInstr);
  }
}

//===----------------------------------------------------------------------===//
// Return true if an instruction is a KeyCol instruction.
//===----------------------------------------------------------------------===//

bool MapTableEmitter::isKeyColInstr(Record* CurInstr) {
  ListInit *ColFields = InstrMapDesc.getColFields();
  ListInit *KeyCol = InstrMapDesc.getKeyCol();

  // Check if the instruction is a KeyCol instruction.
  bool MatchFound = true;
  for (unsigned j = 0, endCF = ColFields->size();
      (j < endCF) && MatchFound; j++) {
    RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j));
    std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString();
    std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString();
    MatchFound = (CurInstrVal == KeyColValue);
  }
  return MatchFound;
}

//===----------------------------------------------------------------------===//
// Build a map to link key instructions with the column instructions arranged
// according to their column positions.
//===----------------------------------------------------------------------===//

void MapTableEmitter::buildMapTable() {
  // Find column instructions for a given key based on the ColField
  // constraints.
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
  unsigned NumOfCols = ValueCols.size();
  for (Record *CurKeyInstr : KeyInstrVec) {
    std::vector<Record*> ColInstrVec(NumOfCols);

    // Find the column instruction based on the constraints for the column.
    for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) {
      ListInit *CurValueCol = ValueCols[ColIdx];
      Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol);
      ColInstrVec[ColIdx] = ColInstr;
    }
    MapTable[CurKeyInstr] = ColInstrVec;
  }
}

//===----------------------------------------------------------------------===//
// Find column instruction based on the constraints for that column.
//===----------------------------------------------------------------------===//

Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr,
                                           ListInit *CurValueCol) {
  ListInit *RowFields = InstrMapDesc.getRowFields();
  std::vector<Init*> KeyValue;

  // Construct KeyValue using KeyInstr's values for RowFields.
  for (Init *RowField : RowFields->getValues()) {
    Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue();
    KeyValue.push_back(KeyInstrVal);
  }

  // Get all the instructions that share the same KeyValue as the KeyInstr
  // in RowInstrMap. We search through these instructions to find a match
  // for the current column, i.e., the instruction which has the same values
  // as CurValueCol for all the fields in ColFields.
  const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue];

  ListInit *ColFields = InstrMapDesc.getColFields();
  Record *MatchInstr = nullptr;

  for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) {
    bool MatchFound = true;
    Record *CurInstr = RelatedInstrVec[i];
    for (unsigned j = 0, endCF = ColFields->size();
        (j < endCF) && MatchFound; j++) {
      Init *ColFieldJ = ColFields->getElement(j);
      Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue();
      std::string CurInstrVal = CurInstrInit->getAsUnquotedString();
      Init *ColFieldJVallue = CurValueCol->getElement(j);
      MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString());
    }

    if (MatchFound) {
      if (MatchInstr) {
        // Already had a match
        // Error if multiple matches are found for a column.
        std::string KeyValueStr;
        for (Init *Value : KeyValue) {
          if (!KeyValueStr.empty())
            KeyValueStr += ", ";
          KeyValueStr += Value->getAsString();
        }

        PrintFatalError("Multiple matches found for `" + KeyInstr->getName() +
              "', for the relation `" + InstrMapDesc.getName() + "', row fields [" +
              KeyValueStr + "], column `" + CurValueCol->getAsString() + "'");
      }
      MatchInstr = CurInstr;
    }
  }
  return MatchInstr;
}

//===----------------------------------------------------------------------===//
// Emit one table per relation. Only instructions with a valid relation of a
// given type are included in the table sorted by their enum values (opcodes).
// Binary search is used for locating instructions in the table.
//===----------------------------------------------------------------------===//

unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) {

  ArrayRef<const CodeGenInstruction*> NumberedInstructions =
                                            Target.getInstructionsByEnumValue();
  StringRef Namespace = Target.getInstNamespace();
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
  unsigned NumCol = ValueCols.size();
  unsigned TotalNumInstr = NumberedInstructions.size();
  unsigned TableSize = 0;

  OS << "static const uint16_t "<<InstrMapDesc.getName();
  // Number of columns in the table are NumCol+1 because key instructions are
  // emitted as first column.
  OS << "Table[]["<< NumCol+1 << "] = {\n";
  for (unsigned i = 0; i < TotalNumInstr; i++) {
    Record *CurInstr = NumberedInstructions[i]->TheDef;
    std::vector<Record*> ColInstrs = MapTable[CurInstr];
    std::string OutStr("");
    unsigned RelExists = 0;
    if (!ColInstrs.empty()) {
      for (unsigned j = 0; j < NumCol; j++) {
        if (ColInstrs[j] != nullptr) {
          RelExists = 1;
          OutStr += ", ";
          OutStr += Namespace;
          OutStr += "::";
          OutStr += ColInstrs[j]->getName();
        } else { OutStr += ", (uint16_t)-1U";}
      }

      if (RelExists) {
        OS << "  { " << Namespace << "::" << CurInstr->getName();
        OS << OutStr <<" },\n";
        TableSize++;
      }
    }
  }
  if (!TableSize) {
    OS << "  { " << Namespace << "::" << "INSTRUCTION_LIST_END, ";
    OS << Namespace << "::" << "INSTRUCTION_LIST_END }";
  }
  OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n";
  return TableSize;
}

//===----------------------------------------------------------------------===//
// Emit binary search algorithm as part of the functions used to query
// relation tables.
//===----------------------------------------------------------------------===//

void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) {
  OS << "  unsigned mid;\n";
  OS << "  unsigned start = 0;\n";
  OS << "  unsigned end = " << TableSize << ";\n";
  OS << "  while (start < end) {\n";
  OS << "    mid = start + (end - start)/2;\n";
  OS << "    if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n";
  OS << "      break;\n";
  OS << "    }\n";
  OS << "    if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n";
  OS << "      end = mid;\n";
  OS << "    else\n";
  OS << "      start = mid + 1;\n";
  OS << "  }\n";
  OS << "  if (start == end)\n";
  OS << "    return -1; // Instruction doesn't exist in this table.\n\n";
}

//===----------------------------------------------------------------------===//
// Emit functions to query relation tables.
//===----------------------------------------------------------------------===//

void MapTableEmitter::emitMapFuncBody(raw_ostream &OS,
                                           unsigned TableSize) {

  ListInit *ColFields = InstrMapDesc.getColFields();
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();

  // Emit binary search algorithm to locate instructions in the
  // relation table. If found, return opcode value from the appropriate column
  // of the table.
  emitBinSearch(OS, TableSize);

  if (ValueCols.size() > 1) {
    for (unsigned i = 0, e = ValueCols.size(); i < e; i++) {
      ListInit *ColumnI = ValueCols[i];
      for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) {
        std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
        OS << "  if (in" << ColName;
        OS << " == ";
        OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString();
        if (j < ColumnI->size() - 1) OS << " && ";
        else OS << ")\n";
      }
      OS << "    return " << InstrMapDesc.getName();
      OS << "Table[mid]["<<i+1<<"];\n";
    }
    OS << "  return -1;";
  }
  else
    OS << "  return " << InstrMapDesc.getName() << "Table[mid][1];\n";

  OS <<"}\n\n";
}

//===----------------------------------------------------------------------===//
// Emit relation tables and the functions to query them.
//===----------------------------------------------------------------------===//

void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) {

  // Emit function name and the input parameters : mostly opcode value of the
  // current instruction. However, if a table has multiple columns (more than 2
  // since first column is used for the key instructions), then we also need
  // to pass another input to indicate the column to be selected.

  ListInit *ColFields = InstrMapDesc.getColFields();
  const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
  OS << "// "<< InstrMapDesc.getName() << "\nLLVM_READONLY\n";
  OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode";
  if (ValueCols.size() > 1) {
    for (Init *CF : ColFields->getValues()) {
      std::string ColName = CF->getAsUnquotedString();
      OS << ", enum " << ColName << " in" << ColName << ") {\n";
    }
  } else { OS << ") {\n"; }

  // Emit map table.
  unsigned TableSize = emitBinSearchTable(OS);

  // Emit rest of the function body.
  emitMapFuncBody(OS, TableSize);
}

//===----------------------------------------------------------------------===//
// Emit enums for the column fields across all the instruction maps.
//===----------------------------------------------------------------------===//

static void emitEnums(raw_ostream &OS, RecordKeeper &Records) {

  std::vector<Record*> InstrMapVec;
  InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
  std::map<std::string, std::vector<Init*> > ColFieldValueMap;

  // Iterate over all InstrMapping records and create a map between column
  // fields and their possible values across all records.
  for (Record *CurMap : InstrMapVec) {
    ListInit *ColFields;
    ColFields = CurMap->getValueAsListInit("ColFields");
    ListInit *List = CurMap->getValueAsListInit("ValueCols");
    std::vector<ListInit*> ValueCols;
    unsigned ListSize = List->size();

    for (unsigned j = 0; j < ListSize; j++) {
      ListInit *ListJ = dyn_cast<ListInit>(List->getElement(j));

      if (ListJ->size() != ColFields->size())
        PrintFatalError("Record `" + CurMap->getName() + "', field "
          "`ValueCols' entries don't match with the entries in 'ColFields' !");
      ValueCols.push_back(ListJ);
    }

    for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) {
      for (unsigned k = 0; k < ListSize; k++){
        std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
        ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j));
      }
    }
  }

  for (auto &Entry : ColFieldValueMap) {
    std::vector<Init*> FieldValues = Entry.second;

    // Delete duplicate entries from ColFieldValueMap
    for (unsigned i = 0; i < FieldValues.size() - 1; i++) {
      Init *CurVal = FieldValues[i];
      for (unsigned j = i+1; j < FieldValues.size(); j++) {
        if (CurVal == FieldValues[j]) {
          FieldValues.erase(FieldValues.begin()+j);
          --j;
        }
      }
    }

    // Emit enumerated values for the column fields.
    OS << "enum " << Entry.first << " {\n";
    for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) {
      OS << "\t" << Entry.first << "_" << FieldValues[i]->getAsUnquotedString();
      if (i != endFV - 1)
        OS << ",\n";
      else
        OS << "\n};\n\n";
    }
  }
}

namespace llvm {
//===----------------------------------------------------------------------===//
// Parse 'InstrMapping' records and use the information to form relationship
// between instructions. These relations are emitted as a tables along with the
// functions to query them.
//===----------------------------------------------------------------------===//
void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) {
  CodeGenTarget Target(Records);
  StringRef NameSpace = Target.getInstNamespace();
  std::vector<Record*> InstrMapVec;
  InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");

  if (InstrMapVec.empty())
    return;

  OS << "#ifdef GET_INSTRMAP_INFO\n";
  OS << "#undef GET_INSTRMAP_INFO\n";
  OS << "namespace llvm {\n\n";
  OS << "namespace " << NameSpace << " {\n\n";

  // Emit coulumn field names and their values as enums.
  emitEnums(OS, Records);

  // Iterate over all instruction mapping records and construct relationship
  // maps based on the information specified there.
  //
  for (Record *CurMap : InstrMapVec) {
    MapTableEmitter IMap(Target, Records, CurMap);

    // Build RowInstrMap to group instructions based on their values for
    // RowFields. In the process, also collect key instructions into
    // KeyInstrVec.
    IMap.buildRowInstrMap();

    // Build MapTable to map key instructions with the corresponding column
    // instructions.
    IMap.buildMapTable();

    // Emit map tables and the functions to query them.
    IMap.emitTablesWithFunc(OS);
  }
  OS << "} // End " << NameSpace << " namespace\n";
  OS << "} // End llvm namespace\n";
  OS << "#endif // GET_INSTRMAP_INFO\n\n";
}

} // End llvm namespace