Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include "internal/cryptlib.h"
#include "bn_lcl.h"

static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);

int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
{
    BIGNUM *a, *b, *t;
    int ret = 0;

    bn_check_top(in_a);
    bn_check_top(in_b);

    BN_CTX_start(ctx);
    a = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);
    if (b == NULL)
        goto err;

    if (BN_copy(a, in_a) == NULL)
        goto err;
    if (BN_copy(b, in_b) == NULL)
        goto err;
    a->neg = 0;
    b->neg = 0;

    if (BN_cmp(a, b) < 0) {
        t = a;
        a = b;
        b = t;
    }
    t = euclid(a, b);
    if (t == NULL)
        goto err;

    if (BN_copy(r, t) == NULL)
        goto err;
    ret = 1;
 err:
    BN_CTX_end(ctx);
    bn_check_top(r);
    return ret;
}

static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
{
    BIGNUM *t;
    int shifts = 0;

    bn_check_top(a);
    bn_check_top(b);

    /* 0 <= b <= a */
    while (!BN_is_zero(b)) {
        /* 0 < b <= a */

        if (BN_is_odd(a)) {
            if (BN_is_odd(b)) {
                if (!BN_sub(a, a, b))
                    goto err;
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a odd - b even */

                if (!BN_rshift1(b, b))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            }
        } else {                /* a is even */

            if (BN_is_odd(b)) {
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a even - b even */

                if (!BN_rshift1(a, a))
                    goto err;
                if (!BN_rshift1(b, b))
                    goto err;
                shifts++;
            }
        }
        /* 0 <= b <= a */
    }

    if (shifts) {
        if (!BN_lshift(a, a, shifts))
            goto err;
    }
    bn_check_top(a);
    return a;
 err:
    return NULL;
}

/* solves ax == 1 (mod n) */
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx);

BIGNUM *BN_mod_inverse(BIGNUM *in,
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
    BIGNUM *rv;
    int noinv;
    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
    if (noinv)
        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
    return rv;
}

BIGNUM *int_bn_mod_inverse(BIGNUM *in,
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
                           int *pnoinv)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM *ret = NULL;
    int sign;

    /* This is invalid input so we don't worry about constant time here */
    if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
        if (pnoinv != NULL)
            *pnoinv = 1;
        return NULL;
    }

    if (pnoinv != NULL)
        *pnoinv = 0;

    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
        return BN_mod_inverse_no_branch(in, a, n, ctx);
    }

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        if (!BN_nnmod(B, B, A, ctx))
            goto err;
    }
    sign = -1;
    /*-
     * From  B = a mod |n|,  A = |n|  it follows that
     *
     *      0 <= B < A,
     *     -sign*X*a  ==  B   (mod |n|),
     *      sign*Y*a  ==  A   (mod |n|).
     */

    if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
        /*
         * Binary inversion algorithm; requires odd modulus. This is faster
         * than the general algorithm if the modulus is sufficiently small
         * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
         * systems)
         */
        int shift;

        while (!BN_is_zero(B)) {
            /*-
             *      0 < B < |n|,
             *      0 < A <= |n|,
             * (1) -sign*X*a  ==  B   (mod |n|),
             * (2)  sign*Y*a  ==  A   (mod |n|)
             */

            /*
             * Now divide B by the maximum possible power of two in the
             * integers, and divide X by the same value mod |n|. When we're
             * done, (1) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
                shift++;

                if (BN_is_odd(X)) {
                    if (!BN_uadd(X, X, n))
                        goto err;
                }
                /*
                 * now X is even, so we can easily divide it by two
                 */
                if (!BN_rshift1(X, X))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(B, B, shift))
                    goto err;
            }

            /*
             * Same for A and Y.  Afterwards, (2) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
                shift++;

                if (BN_is_odd(Y)) {
                    if (!BN_uadd(Y, Y, n))
                        goto err;
                }
                /* now Y is even */
                if (!BN_rshift1(Y, Y))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(A, A, shift))
                    goto err;
            }

            /*-
             * We still have (1) and (2).
             * Both  A  and  B  are odd.
             * The following computations ensure that
             *
             *     0 <= B < |n|,
             *      0 < A < |n|,
             * (1) -sign*X*a  ==  B   (mod |n|),
             * (2)  sign*Y*a  ==  A   (mod |n|),
             *
             * and that either  A  or  B  is even in the next iteration.
             */
            if (BN_ucmp(B, A) >= 0) {
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
                if (!BN_uadd(X, X, Y))
                    goto err;
                /*
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
                 * actually makes the algorithm slower
                 */
                if (!BN_usub(B, B, A))
                    goto err;
            } else {
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
                if (!BN_uadd(Y, Y, X))
                    goto err;
                /*
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
                 */
                if (!BN_usub(A, A, B))
                    goto err;
            }
        }
    } else {
        /* general inversion algorithm */

        while (!BN_is_zero(B)) {
            BIGNUM *tmp;

            /*-
             *      0 < B < A,
             * (*) -sign*X*a  ==  B   (mod |n|),
             *      sign*Y*a  ==  A   (mod |n|)
             */

            /* (D, M) := (A/B, A%B) ... */
            if (BN_num_bits(A) == BN_num_bits(B)) {
                if (!BN_one(D))
                    goto err;
                if (!BN_sub(M, A, B))
                    goto err;
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
                /* A/B is 1, 2, or 3 */
                if (!BN_lshift1(T, B))
                    goto err;
                if (BN_ucmp(A, T) < 0) {
                    /* A < 2*B, so D=1 */
                    if (!BN_one(D))
                        goto err;
                    if (!BN_sub(M, A, B))
                        goto err;
                } else {
                    /* A >= 2*B, so D=2 or D=3 */
                    if (!BN_sub(M, A, T))
                        goto err;
                    if (!BN_add(D, T, B))
                        goto err; /* use D (:= 3*B) as temp */
                    if (BN_ucmp(A, D) < 0) {
                        /* A < 3*B, so D=2 */
                        if (!BN_set_word(D, 2))
                            goto err;
                        /*
                         * M (= A - 2*B) already has the correct value
                         */
                    } else {
                        /* only D=3 remains */
                        if (!BN_set_word(D, 3))
                            goto err;
                        /*
                         * currently M = A - 2*B, but we need M = A - 3*B
                         */
                        if (!BN_sub(M, M, B))
                            goto err;
                    }
                }
            } else {
                if (!BN_div(D, M, A, B, ctx))
                    goto err;
            }

            /*-
             * Now
             *      A = D*B + M;
             * thus we have
             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
             */

            tmp = A;    /* keep the BIGNUM object, the value does not matter */

            /* (A, B) := (B, A mod B) ... */
            A = B;
            B = M;
            /* ... so we have  0 <= B < A  again */

            /*-
             * Since the former  M  is now  B  and the former  B  is now  A,
             * (**) translates into
             *       sign*Y*a  ==  D*A + B    (mod |n|),
             * i.e.
             *       sign*Y*a - D*A  ==  B    (mod |n|).
             * Similarly, (*) translates into
             *      -sign*X*a  ==  A          (mod |n|).
             *
             * Thus,
             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
             * i.e.
             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
             *
             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
             *      -sign*X*a  ==  B   (mod |n|),
             *       sign*Y*a  ==  A   (mod |n|).
             * Note that  X  and  Y  stay non-negative all the time.
             */

            /*
             * most of the time D is very small, so we can optimize tmp := D*X+Y
             */
            if (BN_is_one(D)) {
                if (!BN_add(tmp, X, Y))
                    goto err;
            } else {
                if (BN_is_word(D, 2)) {
                    if (!BN_lshift1(tmp, X))
                        goto err;
                } else if (BN_is_word(D, 4)) {
                    if (!BN_lshift(tmp, X, 2))
                        goto err;
                } else if (D->top == 1) {
                    if (!BN_copy(tmp, X))
                        goto err;
                    if (!BN_mul_word(tmp, D->d[0]))
                        goto err;
                } else {
                    if (!BN_mul(tmp, D, X, ctx))
                        goto err;
                }
                if (!BN_add(tmp, tmp, Y))
                    goto err;
            }

            M = Y;      /* keep the BIGNUM object, the value does not matter */
            Y = X;
            X = tmp;
            sign = -sign;
        }
    }

    /*-
     * The while loop (Euclid's algorithm) ends when
     *      A == gcd(a,n);
     * we have
     *       sign*Y*a  ==  A  (mod |n|),
     * where  Y  is non-negative.
     */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        if (pnoinv)
            *pnoinv = 1;
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return ret;
}

/*
 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
 * not contain branches that may leak sensitive information.
 */
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM *ret = NULL;
    int sign;

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;

    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
         {
            BIGNUM local_B;
            bn_init(&local_B);
            BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
            if (!BN_nnmod(B, &local_B, A, ctx))
                goto err;
            /* Ensure local_B goes out of scope before any further use of B */
        }
    }
    sign = -1;
    /*-
     * From  B = a mod |n|,  A = |n|  it follows that
     *
     *      0 <= B < A,
     *     -sign*X*a  ==  B   (mod |n|),
     *      sign*Y*a  ==  A   (mod |n|).
     */

    while (!BN_is_zero(B)) {
        BIGNUM *tmp;

        /*-
         *      0 < B < A,
         * (*) -sign*X*a  ==  B   (mod |n|),
         *      sign*Y*a  ==  A   (mod |n|)
         */

        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
        {
            BIGNUM local_A;
            bn_init(&local_A);
            BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);

            /* (D, M) := (A/B, A%B) ... */
            if (!BN_div(D, M, &local_A, B, ctx))
                goto err;
            /* Ensure local_A goes out of scope before any further use of A */
        }

        /*-
         * Now
         *      A = D*B + M;
         * thus we have
         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
         */

        tmp = A;                /* keep the BIGNUM object, the value does not
                                 * matter */

        /* (A, B) := (B, A mod B) ... */
        A = B;
        B = M;
        /* ... so we have  0 <= B < A  again */

        /*-
         * Since the former  M  is now  B  and the former  B  is now  A,
         * (**) translates into
         *       sign*Y*a  ==  D*A + B    (mod |n|),
         * i.e.
         *       sign*Y*a - D*A  ==  B    (mod |n|).
         * Similarly, (*) translates into
         *      -sign*X*a  ==  A          (mod |n|).
         *
         * Thus,
         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
         * i.e.
         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
         *
         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
         *      -sign*X*a  ==  B   (mod |n|),
         *       sign*Y*a  ==  A   (mod |n|).
         * Note that  X  and  Y  stay non-negative all the time.
         */

        if (!BN_mul(tmp, D, X, ctx))
            goto err;
        if (!BN_add(tmp, tmp, Y))
            goto err;

        M = Y;                  /* keep the BIGNUM object, the value does not
                                 * matter */
        Y = X;
        X = tmp;
        sign = -sign;
    }

    /*-
     * The while loop (Euclid's algorithm) ends when
     *      A == gcd(a,n);
     * we have
     *       sign*Y*a  ==  A  (mod |n|),
     * where  Y  is non-negative.
     */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return ret;
}