Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
/* dfa.c - deterministic extended regexp routines for GNU
   Copyright 1988, 1998, 2000 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA */

/* Written June, 1988 by Mike Haertel
   Modified July, 1988 by Arthur David Olson to assist BMG speedups  */

/* $FreeBSD$ */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <assert.h>
#include <ctype.h>
#include <stdio.h>

#include <sys/types.h>
#ifdef STDC_HEADERS
#include <stdlib.h>
#else
extern char *calloc(), *malloc(), *realloc();
extern void free();
#endif

#if defined(HAVE_STRING_H) || defined(STDC_HEADERS)
#include <string.h>
#else
#include <strings.h>
#endif

#if HAVE_SETLOCALE
# include <locale.h>
#endif

#if defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_MBRTOWC
/* We can handle multibyte string.  */
# define MBS_SUPPORT
#endif

#ifdef MBS_SUPPORT
# include <wchar.h>
# include <wctype.h>
#endif

#ifndef DEBUG	/* use the same approach as regex.c */
#undef assert
#define assert(e)
#endif /* DEBUG */

#ifndef isgraph
#define isgraph(C) (isprint(C) && !isspace(C))
#endif

#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
#define ISALPHA(C) isalpha(C)
#define ISUPPER(C) isupper(C)
#define ISLOWER(C) islower(C)
#define ISDIGIT(C) isdigit(C)
#define ISXDIGIT(C) isxdigit(C)
#define ISSPACE(C) isspace(C)
#define ISPUNCT(C) ispunct(C)
#define ISALNUM(C) isalnum(C)
#define ISPRINT(C) isprint(C)
#define ISGRAPH(C) isgraph(C)
#define ISCNTRL(C) iscntrl(C)
#else
#define ISALPHA(C) (isascii(C) && isalpha(C))
#define ISUPPER(C) (isascii(C) && isupper(C))
#define ISLOWER(C) (isascii(C) && islower(C))
#define ISDIGIT(C) (isascii(C) && isdigit(C))
#define ISXDIGIT(C) (isascii(C) && isxdigit(C))
#define ISSPACE(C) (isascii(C) && isspace(C))
#define ISPUNCT(C) (isascii(C) && ispunct(C))
#define ISALNUM(C) (isascii(C) && isalnum(C))
#define ISPRINT(C) (isascii(C) && isprint(C))
#define ISGRAPH(C) (isascii(C) && isgraph(C))
#define ISCNTRL(C) (isascii(C) && iscntrl(C))
#endif

/* ISASCIIDIGIT differs from ISDIGIT, as follows:
   - Its arg may be any int or unsigned int; it need not be an unsigned char.
   - It's guaranteed to evaluate its argument exactly once.
   - It's typically faster.
   Posix 1003.2-1992 section 2.5.2.1 page 50 lines 1556-1558 says that
   only '0' through '9' are digits.  Prefer ISASCIIDIGIT to ISDIGIT unless
   it's important to use the locale's definition of `digit' even when the
   host does not conform to Posix.  */
#define ISASCIIDIGIT(c) ((unsigned) (c) - '0' <= 9)

/* If we (don't) have I18N.  */
/* glibc defines _ */
#ifndef _
# ifdef HAVE_LIBINTL_H
#  include <libintl.h>
#  ifndef _
#   define _(Str) gettext (Str)
#  endif
# else
#  define _(Str) (Str)
# endif
#endif

#include "regex.h"
#include "dfa.h"
#include "hard-locale.h"

/* HPUX, define those as macros in sys/param.h */
#ifdef setbit
# undef setbit
#endif
#ifdef clrbit
# undef clrbit
#endif

static void dfamust PARAMS ((struct dfa *dfa));
static void regexp PARAMS ((int toplevel));

static ptr_t
xcalloc (size_t n, size_t s)
{
  ptr_t r = calloc(n, s);

  if (!r)
    dfaerror(_("Memory exhausted"));
  return r;
}

static ptr_t
xmalloc (size_t n)
{
  ptr_t r = malloc(n);

  assert(n != 0);
  if (!r)
    dfaerror(_("Memory exhausted"));
  return r;
}

static ptr_t
xrealloc (ptr_t p, size_t n)
{
  ptr_t r = realloc(p, n);

  assert(n != 0);
  if (!r)
    dfaerror(_("Memory exhausted"));
  return r;
}

#define CALLOC(p, t, n) ((p) = (t *) xcalloc((size_t)(n), sizeof (t)))
#define MALLOC(p, t, n) ((p) = (t *) xmalloc((n) * sizeof (t)))
#define REALLOC(p, t, n) ((p) = (t *) xrealloc((ptr_t) (p), (n) * sizeof (t)))

/* Reallocate an array of type t if nalloc is too small for index. */
#define REALLOC_IF_NECESSARY(p, t, nalloc, index) \
  if ((index) >= (nalloc))			  \
    {						  \
      do					  \
	(nalloc) *= 2;				  \
      while ((index) >= (nalloc));		  \
      REALLOC(p, t, nalloc);			  \
    }

#ifdef DEBUG

static void
prtok (token t)
{
  char const *s;

  if (t < 0)
    fprintf(stderr, "END");
  else if (t < NOTCHAR)
    fprintf(stderr, "%c", t);
  else
    {
      switch (t)
	{
	case EMPTY: s = "EMPTY"; break;
	case BACKREF: s = "BACKREF"; break;
	case BEGLINE: s = "BEGLINE"; break;
	case ENDLINE: s = "ENDLINE"; break;
	case BEGWORD: s = "BEGWORD"; break;
	case ENDWORD: s = "ENDWORD"; break;
	case LIMWORD: s = "LIMWORD"; break;
	case NOTLIMWORD: s = "NOTLIMWORD"; break;
	case QMARK: s = "QMARK"; break;
	case STAR: s = "STAR"; break;
	case PLUS: s = "PLUS"; break;
	case CAT: s = "CAT"; break;
	case OR: s = "OR"; break;
	case ORTOP: s = "ORTOP"; break;
	case LPAREN: s = "LPAREN"; break;
	case RPAREN: s = "RPAREN"; break;
	case CRANGE: s = "CRANGE"; break;
#ifdef MBS_SUPPORT
	case ANYCHAR: s = "ANYCHAR"; break;
	case MBCSET: s = "MBCSET"; break;
#endif /* MBS_SUPPORT */
	default: s = "CSET"; break;
	}
      fprintf(stderr, "%s", s);
    }
}
#endif /* DEBUG */

/* Stuff pertaining to charclasses. */

static int
tstbit (unsigned b, charclass c)
{
  return c[b / INTBITS] & 1 << b % INTBITS;
}

static void
setbit (unsigned b, charclass c)
{
  c[b / INTBITS] |= 1 << b % INTBITS;
}

static void
clrbit (unsigned b, charclass c)
{
  c[b / INTBITS] &= ~(1 << b % INTBITS);
}

static void
copyset (charclass src, charclass dst)
{
  memcpy (dst, src, sizeof (charclass));
}

static void
zeroset (charclass s)
{
  memset (s, 0, sizeof (charclass));
}

static void
notset (charclass s)
{
  int i;

  for (i = 0; i < CHARCLASS_INTS; ++i)
    s[i] = ~s[i];
}

static int
equal (charclass s1, charclass s2)
{
  return memcmp (s1, s2, sizeof (charclass)) == 0;
}

/* A pointer to the current dfa is kept here during parsing. */
static struct dfa *dfa;

/* Find the index of charclass s in dfa->charclasses, or allocate a new charclass. */
static int
charclass_index (charclass s)
{
  int i;

  for (i = 0; i < dfa->cindex; ++i)
    if (equal(s, dfa->charclasses[i]))
      return i;
  REALLOC_IF_NECESSARY(dfa->charclasses, charclass, dfa->calloc, dfa->cindex);
  ++dfa->cindex;
  copyset(s, dfa->charclasses[i]);
  return i;
}

/* Syntax bits controlling the behavior of the lexical analyzer. */
static reg_syntax_t syntax_bits, syntax_bits_set;

/* Flag for case-folding letters into sets. */
static int case_fold;

/* End-of-line byte in data.  */
static unsigned char eolbyte;

/* Entry point to set syntax options. */
void
dfasyntax (reg_syntax_t bits, int fold, unsigned char eol)
{
  syntax_bits_set = 1;
  syntax_bits = bits;
  case_fold = fold;
  eolbyte = eol;
}

/* Like setbit, but if case is folded, set both cases of a letter.  */
static void
setbit_case_fold (unsigned b, charclass c)
{
  setbit (b, c);
  if (case_fold)
    {
      if (ISUPPER (b))
	setbit (tolower (b), c);
      else if (ISLOWER (b))
	setbit (toupper (b), c);
    }
}

/* Lexical analyzer.  All the dross that deals with the obnoxious
   GNU Regex syntax bits is located here.  The poor, suffering
   reader is referred to the GNU Regex documentation for the
   meaning of the @#%!@#%^!@ syntax bits. */

static char const *lexstart;	/* Pointer to beginning of input string. */
static char const *lexptr;	/* Pointer to next input character. */
static int lexleft;		/* Number of characters remaining. */
static token lasttok;		/* Previous token returned; initially END. */
static int laststart;		/* True if we're separated from beginning or (, |
				   only by zero-width characters. */
static int parens;		/* Count of outstanding left parens. */
static int minrep, maxrep;	/* Repeat counts for {m,n}. */
static int hard_LC_COLLATE;	/* Nonzero if LC_COLLATE is hard.  */

#ifdef MBS_SUPPORT
/* These variables are used only if (MB_CUR_MAX > 1).  */
static mbstate_t mbs;		/* Mbstate for mbrlen().  */
static ssize_t cur_mb_len;	/* Byte length of the current scanning
				   multibyte character.  Must also handle
				   negative result from mbrlen().  */
static ssize_t cur_mb_index;	/* Byte index of the current scanning multibyte
                                   character.

				   singlebyte character : cur_mb_index = 0
				   multibyte character
				       1st byte : cur_mb_index = 1
				       2nd byte : cur_mb_index = 2
				         ...
				       nth byte : cur_mb_index = n  */
static unsigned char *mblen_buf;/* Correspond to the input buffer in dfaexec().
                                  Each element store the amount of remain
                                  byte of corresponding multibyte character
                                  in the input string.  A element's value
                                  is 0 if corresponding character is a
                                  singlebyte chracter.
                                  e.g. input : 'a', <mb(0)>, <mb(1)>, <mb(2)>
                                   mblen_buf :   0,       3,       2,       1
                               */
static wchar_t *inputwcs;	/* Wide character representation of input
				   string in dfaexec().
				   The length of this array is same as
				   the length of input string(char array).
				   inputstring[i] is a single-byte char,
				   or 1st byte of a multibyte char.
				   And inputwcs[i] is the codepoint.  */
static unsigned char const *buf_begin;/* refference to begin in dfaexec().  */
static unsigned char const *buf_end;	/* refference to end in dfaexec().  */
#endif /* MBS_SUPPORT  */

#ifdef MBS_SUPPORT
/* This function update cur_mb_len, and cur_mb_index.
   p points current lexptr, len is the remaining buffer length.  */
static void
update_mb_len_index (unsigned char const *p, size_t len)
{
  /* If last character is a part of a multibyte character,
     we update cur_mb_index.  */
  if (cur_mb_index)
    cur_mb_index = (cur_mb_index >= cur_mb_len)? 0
			: cur_mb_index + 1;

  /* If last character is a single byte character, or the
     last portion of a multibyte character, we check whether
     next character is a multibyte character or not.  */
  if (! cur_mb_index)
    {
      cur_mb_len = mbrlen(p, len, &mbs);
      if (cur_mb_len > 1)
	/* It is a multibyte character.
	   cur_mb_len was already set by mbrlen().  */
	cur_mb_index = 1;
      else if (cur_mb_len < 1)
	/* Invalid sequence.  We treat it as a singlebyte character.
	   cur_mb_index is aleady 0.  */
	cur_mb_len = 1;
      /* Otherwise, cur_mb_len == 1, it is a singlebyte character.
	 cur_mb_index is aleady 0.  */
    }
}
#endif /* MBS_SUPPORT */

#ifdef MBS_SUPPORT
/* Note that characters become unsigned here. */
# define FETCH(c, eoferr)			\
  {						\
    if (! lexleft)				\
     {						\
	if (eoferr != 0)			\
	  dfaerror (eoferr);			\
	else					\
	  return lasttok = END;			\
      }						\
    if (MB_CUR_MAX > 1)				\
      update_mb_len_index(lexptr, lexleft);	\
    (c) = (unsigned char) *lexptr++;		\
    --lexleft;					\
  }

/* This function fetch a wide character, and update cur_mb_len,
   used only if the current locale is a multibyte environment.  */
static wint_t
fetch_wc (char const *eoferr)
{
  wchar_t wc;
  if (! lexleft)
    {
      if (eoferr != 0)
	dfaerror (eoferr);
      else
	return WEOF;
    }

  cur_mb_len = mbrtowc(&wc, lexptr, lexleft, &mbs);
  if (cur_mb_len <= 0)
   {
      cur_mb_len = 1;
      wc = *lexptr;
    }
  lexptr += cur_mb_len;
  lexleft -= cur_mb_len;
  return wc;
}
#else
/* Note that characters become unsigned here. */
# define FETCH(c, eoferr)   	      \
  {			   	      \
    if (! lexleft)	   	      \
      {				      \
	if (eoferr != 0)	      \
	  dfaerror (eoferr);	      \
	else		   	      \
	  return lasttok = END;	      \
      }				      \
    (c) = (unsigned char) *lexptr++;  \
    --lexleft;		   	      \
  }
#endif /* MBS_SUPPORT */

#ifdef MBS_SUPPORT
/* Multibyte character handling sub-routin for lex.
   This function  parse a bracket expression and build a struct
   mb_char_classes.  */
static void
parse_bracket_exp_mb ()
{
  wint_t wc, wc1, wc2;

  /* Work area to build a mb_char_classes.  */
  struct mb_char_classes *work_mbc;
  int chars_al, range_sts_al, range_ends_al, ch_classes_al,
    equivs_al, coll_elems_al;

  REALLOC_IF_NECESSARY(dfa->mbcsets, struct mb_char_classes,
		       dfa->mbcsets_alloc, dfa->nmbcsets + 1);
  /* dfa->multibyte_prop[] hold the index of dfa->mbcsets.
     We will update dfa->multibyte_prop in addtok(), because we can't
     decide the index in dfa->tokens[].  */

  /* Initialize work are */
  work_mbc = &(dfa->mbcsets[dfa->nmbcsets++]);

  chars_al = 1;
  range_sts_al = range_ends_al = 0;
  ch_classes_al = equivs_al = coll_elems_al = 0;
  MALLOC(work_mbc->chars, wchar_t, chars_al);

  work_mbc->nchars = work_mbc->nranges = work_mbc->nch_classes = 0;
  work_mbc->nequivs = work_mbc->ncoll_elems = 0;
  work_mbc->chars = work_mbc->ch_classes = NULL;
  work_mbc->range_sts = work_mbc->range_ends = NULL;
  work_mbc->equivs = work_mbc->coll_elems = NULL;

  wc = fetch_wc(_("Unbalanced ["));
  if (wc == L'^')
    {
      wc = fetch_wc(_("Unbalanced ["));
      work_mbc->invert = 1;
    }
  else
    work_mbc->invert = 0;
  do
    {
      wc1 = WEOF; /* mark wc1 is not initialized".  */

      /* Note that if we're looking at some other [:...:] construct,
	 we just treat it as a bunch of ordinary characters.  We can do
	 this because we assume regex has checked for syntax errors before
	 dfa is ever called. */
      if (wc == L'[' && (syntax_bits & RE_CHAR_CLASSES))
	{
#define BRACKET_BUFFER_SIZE 128
	  char str[BRACKET_BUFFER_SIZE];
	  wc1 = wc;
	  wc = fetch_wc(_("Unbalanced ["));

	  /* If pattern contains `[[:', `[[.', or `[[='.  */
	  if (cur_mb_len == 1 && (wc == L':' || wc == L'.' || wc == L'='))
	    {
	      unsigned char c;
	      unsigned char delim = (unsigned char)wc;
	      int len = 0;
	      for (;;)
		{
		  if (! lexleft)
		    dfaerror (_("Unbalanced ["));
		  c = (unsigned char) *lexptr++;
		  --lexleft;

		  if ((c == delim && *lexptr == ']') || lexleft == 0)
		    break;
		  if (len < BRACKET_BUFFER_SIZE)
		    str[len++] = c;
		  else
		    /* This is in any case an invalid class name.  */
		    str[0] = '\0';
		}
	      str[len] = '\0';

	      if (lexleft == 0)
		{
		  REALLOC_IF_NECESSARY(work_mbc->chars, wchar_t, chars_al,
				       work_mbc->nchars + 2);
		  work_mbc->chars[work_mbc->nchars++] = L'[';
		  work_mbc->chars[work_mbc->nchars++] = delim;
		  break; 
		}

	      if (--lexleft, *lexptr++ != ']')
		dfaerror (_("Unbalanced ["));
	      if (delim == ':')
		/* build character class.  */
		{
		  wctype_t wt;
		  /* Query the character class as wctype_t.  */
		  wt = wctype (str);

		  if (ch_classes_al == 0)
		    MALLOC(work_mbc->ch_classes, wchar_t, ++ch_classes_al);
		  REALLOC_IF_NECESSARY(work_mbc->ch_classes, wctype_t,
				       ch_classes_al,
				       work_mbc->nch_classes + 1);
		  work_mbc->ch_classes[work_mbc->nch_classes++] = wt;

 		}
	      else if (delim == '=' || delim == '.')
		{
		  char *elem;
		  MALLOC(elem, char, len + 1);
		  strncpy(elem, str, len + 1);

		  if (delim == '=')
		    /* build equivalent class.  */
		    {
		      if (equivs_al == 0)
			MALLOC(work_mbc->equivs, char*, ++equivs_al);
		      REALLOC_IF_NECESSARY(work_mbc->equivs, char*,
					   equivs_al,
					   work_mbc->nequivs + 1);
		      work_mbc->equivs[work_mbc->nequivs++] = elem;
		    }

		  if (delim == '.')
		    /* build collating element.  */
		    {
		      if (coll_elems_al == 0)
			MALLOC(work_mbc->coll_elems, char*, ++coll_elems_al);
		      REALLOC_IF_NECESSARY(work_mbc->coll_elems, char*,
					   coll_elems_al,
					   work_mbc->ncoll_elems + 1);
		      work_mbc->coll_elems[work_mbc->ncoll_elems++] = elem;
		    }
 		}
	      wc1 = wc = WEOF;
	    }
	  else
	    /* We treat '[' as a normal character here.  */
	    {
	      wc2 = wc1; wc1 = wc; wc = wc2; /* swap */
	    }
	}
      else
	{
	  if (wc == L'\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
	    wc = fetch_wc(("Unbalanced ["));
	}

      if (wc1 == WEOF)
	wc1 = fetch_wc(_("Unbalanced ["));

      if (wc1 == L'-')
	/* build range characters.  */
	{
	  wc2 = fetch_wc(_("Unbalanced ["));
	  if (wc2 == L']')
	    {
	      /* In the case [x-], the - is an ordinary hyphen,
		 which is left in c1, the lookahead character. */
	      lexptr -= cur_mb_len;
	      lexleft += cur_mb_len;
	      wc2 = wc;
	    }
	  else
	    {
	      if (wc2 == L'\\'
		  && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
		wc2 = fetch_wc(_("Unbalanced ["));
	      wc1 = fetch_wc(_("Unbalanced ["));
	    }

	  if (range_sts_al == 0)
	    {
	      MALLOC(work_mbc->range_sts, wchar_t, ++range_sts_al);
	      MALLOC(work_mbc->range_ends, wchar_t, ++range_ends_al);
	    }
	  REALLOC_IF_NECESSARY(work_mbc->range_sts, wchar_t,
			       range_sts_al, work_mbc->nranges + 1);
	  work_mbc->range_sts[work_mbc->nranges] = (wchar_t)wc;
	  REALLOC_IF_NECESSARY(work_mbc->range_ends, wchar_t,
			       range_ends_al, work_mbc->nranges + 1);
	  work_mbc->range_ends[work_mbc->nranges++] = (wchar_t)wc2;
	}
      else if (wc != WEOF)
	/* build normal characters.  */
	{
	  REALLOC_IF_NECESSARY(work_mbc->chars, wchar_t, chars_al,
			       work_mbc->nchars + 1);
	  work_mbc->chars[work_mbc->nchars++] = (wchar_t)wc;
	}
    }
  while ((wc = wc1) != L']');
}
#endif /* MBS_SUPPORT */

#ifdef __STDC__
#define FUNC(F, P) static int F(int c) { return P(c); }
#else
#define FUNC(F, P) static int F(c) int c; { return P(c); }
#endif

FUNC(is_alpha, ISALPHA)
FUNC(is_upper, ISUPPER)
FUNC(is_lower, ISLOWER)
FUNC(is_digit, ISDIGIT)
FUNC(is_xdigit, ISXDIGIT)
FUNC(is_space, ISSPACE)
FUNC(is_punct, ISPUNCT)
FUNC(is_alnum, ISALNUM)
FUNC(is_print, ISPRINT)
FUNC(is_graph, ISGRAPH)
FUNC(is_cntrl, ISCNTRL)

static int
is_blank (int c)
{
   return (c == ' ' || c == '\t');
}

/* The following list maps the names of the Posix named character classes
   to predicate functions that determine whether a given character is in
   the class.  The leading [ has already been eaten by the lexical analyzer. */
static struct {
  const char *name;
  int (*pred) PARAMS ((int));
} const prednames[] = {
  { ":alpha:]", is_alpha },
  { ":upper:]", is_upper },
  { ":lower:]", is_lower },
  { ":digit:]", is_digit },
  { ":xdigit:]", is_xdigit },
  { ":space:]", is_space },
  { ":punct:]", is_punct },
  { ":alnum:]", is_alnum },
  { ":print:]", is_print },
  { ":graph:]", is_graph },
  { ":cntrl:]", is_cntrl },
  { ":blank:]", is_blank },
  { 0 }
};

/* Return non-zero if C is a `word-constituent' byte; zero otherwise.  */
#define IS_WORD_CONSTITUENT(C) (ISALNUM(C) || (C) == '_')

static int
looking_at (char const *s)
{
  size_t len;

  len = strlen(s);
  if (lexleft < len)
    return 0;
  return strncmp(s, lexptr, len) == 0;
}

static token
lex (void)
{
  unsigned c, c1, c2;
  int backslash = 0, invert;
  charclass ccl;
  int i;

  /* Basic plan: We fetch a character.  If it's a backslash,
     we set the backslash flag and go through the loop again.
     On the plus side, this avoids having a duplicate of the
     main switch inside the backslash case.  On the minus side,
     it means that just about every case begins with
     "if (backslash) ...".  */
  for (i = 0; i < 2; ++i)
    {
      FETCH(c, 0);
#ifdef MBS_SUPPORT
      if (MB_CUR_MAX > 1 && cur_mb_index)
	/* If this is a part of a multi-byte character, we must treat
	   this byte data as a normal character.
	   e.g. In case of SJIS encoding, some character contains '\',
	        but they must not be backslash.  */
	goto normal_char;
#endif /* MBS_SUPPORT  */
      switch (c)
	{
	case '\\':
	  if (backslash)
	    goto normal_char;
	  if (lexleft == 0)
	    dfaerror(_("Unfinished \\ escape"));
	  backslash = 1;
	  break;

	case '^':
	  if (backslash)
	    goto normal_char;
	  if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
	      || lasttok == END
	      || lasttok == LPAREN
	      || lasttok == OR)
	    return lasttok = BEGLINE;
	  goto normal_char;

	case '$':
	  if (backslash)
	    goto normal_char;
	  if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
	      || lexleft == 0
	      || (syntax_bits & RE_NO_BK_PARENS
		  ? lexleft > 0 && *lexptr == ')'
		  : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == ')')
	      || (syntax_bits & RE_NO_BK_VBAR
		  ? lexleft > 0 && *lexptr == '|'
		  : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == '|')
	      || ((syntax_bits & RE_NEWLINE_ALT)
	          && lexleft > 0 && *lexptr == '\n'))
	    return lasttok = ENDLINE;
	  goto normal_char;

	case '1':
	case '2':
	case '3':
	case '4':
	case '5':
	case '6':
	case '7':
	case '8':
	case '9':
	  if (backslash && !(syntax_bits & RE_NO_BK_REFS))
	    {
	      laststart = 0;
	      return lasttok = BACKREF;
	    }
	  goto normal_char;

	case '`':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = BEGLINE;	/* FIXME: should be beginning of string */
	  goto normal_char;

	case '\'':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = ENDLINE;	/* FIXME: should be end of string */
	  goto normal_char;

	case '<':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = BEGWORD;
	  goto normal_char;

	case '>':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = ENDWORD;
	  goto normal_char;

	case 'b':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = LIMWORD;
	  goto normal_char;

	case 'B':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = NOTLIMWORD;
	  goto normal_char;

	case '?':
	  if (syntax_bits & RE_LIMITED_OPS)
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
	    goto normal_char;
	  if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
	    goto normal_char;
	  return lasttok = QMARK;

	case '*':
	  if (backslash)
	    goto normal_char;
	  if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
	    goto normal_char;
	  return lasttok = STAR;

	case '+':
	  if (syntax_bits & RE_LIMITED_OPS)
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
	    goto normal_char;
	  if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
	    goto normal_char;
	  return lasttok = PLUS;

	case '{':
	  if (!(syntax_bits & RE_INTERVALS))
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_NO_BK_BRACES) == 0))
	    goto normal_char;
	  if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
	    goto normal_char;

	  if (syntax_bits & RE_NO_BK_BRACES)
	    {
	      /* Scan ahead for a valid interval; if it's not valid,
		 treat it as a literal '{'.  */
	      int lo = -1, hi = -1;
	      char const *p = lexptr;
	      char const *lim = p + lexleft;
	      for (;  p != lim && ISASCIIDIGIT (*p);  p++)
		lo = (lo < 0 ? 0 : lo * 10) + *p - '0';
	      if (p != lim && *p == ',')
		while (++p != lim && ISASCIIDIGIT (*p))
		  hi = (hi < 0 ? 0 : hi * 10) + *p - '0';
	      else
		hi = lo;
	      if (p == lim || *p != '}'
		  || lo < 0 || RE_DUP_MAX < hi || (0 <= hi && hi < lo))
		goto normal_char;
	    }

	  minrep = 0;
	  /* Cases:
	     {M} - exact count
	     {M,} - minimum count, maximum is infinity
	     {M,N} - M through N */
	  FETCH(c, _("unfinished repeat count"));
	  if (ISASCIIDIGIT (c))
	    {
	      minrep = c - '0';
	      for (;;)
		{
		  FETCH(c, _("unfinished repeat count"));
		  if (! ISASCIIDIGIT (c))
		    break;
		  minrep = 10 * minrep + c - '0';
		}
	    }
	  else
	    dfaerror(_("malformed repeat count"));
	  if (c == ',')
	    {
	      FETCH (c, _("unfinished repeat count"));
	      if (! ISASCIIDIGIT (c))
		maxrep = -1;
	      else
		{
		  maxrep = c - '0';
		  for (;;)
		    {
		      FETCH (c, _("unfinished repeat count"));
		      if (! ISASCIIDIGIT (c))
			break;
		      maxrep = 10 * maxrep + c - '0';
		    }
		  if (0 <= maxrep && maxrep < minrep)
		    dfaerror (_("malformed repeat count"));
		}
	    }
	  else
	    maxrep = minrep;
	  if (!(syntax_bits & RE_NO_BK_BRACES))
	    {
	      if (c != '\\')
		dfaerror(_("malformed repeat count"));
	      FETCH(c, _("unfinished repeat count"));
	    }
	  if (c != '}')
	    dfaerror(_("malformed repeat count"));
	  laststart = 0;
	  return lasttok = REPMN;

	case '|':
	  if (syntax_bits & RE_LIMITED_OPS)
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_NO_BK_VBAR) == 0))
	    goto normal_char;
	  laststart = 1;
	  return lasttok = OR;

	case '\n':
	  if (syntax_bits & RE_LIMITED_OPS
	      || backslash
	      || !(syntax_bits & RE_NEWLINE_ALT))
	    goto normal_char;
	  laststart = 1;
	  return lasttok = OR;

	case '(':
	  if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
	    goto normal_char;
	  ++parens;
	  laststart = 1;
	  return lasttok = LPAREN;

	case ')':
	  if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
	    goto normal_char;
	  if (parens == 0 && syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
	    goto normal_char;
	  --parens;
	  laststart = 0;
	  return lasttok = RPAREN;

	case '.':
	  if (backslash)
	    goto normal_char;
#ifdef MBS_SUPPORT
	  if (MB_CUR_MAX > 1)
	    {
	      /* In multibyte environment period must match with a single
		 character not a byte.  So we use ANYCHAR.  */
	      laststart = 0;
	      return lasttok = ANYCHAR;
	    }
#endif /* MBS_SUPPORT */
	  zeroset(ccl);
	  notset(ccl);
	  if (!(syntax_bits & RE_DOT_NEWLINE))
	    clrbit(eolbyte, ccl);
	  if (syntax_bits & RE_DOT_NOT_NULL)
	    clrbit('\0', ccl);
	  laststart = 0;
	  return lasttok = CSET + charclass_index(ccl);

	case 'w':
	case 'W':
	  if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
	    goto normal_char;
	  zeroset(ccl);
	  for (c2 = 0; c2 < NOTCHAR; ++c2)
	    if (IS_WORD_CONSTITUENT(c2))
	      setbit(c2, ccl);
	  if (c == 'W')
	    notset(ccl);
	  laststart = 0;
	  return lasttok = CSET + charclass_index(ccl);

	case '[':
	  if (backslash)
	    goto normal_char;
	  laststart = 0;
#ifdef MBS_SUPPORT
	  if (MB_CUR_MAX > 1)
	    {
	      /* In multibyte environment a bracket expression may contain
		 multibyte characters, which must be treated as characters
		 (not bytes).  So we parse it by parse_bracket_exp_mb().  */
	      parse_bracket_exp_mb();
	      return lasttok = MBCSET;
	    }
#endif
	  zeroset(ccl);
	  FETCH(c, _("Unbalanced ["));
	  if (c == '^')
	    {
	      FETCH(c, _("Unbalanced ["));
	      invert = 1;
	    }
	  else
	    invert = 0;
	  do
	    {
	      /* Nobody ever said this had to be fast. :-)
		 Note that if we're looking at some other [:...:]
		 construct, we just treat it as a bunch of ordinary
		 characters.  We can do this because we assume
		 regex has checked for syntax errors before
		 dfa is ever called. */
	      if (c == '[' && (syntax_bits & RE_CHAR_CLASSES))
		for (c1 = 0; prednames[c1].name; ++c1)
		  if (looking_at(prednames[c1].name))
		    {
		      int (*pred) PARAMS ((int)) = prednames[c1].pred;

		      for (c2 = 0; c2 < NOTCHAR; ++c2)
			if ((*pred)(c2))
			  setbit_case_fold (c2, ccl);
		      lexptr += strlen(prednames[c1].name);
		      lexleft -= strlen(prednames[c1].name);
		      FETCH(c1, _("Unbalanced ["));
		      goto skip;
		    }
	      if (c == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
		FETCH(c, _("Unbalanced ["));
	      FETCH(c1, _("Unbalanced ["));
	      if (c1 == '-')
		{
		  FETCH(c2, _("Unbalanced ["));
		  if (c2 == ']')
		    {
		      /* In the case [x-], the - is an ordinary hyphen,
			 which is left in c1, the lookahead character. */
		      --lexptr;
		      ++lexleft;
		    }
		  else
		    {
		      if (c2 == '\\'
			  && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
			FETCH(c2, _("Unbalanced ["));
		      FETCH(c1, _("Unbalanced ["));
		      if (!hard_LC_COLLATE) {
		        for (; c <= c2; c++)
			  setbit_case_fold (c, ccl);
		      } else {
			/* POSIX locales are painful - leave the decision to libc */
			char expr[6] = { '[', c, '-', c2, ']', '\0' };
			regex_t re;
			if (regcomp (&re, expr, case_fold ? REG_ICASE : 0) == REG_NOERROR) {
			  for (c = 0; c < NOTCHAR; ++c) {
			    char buf[2] = { c, '\0' };
			    regmatch_t mat;
			    if (regexec (&re, buf, 1, &mat, 0) == REG_NOERROR
                               && mat.rm_so == 0 && mat.rm_eo == 1)
                              setbit_case_fold (c, ccl);
			  }
			  regfree (&re);
			}
		      }
		      continue;
		    }
		}

	      setbit_case_fold (c, ccl);

	    skip:
	      ;
	    }
	  while ((c = c1) != ']');
	  if (invert)
	    {
	      notset(ccl);
	      if (syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
		clrbit(eolbyte, ccl);
	    }
	  return lasttok = CSET + charclass_index(ccl);

	default:
	normal_char:
	  laststart = 0;
	  if (case_fold && ISALPHA(c))
	    {
	      zeroset(ccl);
	      setbit_case_fold (c, ccl);
	      return lasttok = CSET + charclass_index(ccl);
	    }
	  return c;
	}
    }

  /* The above loop should consume at most a backslash
     and some other character. */
  abort();
  return END;	/* keeps pedantic compilers happy. */
}

/* Recursive descent parser for regular expressions. */

static token tok;		/* Lookahead token. */
static int depth;		/* Current depth of a hypothetical stack
				   holding deferred productions.  This is
				   used to determine the depth that will be
				   required of the real stack later on in
				   dfaanalyze(). */

/* Add the given token to the parse tree, maintaining the depth count and
   updating the maximum depth if necessary. */
static void
addtok (token t)
{
#ifdef MBS_SUPPORT
  if (MB_CUR_MAX > 1)
    {
      REALLOC_IF_NECESSARY(dfa->multibyte_prop, int, dfa->nmultibyte_prop,
			   dfa->tindex);
      /* Set dfa->multibyte_prop.  See struct dfa in dfa.h.  */
      if (t == MBCSET)
	dfa->multibyte_prop[dfa->tindex] = ((dfa->nmbcsets - 1) << 2) + 3;
      else if (t < NOTCHAR)
	dfa->multibyte_prop[dfa->tindex]
	  = (cur_mb_len == 1)? 3 /* single-byte char */
	  : (((cur_mb_index == 1)? 1 : 0) /* 1st-byte of multibyte char */
	     + ((cur_mb_index == cur_mb_len)? 2 : 0)); /* last-byte */
      else
	/* It may be unnecesssary, but it is safer to treat other
	   symbols as singlebyte characters.  */
	dfa->multibyte_prop[dfa->tindex] = 3;
    }
#endif

  REALLOC_IF_NECESSARY(dfa->tokens, token, dfa->talloc, dfa->tindex);
  dfa->tokens[dfa->tindex++] = t;

  switch (t)
    {
    case QMARK:
    case STAR:
    case PLUS:
      break;

    case CAT:
    case OR:
    case ORTOP:
      --depth;
      break;

    default:
      ++dfa->nleaves;
    case EMPTY:
      ++depth;
      break;
    }
  if (depth > dfa->depth)
    dfa->depth = depth;
}

/* The grammar understood by the parser is as follows.

   regexp:
     regexp OR branch
     branch

   branch:
     branch closure
     closure

   closure:
     closure QMARK
     closure STAR
     closure PLUS
     closure REPMN
     atom

   atom:
     <normal character>
     <multibyte character>
     ANYCHAR
     MBCSET
     CSET
     BACKREF
     BEGLINE
     ENDLINE
     BEGWORD
     ENDWORD
     LIMWORD
     NOTLIMWORD
     CRANGE
     LPAREN regexp RPAREN
     <empty>

   The parser builds a parse tree in postfix form in an array of tokens. */

static void
atom (void)
{
  if ((tok >= 0 && tok < NOTCHAR) || tok >= CSET || tok == BACKREF
      || tok == BEGLINE || tok == ENDLINE || tok == BEGWORD
#ifdef MBS_SUPPORT
      || tok == ANYCHAR || tok == MBCSET /* MB_CUR_MAX > 1 */
#endif /* MBS_SUPPORT */
      || tok == ENDWORD || tok == LIMWORD || tok == NOTLIMWORD)
    {
      addtok(tok);
      tok = lex();
#ifdef MBS_SUPPORT
      /* We treat a multibyte character as a single atom, so that DFA
	 can treat a multibyte character as a single expression.

         e.g. We construct following tree from "<mb1><mb2>".
              <mb1(1st-byte)><mb1(2nd-byte)><CAT><mb1(3rd-byte)><CAT>
              <mb2(1st-byte)><mb2(2nd-byte)><CAT><mb2(3rd-byte)><CAT><CAT>
      */
      if (MB_CUR_MAX > 1)
	{
	  while (cur_mb_index > 1 && tok >= 0 && tok < NOTCHAR)
	    {
	      addtok(tok);
	      addtok(CAT);
	      tok = lex();
	    }
	}
#endif /* MBS_SUPPORT  */
    }
  else if (tok == CRANGE)
    {
      /* A character range like "[a-z]" in a locale other than "C" or
	 "POSIX".  This range might any sequence of one or more
	 characters.  Unfortunately the POSIX locale primitives give
	 us no practical way to find what character sequences might be
	 matched.  Treat this approximately like "(.\1)" -- i.e. match
	 one character, and then punt to the full matcher.  */
      charclass ccl;
      zeroset (ccl);
      notset (ccl);
      addtok (CSET + charclass_index (ccl));
      addtok (BACKREF);
      addtok (CAT);
      tok = lex ();
    }
  else if (tok == LPAREN)
    {
      tok = lex();
      regexp(0);
      if (tok != RPAREN)
	dfaerror(_("Unbalanced ("));
      tok = lex();
    }
  else
    addtok(EMPTY);
}

/* Return the number of tokens in the given subexpression. */
static int
nsubtoks (int tindex)
{
  int ntoks1;

  switch (dfa->tokens[tindex - 1])
    {
    default:
      return 1;
    case QMARK:
    case STAR:
    case PLUS:
      return 1 + nsubtoks(tindex - 1);
    case CAT:
    case OR:
    case ORTOP:
      ntoks1 = nsubtoks(tindex - 1);
      return 1 + ntoks1 + nsubtoks(tindex - 1 - ntoks1);
    }
}

/* Copy the given subexpression to the top of the tree. */
static void
copytoks (int tindex, int ntokens)
{
  int i;

  for (i = 0; i < ntokens; ++i)
    addtok(dfa->tokens[tindex + i]);
}

static void
closure (void)
{
  int tindex, ntokens, i;

  atom();
  while (tok == QMARK || tok == STAR || tok == PLUS || tok == REPMN)
    if (tok == REPMN)
      {
	ntokens = nsubtoks(dfa->tindex);
	tindex = dfa->tindex - ntokens;
	if (maxrep < 0)
	  addtok(PLUS);
	if (minrep == 0)
	  addtok(QMARK);
	for (i = 1; i < minrep; ++i)
	  {
	    copytoks(tindex, ntokens);
	    addtok(CAT);
	  }
	for (; i < maxrep; ++i)
	  {
	    copytoks(tindex, ntokens);
	    addtok(QMARK);
	    addtok(CAT);
	  }
	tok = lex();
      }
    else
      {
	addtok(tok);
	tok = lex();
      }
}

static void
branch (void)
{
  closure();
  while (tok != RPAREN && tok != OR && tok >= 0)
    {
      closure();
      addtok(CAT);
    }
}

static void
regexp (int toplevel)
{
  branch();
  while (tok == OR)
    {
      tok = lex();
      branch();
      if (toplevel)
	addtok(ORTOP);
      else
	addtok(OR);
    }
}

/* Main entry point for the parser.  S is a string to be parsed, len is the
   length of the string, so s can include NUL characters.  D is a pointer to
   the struct dfa to parse into. */
void
dfaparse (char const *s, size_t len, struct dfa *d)
{
  dfa = d;
  lexstart = lexptr = s;
  lexleft = len;
  lasttok = END;
  laststart = 1;
  parens = 0;
  hard_LC_COLLATE = hard_locale (LC_COLLATE);
#ifdef MBS_SUPPORT
  if (MB_CUR_MAX > 1)
    {
      cur_mb_index = 0;
      cur_mb_len = 0;
      memset(&mbs, 0, sizeof(mbstate_t));
    }
#endif /* MBS_SUPPORT  */

  if (! syntax_bits_set)
    dfaerror(_("No syntax specified"));

  tok = lex();
  depth = d->depth;

  regexp(1);

  if (tok != END)
    dfaerror(_("Unbalanced )"));

  addtok(END - d->nregexps);
  addtok(CAT);

  if (d->nregexps)
    addtok(ORTOP);

  ++d->nregexps;
}

/* Some primitives for operating on sets of positions. */

/* Copy one set to another; the destination must be large enough. */
static void
copy (position_set const *src, position_set *dst)
{
  int i;

  for (i = 0; i < src->nelem; ++i)
    dst->elems[i] = src->elems[i];
  dst->nelem = src->nelem;
}

/* Insert a position in a set.  Position sets are maintained in sorted
   order according to index.  If position already exists in the set with
   the same index then their constraints are logically or'd together.
   S->elems must point to an array large enough to hold the resulting set. */
static void
insert (position p, position_set *s)
{
  int i;
  position t1, t2;

  for (i = 0; i < s->nelem && p.index < s->elems[i].index; ++i)
    continue;
  if (i < s->nelem && p.index == s->elems[i].index)
    s->elems[i].constraint |= p.constraint;
  else
    {
      t1 = p;
      ++s->nelem;
      while (i < s->nelem)
	{
	  t2 = s->elems[i];
	  s->elems[i++] = t1;
	  t1 = t2;
	}
    }
}

/* Merge two sets of positions into a third.  The result is exactly as if
   the positions of both sets were inserted into an initially empty set. */
static void
merge (position_set const *s1, position_set const *s2, position_set *m)
{
  int i = 0, j = 0;

  m->nelem = 0;
  while (i < s1->nelem && j < s2->nelem)
    if (s1->elems[i].index > s2->elems[j].index)
      m->elems[m->nelem++] = s1->elems[i++];
    else if (s1->elems[i].index < s2->elems[j].index)
      m->elems[m->nelem++] = s2->elems[j++];
    else
      {
	m->elems[m->nelem] = s1->elems[i++];
	m->elems[m->nelem++].constraint |= s2->elems[j++].constraint;
      }
  while (i < s1->nelem)
    m->elems[m->nelem++] = s1->elems[i++];
  while (j < s2->nelem)
    m->elems[m->nelem++] = s2->elems[j++];
}

/* Delete a position from a set. */
static void
delete (position p, position_set *s)
{
  int i;

  for (i = 0; i < s->nelem; ++i)
    if (p.index == s->elems[i].index)
      break;
  if (i < s->nelem)
    for (--s->nelem; i < s->nelem; ++i)
      s->elems[i] = s->elems[i + 1];
}

/* Find the index of the state corresponding to the given position set with
   the given preceding context, or create a new state if there is no such
   state.  Newline and letter tell whether we got here on a newline or
   letter, respectively. */
static int
state_index (struct dfa *d, position_set const *s, int newline, int letter)
{
  int hash = 0;
  int constraint;
  int i, j;

  newline = newline ? 1 : 0;
  letter = letter ? 1 : 0;

  for (i = 0; i < s->nelem; ++i)
    hash ^= s->elems[i].index + s->elems[i].constraint;

  /* Try to find a state that exactly matches the proposed one. */
  for (i = 0; i < d->sindex; ++i)
    {
      if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
	  || newline != d->states[i].newline || letter != d->states[i].letter)
	continue;
      for (j = 0; j < s->nelem; ++j)
	if (s->elems[j].constraint
	    != d->states[i].elems.elems[j].constraint
	    || s->elems[j].index != d->states[i].elems.elems[j].index)
	  break;
      if (j == s->nelem)
	return i;
    }

  /* We'll have to create a new state. */
  REALLOC_IF_NECESSARY(d->states, dfa_state, d->salloc, d->sindex);
  d->states[i].hash = hash;
  MALLOC(d->states[i].elems.elems, position, s->nelem);
  copy(s, &d->states[i].elems);
  d->states[i].newline = newline;
  d->states[i].letter = letter;
  d->states[i].backref = 0;
  d->states[i].constraint = 0;
  d->states[i].first_end = 0;
#ifdef MBS_SUPPORT
  if (MB_CUR_MAX > 1)
    d->states[i].mbps.nelem = 0;
#endif
  for (j = 0; j < s->nelem; ++j)
    if (d->tokens[s->elems[j].index] < 0)
      {
	constraint = s->elems[j].constraint;
	if (SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 0)
	    || SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 1)
	    || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 0)
	    || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 1))
	  d->states[i].constraint |= constraint;
	if (! d->states[i].first_end)
	  d->states[i].first_end = d->tokens[s->elems[j].index];
      }
    else if (d->tokens[s->elems[j].index] == BACKREF)
      {
	d->states[i].constraint = NO_CONSTRAINT;
	d->states[i].backref = 1;
      }

  ++d->sindex;

  return i;
}

/* Find the epsilon closure of a set of positions.  If any position of the set
   contains a symbol that matches the empty string in some context, replace
   that position with the elements of its follow labeled with an appropriate
   constraint.  Repeat exhaustively until no funny positions are left.
   S->elems must be large enough to hold the result. */
static void
epsclosure (position_set *s, struct dfa const *d)
{
  int i, j;
  int *visited;
  position p, old;

  MALLOC(visited, int, d->tindex);
  for (i = 0; i < d->tindex; ++i)
    visited[i] = 0;

  for (i = 0; i < s->nelem; ++i)
    if (d->tokens[s->elems[i].index] >= NOTCHAR
	&& d->tokens[s->elems[i].index] != BACKREF
#ifdef MBS_SUPPORT
	&& d->tokens[s->elems[i].index] != ANYCHAR
	&& d->tokens[s->elems[i].index] != MBCSET
#endif
	&& d->tokens[s->elems[i].index] < CSET)
      {
	old = s->elems[i];
	p.constraint = old.constraint;
	delete(s->elems[i], s);
	if (visited[old.index])
	  {
	    --i;
	    continue;
	  }
	visited[old.index] = 1;
	switch (d->tokens[old.index])
	  {
	  case BEGLINE:
	    p.constraint &= BEGLINE_CONSTRAINT;
	    break;
	  case ENDLINE:
	    p.constraint &= ENDLINE_CONSTRAINT;
	    break;
	  case BEGWORD:
	    p.constraint &= BEGWORD_CONSTRAINT;
	    break;
	  case ENDWORD:
	    p.constraint &= ENDWORD_CONSTRAINT;
	    break;
	  case LIMWORD:
	    p.constraint &= LIMWORD_CONSTRAINT;
	    break;
	  case NOTLIMWORD:
	    p.constraint &= NOTLIMWORD_CONSTRAINT;
	    break;
	  default:
	    break;
	  }
	for (j = 0; j < d->follows[old.index].nelem; ++j)
	  {
	    p.index = d->follows[old.index].elems[j].index;
	    insert(p, s);
	  }
	/* Force rescan to start at the beginning. */
	i = -1;
      }

  free(visited);
}

/* Perform bottom-up analysis on the parse tree, computing various functions.
   Note that at this point, we're pretending constructs like \< are real
   characters rather than constraints on what can follow them.

   Nullable:  A node is nullable if it is at the root of a regexp that can
   match the empty string.
   *  EMPTY leaves are nullable.
   * No other leaf is nullable.
   * A QMARK or STAR node is nullable.
   * A PLUS node is nullable if its argument is nullable.
   * A CAT node is nullable if both its arguments are nullable.
   * An OR node is nullable if either argument is nullable.

   Firstpos:  The firstpos of a node is the set of positions (nonempty leaves)
   that could correspond to the first character of a string matching the
   regexp rooted at the given node.
   * EMPTY leaves have empty firstpos.
   * The firstpos of a nonempty leaf is that leaf itself.
   * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
     argument.
   * The firstpos of a CAT node is the firstpos of the left argument, union
     the firstpos of the right if the left argument is nullable.
   * The firstpos of an OR node is the union of firstpos of each argument.

   Lastpos:  The lastpos of a node is the set of positions that could
   correspond to the last character of a string matching the regexp at
   the given node.
   * EMPTY leaves have empty lastpos.
   * The lastpos of a nonempty leaf is that leaf itself.
   * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
     argument.
   * The lastpos of a CAT node is the lastpos of its right argument, union
     the lastpos of the left if the right argument is nullable.
   * The lastpos of an OR node is the union of the lastpos of each argument.

   Follow:  The follow of a position is the set of positions that could
   correspond to the character following a character matching the node in
   a string matching the regexp.  At this point we consider special symbols
   that match the empty string in some context to be just normal characters.
   Later, if we find that a special symbol is in a follow set, we will
   replace it with the elements of its follow, labeled with an appropriate
   constraint.
   * Every node in the firstpos of the argument of a STAR or PLUS node is in
     the follow of every node in the lastpos.
   * Every node in the firstpos of the second argument of a CAT node is in
     the follow of every node in the lastpos of the first argument.

   Because of the postfix representation of the parse tree, the depth-first
   analysis is conveniently done by a linear scan with the aid of a stack.
   Sets are stored as arrays of the elements, obeying a stack-like allocation
   scheme; the number of elements in each set deeper in the stack can be
   used to determine the address of a particular set's array. */
void
dfaanalyze (struct dfa *d, int searchflag)
{
  int *nullable;		/* Nullable stack. */
  int *nfirstpos;		/* Element count stack for firstpos sets. */
  position *firstpos;		/* Array where firstpos elements are stored. */
  int *nlastpos;		/* Element count stack for lastpos sets. */
  position *lastpos;		/* Array where lastpos elements are stored. */
  int *nalloc;			/* Sizes of arrays allocated to follow sets. */
  position_set tmp;		/* Temporary set for merging sets. */
  position_set merged;		/* Result of merging sets. */
  int wants_newline;		/* True if some position wants newline info. */
  int *o_nullable;
  int *o_nfirst, *o_nlast;
  position *o_firstpos, *o_lastpos;
  int i, j;
  position *pos;

#ifdef DEBUG
  fprintf(stderr, "dfaanalyze:\n");
  for (i = 0; i < d->tindex; ++i)
    {
      fprintf(stderr, " %d:", i);
      prtok(d->tokens[i]);
    }
  putc('\n', stderr);
#endif

  d->searchflag = searchflag;

  MALLOC(nullable, int, d->depth);
  o_nullable = nullable;
  MALLOC(nfirstpos, int, d->depth);
  o_nfirst = nfirstpos;
  MALLOC(firstpos, position, d->nleaves);
  o_firstpos = firstpos, firstpos += d->nleaves;
  MALLOC(nlastpos, int, d->depth);
  o_nlast = nlastpos;
  MALLOC(lastpos, position, d->nleaves);
  o_lastpos = lastpos, lastpos += d->nleaves;
  MALLOC(nalloc, int, d->tindex);
  for (i = 0; i < d->tindex; ++i)
    nalloc[i] = 0;
  MALLOC(merged.elems, position, d->nleaves);

  CALLOC(d->follows, position_set, d->tindex);

  for (i = 0; i < d->tindex; ++i)
#ifdef DEBUG
    {				/* Nonsyntactic #ifdef goo... */
#endif
    switch (d->tokens[i])
      {
      case EMPTY:
	/* The empty set is nullable. */
	*nullable++ = 1;

	/* The firstpos and lastpos of the empty leaf are both empty. */
	*nfirstpos++ = *nlastpos++ = 0;
	break;

      case STAR:
      case PLUS:
	/* Every element in the firstpos of the argument is in the follow
	   of every element in the lastpos. */
	tmp.nelem = nfirstpos[-1];
	tmp.elems = firstpos;
	pos = lastpos;
	for (j = 0; j < nlastpos[-1]; ++j)
	  {
	    merge(&tmp, &d->follows[pos[j].index], &merged);
	    REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position,
				 nalloc[pos[j].index], merged.nelem - 1);
	    copy(&merged, &d->follows[pos[j].index]);
	  }

      case QMARK:
	/* A QMARK or STAR node is automatically nullable. */
	if (d->tokens[i] != PLUS)
	  nullable[-1] = 1;
	break;

      case CAT:
	/* Every element in the firstpos of the second argument is in the
	   follow of every element in the lastpos of the first argument. */
	tmp.nelem = nfirstpos[-1];
	tmp.elems = firstpos;
	pos = lastpos + nlastpos[-1];
	for (j = 0; j < nlastpos[-2]; ++j)
	  {
	    merge(&tmp, &d->follows[pos[j].index], &merged);
	    REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position,
				 nalloc[pos[j].index], merged.nelem - 1);
	    copy(&merged, &d->follows[pos[j].index]);
	  }

	/* The firstpos of a CAT node is the firstpos of the first argument,
	   union that of the second argument if the first is nullable. */
	if (nullable[-2])
	  nfirstpos[-2] += nfirstpos[-1];
	else
	  firstpos += nfirstpos[-1];
	--nfirstpos;

	/* The lastpos of a CAT node is the lastpos of the second argument,
	   union that of the first argument if the second is nullable. */
	if (nullable[-1])
	  nlastpos[-2] += nlastpos[-1];
	else
	  {
	    pos = lastpos + nlastpos[-2];
	    for (j = nlastpos[-1] - 1; j >= 0; --j)
	      pos[j] = lastpos[j];
	    lastpos += nlastpos[-2];
	    nlastpos[-2] = nlastpos[-1];
	  }
	--nlastpos;

	/* A CAT node is nullable if both arguments are nullable. */
	nullable[-2] = nullable[-1] && nullable[-2];
	--nullable;
	break;

      case OR:
      case ORTOP:
	/* The firstpos is the union of the firstpos of each argument. */
	nfirstpos[-2] += nfirstpos[-1];
	--nfirstpos;

	/* The lastpos is the union of the lastpos of each argument. */
	nlastpos[-2] += nlastpos[-1];
	--nlastpos;

	/* An OR node is nullable if either argument is nullable. */
	nullable[-2] = nullable[-1] || nullable[-2];
	--nullable;
	break;

      default:
	/* Anything else is a nonempty position.  (Note that special
	   constructs like \< are treated as nonempty strings here;
	   an "epsilon closure" effectively makes them nullable later.
	   Backreferences have to get a real position so we can detect
	   transitions on them later.  But they are nullable. */
	*nullable++ = d->tokens[i] == BACKREF;

	/* This position is in its own firstpos and lastpos. */
	*nfirstpos++ = *nlastpos++ = 1;
	--firstpos, --lastpos;
	firstpos->index = lastpos->index = i;
	firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;

	/* Allocate the follow set for this position. */
	nalloc[i] = 1;
	MALLOC(d->follows[i].elems, position, nalloc[i]);
	break;
      }
#ifdef DEBUG
    /* ... balance the above nonsyntactic #ifdef goo... */
      fprintf(stderr, "node %d:", i);
      prtok(d->tokens[i]);
      putc('\n', stderr);
      fprintf(stderr, nullable[-1] ? " nullable: yes\n" : " nullable: no\n");
      fprintf(stderr, " firstpos:");
      for (j = nfirstpos[-1] - 1; j >= 0; --j)
	{
	  fprintf(stderr, " %d:", firstpos[j].index);
	  prtok(d->tokens[firstpos[j].index]);
	}
      fprintf(stderr, "\n lastpos:");
      for (j = nlastpos[-1] - 1; j >= 0; --j)
	{
	  fprintf(stderr, " %d:", lastpos[j].index);
	  prtok(d->tokens[lastpos[j].index]);
	}
      putc('\n', stderr);
    }
#endif

  /* For each follow set that is the follow set of a real position, replace
     it with its epsilon closure. */
  for (i = 0; i < d->tindex; ++i)
    if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF
#ifdef MBS_SUPPORT
        || d->tokens[i] == ANYCHAR
        || d->tokens[i] == MBCSET
#endif
	|| d->tokens[i] >= CSET)
      {
#ifdef DEBUG
	fprintf(stderr, "follows(%d:", i);
	prtok(d->tokens[i]);
	fprintf(stderr, "):");
	for (j = d->follows[i].nelem - 1; j >= 0; --j)
	  {
	    fprintf(stderr, " %d:", d->follows[i].elems[j].index);
	    prtok(d->tokens[d->follows[i].elems[j].index]);
	  }
	putc('\n', stderr);
#endif
	copy(&d->follows[i], &merged);
	epsclosure(&merged, d);
	if (d->follows[i].nelem < merged.nelem)
	  REALLOC(d->follows[i].elems, position, merged.nelem);
	copy(&merged, &d->follows[i]);
      }

  /* Get the epsilon closure of the firstpos of the regexp.  The result will
     be the set of positions of state 0. */
  merged.nelem = 0;
  for (i = 0; i < nfirstpos[-1]; ++i)
    insert(firstpos[i], &merged);
  epsclosure(&merged, d);

  /* Check if any of the positions of state 0 will want newline context. */
  wants_newline = 0;
  for (i = 0; i < merged.nelem; ++i)
    if (PREV_NEWLINE_DEPENDENT(merged.elems[i].constraint))
      wants_newline = 1;

  /* Build the initial state. */
  d->salloc = 1;
  d->sindex = 0;
  MALLOC(d->states, dfa_state, d->salloc);
  state_index(d, &merged, wants_newline, 0);

  free(o_nullable);
  free(o_nfirst);
  free(o_firstpos);
  free(o_nlast);
  free(o_lastpos);
  free(nalloc);
  free(merged.elems);
}

/* Find, for each character, the transition out of state s of d, and store
   it in the appropriate slot of trans.

   We divide the positions of s into groups (positions can appear in more
   than one group).  Each group is labeled with a set of characters that
   every position in the group matches (taking into account, if necessary,
   preceding context information of s).  For each group, find the union
   of the its elements' follows.  This set is the set of positions of the
   new state.  For each character in the group's label, set the transition
   on this character to be to a state corresponding to the set's positions,
   and its associated backward context information, if necessary.

   If we are building a searching matcher, we include the positions of state
   0 in every state.

   The collection of groups is constructed by building an equivalence-class
   partition of the positions of s.

   For each position, find the set of characters C that it matches.  Eliminate
   any characters from C that fail on grounds of backward context.

   Search through the groups, looking for a group whose label L has nonempty
   intersection with C.  If L - C is nonempty, create a new group labeled
   L - C and having the same positions as the current group, and set L to
   the intersection of L and C.  Insert the position in this group, set
   C = C - L, and resume scanning.

   If after comparing with every group there are characters remaining in C,
   create a new group labeled with the characters of C and insert this
   position in that group. */
void
dfastate (int s, struct dfa *d, int trans[])
{
  position_set grps[NOTCHAR];	/* As many as will ever be needed. */
  charclass labels[NOTCHAR];	/* Labels corresponding to the groups. */
  int ngrps = 0;		/* Number of groups actually used. */
  position pos;			/* Current position being considered. */
  charclass matches;		/* Set of matching characters. */
  int matchesf;			/* True if matches is nonempty. */
  charclass intersect;		/* Intersection with some label set. */
  int intersectf;		/* True if intersect is nonempty. */
  charclass leftovers;		/* Stuff in the label that didn't match. */
  int leftoversf;		/* True if leftovers is nonempty. */
  static charclass letters;	/* Set of characters considered letters. */
  static charclass newline;	/* Set of characters that aren't newline. */
  position_set follows;		/* Union of the follows of some group. */
  position_set tmp;		/* Temporary space for merging sets. */
  int state;			/* New state. */
  int wants_newline;		/* New state wants to know newline context. */
  int state_newline;		/* New state on a newline transition. */
  int wants_letter;		/* New state wants to know letter context. */
  int state_letter;		/* New state on a letter transition. */
  static int initialized;	/* Flag for static initialization. */
#ifdef MBS_SUPPORT
  int next_isnt_1st_byte = 0;	/* Flag If we can't add state0.  */
#endif
  int i, j, k;

  /* Initialize the set of letters, if necessary. */
  if (! initialized)
    {
      initialized = 1;
      for (i = 0; i < NOTCHAR; ++i)
	if (IS_WORD_CONSTITUENT(i))
	  setbit(i, letters);
      setbit(eolbyte, newline);
    }

  zeroset(matches);

  for (i = 0; i < d->states[s].elems.nelem; ++i)
    {
      pos = d->states[s].elems.elems[i];
      if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
	setbit(d->tokens[pos.index], matches);
      else if (d->tokens[pos.index] >= CSET)
	copyset(d->charclasses[d->tokens[pos.index] - CSET], matches);
#ifdef MBS_SUPPORT
      else if (d->tokens[pos.index] == ANYCHAR
               || d->tokens[pos.index] == MBCSET)
      /* MB_CUR_MAX > 1  */
	{
	  /* ANYCHAR and MBCSET must match with a single character, so we
	     must put it to d->states[s].mbps, which contains the positions
	     which can match with a single character not a byte.  */
	  if (d->states[s].mbps.nelem == 0)
	    {
	      MALLOC(d->states[s].mbps.elems, position,
		     d->states[s].elems.nelem);
	    }
	  insert(pos, &(d->states[s].mbps));
	  continue;
	}
#endif /* MBS_SUPPORT */
      else
	continue;

      /* Some characters may need to be eliminated from matches because
	 they fail in the current context. */
      if (pos.constraint != 0xFF)
	{
	  if (! MATCHES_NEWLINE_CONTEXT(pos.constraint,
					 d->states[s].newline, 1))
	    clrbit(eolbyte, matches);
	  if (! MATCHES_NEWLINE_CONTEXT(pos.constraint,
					 d->states[s].newline, 0))
	    for (j = 0; j < CHARCLASS_INTS; ++j)
	      matches[j] &= newline[j];
	  if (! MATCHES_LETTER_CONTEXT(pos.constraint,
					d->states[s].letter, 1))
	    for (j = 0; j < CHARCLASS_INTS; ++j)
	      matches[j] &= ~letters[j];
	  if (! MATCHES_LETTER_CONTEXT(pos.constraint,
					d->states[s].letter, 0))
	    for (j = 0; j < CHARCLASS_INTS; ++j)
	      matches[j] &= letters[j];

	  /* If there are no characters left, there's no point in going on. */
	  for (j = 0; j < CHARCLASS_INTS && !matches[j]; ++j)
	    continue;
	  if (j == CHARCLASS_INTS)
	    continue;
	}

      for (j = 0; j < ngrps; ++j)
	{
	  /* If matches contains a single character only, and the current
	     group's label doesn't contain that character, go on to the
	     next group. */
	  if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR
	      && !tstbit(d->tokens[pos.index], labels[j]))
	    continue;

	  /* Check if this group's label has a nonempty intersection with
	     matches. */
	  intersectf = 0;
	  for (k = 0; k < CHARCLASS_INTS; ++k)
	    (intersect[k] = matches[k] & labels[j][k]) ? (intersectf = 1) : 0;
	  if (! intersectf)
	    continue;

	  /* It does; now find the set differences both ways. */
	  leftoversf = matchesf = 0;
	  for (k = 0; k < CHARCLASS_INTS; ++k)
	    {
	      /* Even an optimizing compiler can't know this for sure. */
	      int match = matches[k], label = labels[j][k];

	      (leftovers[k] = ~match & label) ? (leftoversf = 1) : 0;
	      (matches[k] = match & ~label) ? (matchesf = 1) : 0;
	    }

	  /* If there were leftovers, create a new group labeled with them. */
	  if (leftoversf)
	    {
	      copyset(leftovers, labels[ngrps]);
	      copyset(intersect, labels[j]);
	      MALLOC(grps[ngrps].elems, position, d->nleaves);
	      copy(&grps[j], &grps[ngrps]);
	      ++ngrps;
	    }

	  /* Put the position in the current group.  Note that there is no
	     reason to call insert() here. */
	  grps[j].elems[grps[j].nelem++] = pos;

	  /* If every character matching the current position has been
	     accounted for, we're done. */
	  if (! matchesf)
	    break;
	}

      /* If we've passed the last group, and there are still characters
	 unaccounted for, then we'll have to create a new group. */
      if (j == ngrps)
	{
	  copyset(matches, labels[ngrps]);
	  zeroset(matches);
	  MALLOC(grps[ngrps].elems, position, d->nleaves);
	  grps[ngrps].nelem = 1;
	  grps[ngrps].elems[0] = pos;
	  ++ngrps;
	}
    }

  MALLOC(follows.elems, position, d->nleaves);
  MALLOC(tmp.elems, position, d->nleaves);

  /* If we are a searching matcher, the default transition is to a state
     containing the positions of state 0, otherwise the default transition
     is to fail miserably. */
  if (d->searchflag)
    {
      wants_newline = 0;
      wants_letter = 0;
      for (i = 0; i < d->states[0].elems.nelem; ++i)
	{
	  if (PREV_NEWLINE_DEPENDENT(d->states[0].elems.elems[i].constraint))
	    wants_newline = 1;
	  if (PREV_LETTER_DEPENDENT(d->states[0].elems.elems[i].constraint))
	    wants_letter = 1;
	}
      copy(&d->states[0].elems, &follows);
      state = state_index(d, &follows, 0, 0);
      if (wants_newline)
	state_newline = state_index(d, &follows, 1, 0);
      else
	state_newline = state;
      if (wants_letter)
	state_letter = state_index(d, &follows, 0, 1);
      else
	state_letter = state;
      for (i = 0; i < NOTCHAR; ++i)
	trans[i] = (IS_WORD_CONSTITUENT(i)) ? state_letter : state;
      trans[eolbyte] = state_newline;
    }
  else
    for (i = 0; i < NOTCHAR; ++i)
      trans[i] = -1;

  for (i = 0; i < ngrps; ++i)
    {
      follows.nelem = 0;

      /* Find the union of the follows of the positions of the group.
	 This is a hideously inefficient loop.  Fix it someday. */
      for (j = 0; j < grps[i].nelem; ++j)
	for (k = 0; k < d->follows[grps[i].elems[j].index].nelem; ++k)
	  insert(d->follows[grps[i].elems[j].index].elems[k], &follows);

#ifdef MBS_SUPPORT
      if (MB_CUR_MAX > 1)
	{
	  /* If a token in follows.elems is not 1st byte of a multibyte
	     character, or the states of follows must accept the bytes
	     which are not 1st byte of the multibyte character.
	     Then, if a state of follows encounter a byte, it must not be
	     a 1st byte of a multibyte character nor singlebyte character.
	     We cansel to add state[0].follows to next state, because
	     state[0] must accept 1st-byte

	     For example, we assume <sb a> is a certain singlebyte
	     character, <mb A> is a certain multibyte character, and the
	     codepoint of <sb a> equals the 2nd byte of the codepoint of
	     <mb A>.
	     When state[0] accepts <sb a>, state[i] transit to state[i+1]
	     by accepting accepts 1st byte of <mb A>, and state[i+1]
	     accepts 2nd byte of <mb A>, if state[i+1] encounter the
	     codepoint of <sb a>, it must not be <sb a> but 2nd byte of
	     <mb A>, so we can not add state[0].  */

	  next_isnt_1st_byte = 0;
	  for (j = 0; j < follows.nelem; ++j)
	    {
	      if (!(d->multibyte_prop[follows.elems[j].index] & 1))
		{
		  next_isnt_1st_byte = 1;
		  break;
		}
	    }
	}
#endif

      /* If we are building a searching matcher, throw in the positions
	 of state 0 as well. */
#ifdef MBS_SUPPORT
      if (d->searchflag && (MB_CUR_MAX == 1 || !next_isnt_1st_byte))
#else
      if (d->searchflag)
#endif
	for (j = 0; j < d->states[0].elems.nelem; ++j)
	  insert(d->states[0].elems.elems[j], &follows);

      /* Find out if the new state will want any context information. */
      wants_newline = 0;
      if (tstbit(eolbyte, labels[i]))
	for (j = 0; j < follows.nelem; ++j)
	  if (PREV_NEWLINE_DEPENDENT(follows.elems[j].constraint))
	    wants_newline = 1;

      wants_letter = 0;
      for (j = 0; j < CHARCLASS_INTS; ++j)
	if (labels[i][j] & letters[j])
	  break;
      if (j < CHARCLASS_INTS)
	for (j = 0; j < follows.nelem; ++j)
	  if (PREV_LETTER_DEPENDENT(follows.elems[j].constraint))
	    wants_letter = 1;

      /* Find the state(s) corresponding to the union of the follows. */
      state = state_index(d, &follows, 0, 0);
      if (wants_newline)
	state_newline = state_index(d, &follows, 1, 0);
      else
	state_newline = state;
      if (wants_letter)
	state_letter = state_index(d, &follows, 0, 1);
      else
	state_letter = state;

      /* Set the transitions for each character in the current label. */
      for (j = 0; j < CHARCLASS_INTS; ++j)
	for (k = 0; k < INTBITS; ++k)
	  if (labels[i][j] & 1 << k)
	    {
	      int c = j * INTBITS + k;

	      if (c == eolbyte)
		trans[c] = state_newline;
	      else if (IS_WORD_CONSTITUENT(c))
		trans[c] = state_letter;
	      else if (c < NOTCHAR)
		trans[c] = state;
	    }
    }

  for (i = 0; i < ngrps; ++i)
    free(grps[i].elems);
  free(follows.elems);
  free(tmp.elems);
}

/* Some routines for manipulating a compiled dfa's transition tables.
   Each state may or may not have a transition table; if it does, and it
   is a non-accepting state, then d->trans[state] points to its table.
   If it is an accepting state then d->fails[state] points to its table.
   If it has no table at all, then d->trans[state] is NULL.
   TODO: Improve this comment, get rid of the unnecessary redundancy. */

static void
build_state (int s, struct dfa *d)
{
  int *trans;			/* The new transition table. */
  int i;

  /* Set an upper limit on the number of transition tables that will ever
     exist at once.  1024 is arbitrary.  The idea is that the frequently
     used transition tables will be quickly rebuilt, whereas the ones that
     were only needed once or twice will be cleared away. */
  if (d->trcount >= 1024)
    {
      for (i = 0; i < d->tralloc; ++i)
	if (d->trans[i])
	  {
	    free((ptr_t) d->trans[i]);
	    d->trans[i] = NULL;
	  }
	else if (d->fails[i])
	  {
	    free((ptr_t) d->fails[i]);
	    d->fails[i] = NULL;
	  }
      d->trcount = 0;
    }

  ++d->trcount;

  /* Set up the success bits for this state. */
  d->success[s] = 0;
  if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 1, d->states[s].letter, 0,
      s, *d))
    d->success[s] |= 4;
  if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 1,
      s, *d))
    d->success[s] |= 2;
  if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 0,
      s, *d))
    d->success[s] |= 1;

  MALLOC(trans, int, NOTCHAR);
  dfastate(s, d, trans);

  /* Now go through the new transition table, and make sure that the trans
     and fail arrays are allocated large enough to hold a pointer for the
     largest state mentioned in the table. */
  for (i = 0; i < NOTCHAR; ++i)
    if (trans[i] >= d->tralloc)
      {
	int oldalloc = d->tralloc;

	while (trans[i] >= d->tralloc)
	  d->tralloc *= 2;
	REALLOC(d->realtrans, int *, d->tralloc + 1);
	d->trans = d->realtrans + 1;
	REALLOC(d->fails, int *, d->tralloc);
	REALLOC(d->success, int, d->tralloc);
	while (oldalloc < d->tralloc)
	  {
	    d->trans[oldalloc] = NULL;
	    d->fails[oldalloc++] = NULL;
	  }
      }

  /* Newline is a sentinel.  */
  trans[eolbyte] = -1;

  if (ACCEPTING(s, *d))
    d->fails[s] = trans;
  else
    d->trans[s] = trans;
}

static void
build_state_zero (struct dfa *d)
{
  d->tralloc = 1;
  d->trcount = 0;
  CALLOC(d->realtrans, int *, d->tralloc + 1);
  d->trans = d->realtrans + 1;
  CALLOC(d->fails, int *, d->tralloc);
  MALLOC(d->success, int, d->tralloc);
  build_state(0, d);
}

#ifdef MBS_SUPPORT
/* Multibyte character handling sub-routins for dfaexec.  */

/* Initial state may encounter the byte which is not a singlebyte character
   nor 1st byte of a multibyte character.  But it is incorrect for initial
   state to accept such a byte.
   For example, in sjis encoding the regular expression like "\\" accepts
   the codepoint 0x5c, but should not accept the 2nd byte of the codepoint
   0x815c. Then Initial state must skip the bytes which are not a singlebyte
   character nor 1st byte of a multibyte character.  */
#define SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p)		\
  if (s == 0)						\
    {							\
      while (inputwcs[p - buf_begin] == 0		\
            && mblen_buf[p - buf_begin] > 0		\
	    && p < buf_end)				\
        ++p;						\
      if (p >= end)					\
	{						\
          free(mblen_buf);				\
          free(inputwcs);				\
	  return (size_t) -1;				\
	}						\
    }

static void
realloc_trans_if_necessary(struct dfa *d, int new_state)
{
  /* Make sure that the trans and fail arrays are allocated large enough
     to hold a pointer for the new state. */
  if (new_state >= d->tralloc)
    {
      int oldalloc = d->tralloc;

      while (new_state >= d->tralloc)
	d->tralloc *= 2;
      REALLOC(d->realtrans, int *, d->tralloc + 1);
      d->trans = d->realtrans + 1;
      REALLOC(d->fails, int *, d->tralloc);
      REALLOC(d->success, int, d->tralloc);
      while (oldalloc < d->tralloc)
	{
	  d->trans[oldalloc] = NULL;
	  d->fails[oldalloc++] = NULL;
	}
    }
}

/* Return values of transit_state_singlebyte(), and
   transit_state_consume_1char.  */
typedef enum
{
  TRANSIT_STATE_IN_PROGRESS,	/* State transition has not finished.  */
  TRANSIT_STATE_DONE,		/* State transition has finished.  */
  TRANSIT_STATE_END_BUFFER	/* Reach the end of the buffer.  */
} status_transit_state;

/* Consume a single byte and transit state from 's' to '*next_state'.
   This function is almost same as the state transition routin in dfaexec().
   But state transition is done just once, otherwise matching succeed or
   reach the end of the buffer.  */
static status_transit_state
transit_state_singlebyte (struct dfa *d, int s, unsigned char const *p,
				  int *next_state)
{
  int *t;
  int works = s;

  status_transit_state rval = TRANSIT_STATE_IN_PROGRESS;

  while (rval == TRANSIT_STATE_IN_PROGRESS)
    {
      if ((t = d->trans[works]) != NULL)
	{
	  works = t[*p];
	  rval = TRANSIT_STATE_DONE;
	  if (works < 0)
	    works = 0;
	}
      else if (works < 0)
	{
	  if (p == buf_end)
	    /* At the moment, it must not happen.  */
	    return TRANSIT_STATE_END_BUFFER;
	  works = 0;
	}
      else if (d->fails[works])
	{
	  works = d->fails[works][*p];
	  rval = TRANSIT_STATE_DONE;
	}
      else
	{
	  build_state(works, d);
	}
    }
  *next_state = works;
  return rval;
}

/* Check whether period can match or not in the current context.  If it can,
   return the amount of the bytes with which period can match, otherwise
   return 0.
   `pos' is the position of the period.  `index' is the index from the
   buf_begin, and it is the current position in the buffer.  */
static int
match_anychar (struct dfa *d, int s, position pos, int index)
{
  int newline = 0;
  int letter = 0;
  wchar_t wc;
  int mbclen;

  wc = inputwcs[index];
  mbclen = (mblen_buf[index] == 0)? 1 : mblen_buf[index];

  /* Check context.  */
  if (wc == (wchar_t)eolbyte)
    {
      if (!(syntax_bits & RE_DOT_NEWLINE))
	return 0;
      newline = 1;
    }
  else if (wc == (wchar_t)'\0')
    {
      if (syntax_bits & RE_DOT_NOT_NULL)
	return 0;
      newline = 1;
    }

  if (iswalnum(wc) || wc == L'_')
    letter = 1;

  if (!SUCCEEDS_IN_CONTEXT(pos.constraint, d->states[s].newline,
			   newline, d->states[s].letter, letter))
    return 0;

  return mbclen;
}

/* Check whether bracket expression can match or not in the current context.
   If it can, return the amount of the bytes with which expression can match,
   otherwise return 0.
   `pos' is the position of the bracket expression.  `index' is the index
   from the buf_begin, and it is the current position in the buffer.  */
int
match_mb_charset (struct dfa *d, int s, position pos, int index)
{
  int i;
  int match;		/* Flag which represent that matching succeed.  */
  int match_len;	/* Length of the character (or collating element)
			   with which this operator match.  */
  size_t op_len;	/* Length of the operator.  */
  char buffer[128];
  wchar_t wcbuf[6];

  /* Pointer to the structure to which we are currently reffering.  */
  struct mb_char_classes *work_mbc;

  int newline = 0;
  int letter = 0;
  wchar_t wc;		/* Current reffering character.  */

  wc = inputwcs[index];

  /* Check context.  */
  if (wc == (wchar_t)eolbyte)
    {
      if (!(syntax_bits & RE_DOT_NEWLINE))
	return 0;
      newline = 1;
    }
  else if (wc == (wchar_t)'\0')
    {
      if (syntax_bits & RE_DOT_NOT_NULL)
	return 0;
      newline = 1;
    }
  if (iswalnum(wc) || wc == L'_')
    letter = 1;
  if (!SUCCEEDS_IN_CONTEXT(pos.constraint, d->states[s].newline,
			   newline, d->states[s].letter, letter))
    return 0;

  /* Assign the current reffering operator to work_mbc.  */
  work_mbc = &(d->mbcsets[(d->multibyte_prop[pos.index]) >> 2]);
  match = !work_mbc->invert;
  match_len = (mblen_buf[index] == 0)? 1 : mblen_buf[index];

  /* match with a character class?  */
  for (i = 0; i<work_mbc->nch_classes; i++)
    {
      if (iswctype((wint_t)wc, work_mbc->ch_classes[i]))
	goto charset_matched;
    }

  strncpy(buffer, buf_begin + index, match_len);
  buffer[match_len] = '\0';

  /* match with an equivalent class?  */
  for (i = 0; i<work_mbc->nequivs; i++)
    {
      op_len = strlen(work_mbc->equivs[i]);
      strncpy(buffer, buf_begin + index, op_len);
      buffer[op_len] = '\0';
      if (strcoll(work_mbc->equivs[i], buffer) == 0)
	{
	  match_len = op_len;
	  goto charset_matched;
	}
    }

  /* match with a collating element?  */
  for (i = 0; i<work_mbc->ncoll_elems; i++)
    {
      op_len = strlen(work_mbc->coll_elems[i]);
      strncpy(buffer, buf_begin + index, op_len);
      buffer[op_len] = '\0';

      if (strcoll(work_mbc->coll_elems[i], buffer) == 0)
	{
	  match_len = op_len;
	  goto charset_matched;
	}
    }

  wcbuf[0] = wc;
  wcbuf[1] = wcbuf[3] = wcbuf[5] = '\0';

  /* match with a range?  */
  for (i = 0; i<work_mbc->nranges; i++)
    {
      wcbuf[2] = work_mbc->range_sts[i];
      wcbuf[4] = work_mbc->range_ends[i];

      if (wcscoll(wcbuf, wcbuf+2) >= 0 &&
	  wcscoll(wcbuf+4, wcbuf) >= 0)
	goto charset_matched;
    }

  /* match with a character?  */
  if (case_fold)
    wc = towlower (wc);
  for (i = 0; i<work_mbc->nchars; i++)
    {
      if (wc == work_mbc->chars[i])
	goto charset_matched;
    }

  match = !match;

 charset_matched:
  return match ? match_len : 0;
}

/* Check each of `d->states[s].mbps.elem' can match or not. Then return the
   array which corresponds to `d->states[s].mbps.elem' and each element of
   the array contains the amount of the bytes with which the element can
   match.
   `index' is the index from the buf_begin, and it is the current position
   in the buffer.
   Caller MUST free the array which this function return.  */
static int*
check_matching_with_multibyte_ops (struct dfa *d, int s, int index)
{
  int i;
  int* rarray;

  MALLOC(rarray, int, d->states[s].mbps.nelem);
  for (i = 0; i < d->states[s].mbps.nelem; ++i)
    {
      position pos = d->states[s].mbps.elems[i];
      switch(d->tokens[pos.index])
	{
	case ANYCHAR:
	  rarray[i] = match_anychar(d, s, pos, index);
	  break;
	case MBCSET:
	  rarray[i] = match_mb_charset(d, s, pos, index);
	  break;
	default:
	  break; /* can not happen.  */
	}
    }
  return rarray;
}

/* Consume a single character and enumerate all of the positions which can
   be next position from the state `s'.
   `match_lens' is the input. It can be NULL, but it can also be the output
   of check_matching_with_multibyte_ops() for optimization.
   `mbclen' and `pps' are the output.  `mbclen' is the length of the
   character consumed, and `pps' is the set this function enumerate.  */
static status_transit_state 
transit_state_consume_1char (struct dfa *d, int s, unsigned char const **pp,
			     int *match_lens, int *mbclen, position_set *pps)
{
  int i, j;
  int s1, s2;
  int* work_mbls;
  status_transit_state rs = TRANSIT_STATE_DONE;

  /* Calculate the length of the (single/multi byte) character
     to which p points.  */
  *mbclen = (mblen_buf[*pp - buf_begin] == 0)? 1
    : mblen_buf[*pp - buf_begin];

  /* Calculate the state which can be reached from the state `s' by
     consuming `*mbclen' single bytes from the buffer.  */
  s1 = s;
  for (i = 0; i < *mbclen; i++)
    {
      s2 = s1;
      rs = transit_state_singlebyte(d, s2, (*pp)++, &s1);
    }
  /* Copy the positions contained by `s1' to the set `pps'.  */
  copy(&(d->states[s1].elems), pps);

  /* Check (inputed)match_lens, and initialize if it is NULL.  */
  if (match_lens == NULL && d->states[s].mbps.nelem != 0)
    work_mbls = check_matching_with_multibyte_ops(d, s, *pp - buf_begin);
  else
    work_mbls = match_lens;

  /* Add all of the positions which can be reached from `s' by consuming
     a single character.  */
  for (i = 0; i < d->states[s].mbps.nelem ; i++)
   {
      if (work_mbls[i] == *mbclen)
	for (j = 0; j < d->follows[d->states[s].mbps.elems[i].index].nelem;
	     j++)
	  insert(d->follows[d->states[s].mbps.elems[i].index].elems[j],
		 pps);
    }

  if (match_lens == NULL && work_mbls != NULL)
    free(work_mbls);
  return rs;
}

/* Transit state from s, then return new state and update the pointer of the
   buffer.  This function is for some operator which can match with a multi-
   byte character or a collating element(which may be multi characters).  */
static int
transit_state (struct dfa *d, int s, unsigned char const **pp)
{
  int s1;
  int mbclen;		/* The length of current input multibyte character. */
  int maxlen = 0;
  int i, j;
  int *match_lens = NULL;
  int nelem = d->states[s].mbps.nelem; /* Just a alias.  */
  position_set follows;
  unsigned char const *p1 = *pp;
  status_transit_state rs;
  wchar_t wc;

  if (nelem > 0)
    /* This state has (a) multibyte operator(s).
       We check whether each of them can match or not.  */
    {
      /* Note: caller must free the return value of this function.  */
      match_lens = check_matching_with_multibyte_ops(d, s, *pp - buf_begin);

      for (i = 0; i < nelem; i++)
	/* Search the operator which match the longest string,
	   in this state.  */
	{
	  if (match_lens[i] > maxlen)
	    maxlen = match_lens[i];
	}
    }

  if (nelem == 0 || maxlen == 0)
    /* This state has no multibyte operator which can match.
       We need to  check only one singlebyte character.  */
    {
      status_transit_state rs;
      rs = transit_state_singlebyte(d, s, *pp, &s1);

      /* We must update the pointer if state transition succeeded.  */
      if (rs == TRANSIT_STATE_DONE)
	++*pp;

      if (match_lens != NULL)
	free(match_lens);
      return s1;
    }

  /* This state has some operators which can match a multibyte character.  */
  follows.nelem = 0;
  MALLOC(follows.elems, position, d->nleaves);

  /* `maxlen' may be longer than the length of a character, because it may
     not be a character but a (multi character) collating element.
     We enumerate all of the positions which `s' can reach by consuming
     `maxlen' bytes.  */
  rs = transit_state_consume_1char(d, s, pp, match_lens, &mbclen, &follows);

  wc = inputwcs[*pp - mbclen - buf_begin];
  s1 = state_index(d, &follows, wc == L'\n', iswalnum(wc));
  realloc_trans_if_necessary(d, s1);

  while (*pp - p1 < maxlen)
    {
      follows.nelem = 0;
      rs = transit_state_consume_1char(d, s1, pp, NULL, &mbclen, &follows);

      for (i = 0; i < nelem ; i++)
	{
	  if (match_lens[i] == *pp - p1)
	    for (j = 0;
		 j < d->follows[d->states[s1].mbps.elems[i].index].nelem; j++)
	      insert(d->follows[d->states[s1].mbps.elems[i].index].elems[j],
		     &follows);
	}

      wc = inputwcs[*pp - mbclen - buf_begin];
      s1 = state_index(d, &follows, wc == L'\n', iswalnum(wc));
      realloc_trans_if_necessary(d, s1);
    }
  free(match_lens);
  free(follows.elems);
  return s1;
}

#endif

/* Search through a buffer looking for a match to the given struct dfa.
   Find the first occurrence of a string matching the regexp in the buffer,
   and the shortest possible version thereof.  Return the offset of the first
   character after the match, or (size_t) -1 if none is found.  BEGIN points to
   the beginning of the buffer, and SIZE is the size of the buffer.  If SIZE
   is nonzero, BEGIN[SIZE - 1] must be a newline.  BACKREF points to a place
   where we're supposed to store a 1 if backreferencing happened and the
   match needs to be verified by a backtracking matcher.  Otherwise
   we store a 0 in *backref. */
size_t
dfaexec (struct dfa *d, char const *begin, size_t size, int *backref)
{
  register int s;	/* Current state. */
  register unsigned char const *p; /* Current input character. */
  register unsigned char const *end; /* One past the last input character.  */
  register int **trans, *t;	/* Copy of d->trans so it can be optimized
				   into a register. */
  register unsigned char eol = eolbyte;	/* Likewise for eolbyte.  */
  static int sbit[NOTCHAR];	/* Table for anding with d->success. */
  static int sbit_init;

  if (! sbit_init)
    {
      int i;

      sbit_init = 1;
      for (i = 0; i < NOTCHAR; ++i)
	sbit[i] = (IS_WORD_CONSTITUENT(i)) ? 2 : 1;
      sbit[eol] = 4;
    }

  if (! d->tralloc)
    build_state_zero(d);

  s = 0;
  p = (unsigned char const *) begin;
  end = p + size;
  trans = d->trans;

#ifdef MBS_SUPPORT
  if (MB_CUR_MAX > 1)
    {
      int remain_bytes, i;
      buf_begin = begin;
      buf_end = end;

      /* initialize mblen_buf, and inputwcs.  */
      MALLOC(mblen_buf, unsigned char, end - (unsigned char const *)begin + 2);
      MALLOC(inputwcs, wchar_t, end - (unsigned char const *)begin + 2);
      memset(&mbs, 0, sizeof(mbstate_t));
      remain_bytes = 0;
      for (i = 0; i < end - (unsigned char const *)begin + 1; i++)
	{
	  if (remain_bytes == 0)
	    {
	      remain_bytes
		= mbrtowc(inputwcs + i, begin + i,
			  end - (unsigned char const *)begin - i + 1, &mbs);
	      if (remain_bytes <= 1)
		{
		  remain_bytes = 0;
		  inputwcs[i] = (wchar_t)begin[i];
		  mblen_buf[i] = 0;
		}
	      else
		{
		  mblen_buf[i] = remain_bytes;
		  remain_bytes--;
		}
	    }
	  else
	    {
	      mblen_buf[i] = remain_bytes;
	      inputwcs[i] = 0;
	      remain_bytes--;
	    }
	}
      mblen_buf[i] = 0;
      inputwcs[i] = 0; /* sentinel */
    }
#endif /* MBS_SUPPORT */

  for (;;)
    {
#ifdef MBS_SUPPORT
      if (MB_CUR_MAX > 1)
	while ((t = trans[s]))
	  {
	    if (d->states[s].mbps.nelem != 0)
	      {
		/* Can match with a multibyte character( and multi character
		   collating element).  */
		unsigned char const *nextp;

		SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p);

		nextp = p;
		s = transit_state(d, s, &nextp);
		p = nextp;

		/* Trans table might be updated.  */
		trans = d->trans;
	      }
	    else
	      {
		SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p);
		s = t[*p++];
	      }
	  }
      else
#endif /* MBS_SUPPORT */
        while ((t = trans[s]))
	  s = t[*p++];

      if (s < 0)
	{
	  if (p == end)
	    {
#ifdef MBS_SUPPORT
	      if (MB_CUR_MAX > 1)
		{
		  free(mblen_buf);
		  free(inputwcs);
		}
#endif /* MBS_SUPPORT */
	      return (size_t) -1;
	    }
	  s = 0;
	}
      else if ((t = d->fails[s]))
	{
	  if (d->success[s] & sbit[*p])
	    {
	      if (backref)
		*backref = (d->states[s].backref != 0);
#ifdef MBS_SUPPORT
	      if (MB_CUR_MAX > 1)
		{
		  free(mblen_buf);
		  free(inputwcs);
		}
#endif /* MBS_SUPPORT */
	      return (char const *) p - begin;
	    }

#ifdef MBS_SUPPORT
	  if (MB_CUR_MAX > 1)
	    {
		SKIP_REMAINS_MB_IF_INITIAL_STATE(s, p);
		if (d->states[s].mbps.nelem != 0)
		  {
		    /* Can match with a multibyte character( and multi
		       character collating element).  */
		    unsigned char const *nextp;
		    nextp = p;
		    s = transit_state(d, s, &nextp);
		    p = nextp;

		    /* Trans table might be updated.  */
		    trans = d->trans;
		  }
		else
		s = t[*p++];
	    }
	  else
#endif /* MBS_SUPPORT */
	  s = t[*p++];
	}
      else
	{
	  build_state(s, d);
	  trans = d->trans;
	}
    }
}

/* Initialize the components of a dfa that the other routines don't
   initialize for themselves. */
void
dfainit (struct dfa *d)
{
  d->calloc = 1;
  MALLOC(d->charclasses, charclass, d->calloc);
  d->cindex = 0;

  d->talloc = 1;
  MALLOC(d->tokens, token, d->talloc);
  d->tindex = d->depth = d->nleaves = d->nregexps = 0;
#ifdef MBS_SUPPORT
  if (MB_CUR_MAX > 1)
    {
      d->nmultibyte_prop = 1;
      MALLOC(d->multibyte_prop, int, d->nmultibyte_prop);
      d->nmbcsets = 0;
      d->mbcsets_alloc = 1;
      MALLOC(d->mbcsets, struct mb_char_classes, d->mbcsets_alloc);
    }
#endif

  d->searchflag = 0;
  d->tralloc = 0;

  d->musts = 0;
}

/* Parse and analyze a single string of the given length. */
void
dfacomp (char const *s, size_t len, struct dfa *d, int searchflag)
{
  if (case_fold)	/* dummy folding in service of dfamust() */
    {
      char *lcopy;
      int i;

      lcopy = malloc(len);
      if (!lcopy)
	dfaerror(_("out of memory"));

      /* This is a kludge. */
      case_fold = 0;
      for (i = 0; i < len; ++i)
	if (ISUPPER ((unsigned char) s[i]))
	  lcopy[i] = tolower ((unsigned char) s[i]);
	else
	  lcopy[i] = s[i];

      dfainit(d);
      dfaparse(lcopy, len, d);
      free(lcopy);
      dfamust(d);
      d->cindex = d->tindex = d->depth = d->nleaves = d->nregexps = 0;
      case_fold = 1;
      dfaparse(s, len, d);
      dfaanalyze(d, searchflag);
    }
  else
    {
        dfainit(d);
        dfaparse(s, len, d);
	dfamust(d);
        dfaanalyze(d, searchflag);
    }
}

/* Free the storage held by the components of a dfa. */
void
dfafree (struct dfa *d)
{
  int i;
  struct dfamust *dm, *ndm;

  free((ptr_t) d->charclasses);
  free((ptr_t) d->tokens);

#ifdef MBS_SUPPORT
  if (MB_CUR_MAX > 1)
    {
      free((ptr_t) d->multibyte_prop);
      for (i = 0; i < d->nmbcsets; ++i)
	{
	  int j;
	  struct mb_char_classes *p = &(d->mbcsets[i]);
	  if (p->chars != NULL)
	    free(p->chars);
	  if (p->ch_classes != NULL)
	    free(p->ch_classes);
	  if (p->range_sts != NULL)
	    free(p->range_sts);
	  if (p->range_ends != NULL)
	    free(p->range_ends);

	  for (j = 0; j < p->nequivs; ++j)
	    free(p->equivs[j]);
	  if (p->equivs != NULL)
	    free(p->equivs);

	  for (j = 0; j < p->ncoll_elems; ++j)
	    free(p->coll_elems[j]);
	  if (p->coll_elems != NULL)
	    free(p->coll_elems);
	}
      free((ptr_t) d->mbcsets);
    }
#endif /* MBS_SUPPORT */

  for (i = 0; i < d->sindex; ++i)
    free((ptr_t) d->states[i].elems.elems);
  free((ptr_t) d->states);
  for (i = 0; i < d->tindex; ++i)
    if (d->follows[i].elems)
      free((ptr_t) d->follows[i].elems);
  free((ptr_t) d->follows);
  for (i = 0; i < d->tralloc; ++i)
    if (d->trans[i])
      free((ptr_t) d->trans[i]);
    else if (d->fails[i])
      free((ptr_t) d->fails[i]);
  if (d->realtrans) free((ptr_t) d->realtrans);
  if (d->fails) free((ptr_t) d->fails);
  if (d->success) free((ptr_t) d->success);
  for (dm = d->musts; dm; dm = ndm)
    {
      ndm = dm->next;
      free(dm->must);
      free((ptr_t) dm);
    }
}

/* Having found the postfix representation of the regular expression,
   try to find a long sequence of characters that must appear in any line
   containing the r.e.
   Finding a "longest" sequence is beyond the scope here;
   we take an easy way out and hope for the best.
   (Take "(ab|a)b"--please.)

   We do a bottom-up calculation of sequences of characters that must appear
   in matches of r.e.'s represented by trees rooted at the nodes of the postfix
   representation:
	sequences that must appear at the left of the match ("left")
	sequences that must appear at the right of the match ("right")
	lists of sequences that must appear somewhere in the match ("in")
	sequences that must constitute the match ("is")

   When we get to the root of the tree, we use one of the longest of its
   calculated "in" sequences as our answer.  The sequence we find is returned in
   d->must (where "d" is the single argument passed to "dfamust");
   the length of the sequence is returned in d->mustn.

   The sequences calculated for the various types of node (in pseudo ANSI c)
   are shown below.  "p" is the operand of unary operators (and the left-hand
   operand of binary operators); "q" is the right-hand operand of binary
   operators.

   "ZERO" means "a zero-length sequence" below.

	Type	left		right		is		in
	----	----		-----		--		--
	char c	# c		# c		# c		# c

	ANYCHAR	ZERO		ZERO		ZERO		ZERO

	MBCSET	ZERO		ZERO		ZERO		ZERO

	CSET	ZERO		ZERO		ZERO		ZERO

	STAR	ZERO		ZERO		ZERO		ZERO

	QMARK	ZERO		ZERO		ZERO		ZERO

	PLUS	p->left		p->right	ZERO		p->in

	CAT	(p->is==ZERO)?	(q->is==ZERO)?	(p->is!=ZERO &&	p->in plus
		p->left :	q->right :	q->is!=ZERO) ?	q->in plus
		p->is##q->left	p->right##q->is	p->is##q->is :	p->right##q->left
						ZERO

	OR	longest common	longest common	(do p->is and	substrings common to
		leading		trailing	q->is have same	p->in and q->in
		(sub)sequence	(sub)sequence	length and
		of p->left	of p->right	content) ?
		and q->left	and q->right	p->is : NULL

   If there's anything else we recognize in the tree, all four sequences get set
   to zero-length sequences.  If there's something we don't recognize in the tree,
   we just return a zero-length sequence.

   Break ties in favor of infrequent letters (choosing 'zzz' in preference to
   'aaa')?

   And. . .is it here or someplace that we might ponder "optimizations" such as
	egrep 'psi|epsilon'	->	egrep 'psi'
	egrep 'pepsi|epsilon'	->	egrep 'epsi'
					(Yes, we now find "epsi" as a "string
					that must occur", but we might also
					simplify the *entire* r.e. being sought)
	grep '[c]'		->	grep 'c'
	grep '(ab|a)b'		->	grep 'ab'
	grep 'ab*'		->	grep 'a'
	grep 'a*b'		->	grep 'b'

   There are several issues:

   Is optimization easy (enough)?

   Does optimization actually accomplish anything,
   or is the automaton you get from "psi|epsilon" (for example)
   the same as the one you get from "psi" (for example)?

   Are optimizable r.e.'s likely to be used in real-life situations
   (something like 'ab*' is probably unlikely; something like is
   'psi|epsilon' is likelier)? */

static char *
icatalloc (char *old, char *new)
{
  char *result;
  size_t oldsize, newsize;

  newsize = (new == NULL) ? 0 : strlen(new);
  if (old == NULL)
    oldsize = 0;
  else if (newsize == 0)
    return old;
  else	oldsize = strlen(old);
  if (old == NULL)
    result = (char *) malloc(newsize + 1);
  else
    result = (char *) realloc((void *) old, oldsize + newsize + 1);
  if (result != NULL && new != NULL)
    (void) strcpy(result + oldsize, new);
  return result;
}

static char *
icpyalloc (char *string)
{
  return icatalloc((char *) NULL, string);
}

static char *
istrstr (char *lookin, char *lookfor)
{
  char *cp;
  size_t len;

  len = strlen(lookfor);
  for (cp = lookin; *cp != '\0'; ++cp)
    if (strncmp(cp, lookfor, len) == 0)
      return cp;
  return NULL;
}

static void
ifree (char *cp)
{
  if (cp != NULL)
    free(cp);
}

static void
freelist (char **cpp)
{
  int i;

  if (cpp == NULL)
    return;
  for (i = 0; cpp[i] != NULL; ++i)
    {
      free(cpp[i]);
      cpp[i] = NULL;
    }
}

static char **
enlist (char **cpp, char *new, size_t len)
{
  int i, j;

  if (cpp == NULL)
    return NULL;
  if ((new = icpyalloc(new)) == NULL)
    {
      freelist(cpp);
      return NULL;
    }
  new[len] = '\0';
  /* Is there already something in the list that's new (or longer)? */
  for (i = 0; cpp[i] != NULL; ++i)
    if (istrstr(cpp[i], new) != NULL)
      {
	free(new);
	return cpp;
      }
  /* Eliminate any obsoleted strings. */
  j = 0;
  while (cpp[j] != NULL)
    if (istrstr(new, cpp[j]) == NULL)
      ++j;
    else
      {
	free(cpp[j]);
	if (--i == j)
	  break;
	cpp[j] = cpp[i];
	cpp[i] = NULL;
      }
  /* Add the new string. */
  cpp = (char **) realloc((char *) cpp, (i + 2) * sizeof *cpp);
  if (cpp == NULL)
    return NULL;
  cpp[i] = new;
  cpp[i + 1] = NULL;
  return cpp;
}

/* Given pointers to two strings, return a pointer to an allocated
   list of their distinct common substrings. Return NULL if something
   seems wild. */
static char **
comsubs (char *left, char *right)
{
  char **cpp;
  char *lcp;
  char *rcp;
  size_t i, len;

  if (left == NULL || right == NULL)
    return NULL;
  cpp = (char **) malloc(sizeof *cpp);
  if (cpp == NULL)
    return NULL;
  cpp[0] = NULL;
  for (lcp = left; *lcp != '\0'; ++lcp)
    {
      len = 0;
      rcp = strchr (right, *lcp);
      while (rcp != NULL)
	{
	  for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
	    continue;
	  if (i > len)
	    len = i;
	  rcp = strchr (rcp + 1, *lcp);
	}
      if (len == 0)
	continue;
      if ((cpp = enlist(cpp, lcp, len)) == NULL)
	break;
    }
  return cpp;
}

static char **
addlists (char **old, char **new)
{
  int i;

  if (old == NULL || new == NULL)
    return NULL;
  for (i = 0; new[i] != NULL; ++i)
    {
      old = enlist(old, new[i], strlen(new[i]));
      if (old == NULL)
	break;
    }
  return old;
}

/* Given two lists of substrings, return a new list giving substrings
   common to both. */
static char **
inboth (char **left, char **right)
{
  char **both;
  char **temp;
  int lnum, rnum;

  if (left == NULL || right == NULL)
    return NULL;
  both = (char **) malloc(sizeof *both);
  if (both == NULL)
    return NULL;
  both[0] = NULL;
  for (lnum = 0; left[lnum] != NULL; ++lnum)
    {
      for (rnum = 0; right[rnum] != NULL; ++rnum)
	{
	  temp = comsubs(left[lnum], right[rnum]);
	  if (temp == NULL)
	    {
	      freelist(both);
	      return NULL;
	    }
	  both = addlists(both, temp);
	  freelist(temp);
	  free(temp);
	  if (both == NULL)
	    return NULL;
	}
    }
  return both;
}

typedef struct
{
  char **in;
  char *left;
  char *right;
  char *is;
} must;

static void
resetmust (must *mp)
{
  mp->left[0] = mp->right[0] = mp->is[0] = '\0';
  freelist(mp->in);
}

static void
dfamust (struct dfa *dfa)
{
  must *musts;
  must *mp;
  char *result;
  int ri;
  int i;
  int exact;
  token t;
  static must must0;
  struct dfamust *dm;
  static char empty_string[] = "";

  result = empty_string;
  exact = 0;
  musts = (must *) malloc((dfa->tindex + 1) * sizeof *musts);
  if (musts == NULL)
    return;
  mp = musts;
  for (i = 0; i <= dfa->tindex; ++i)
    mp[i] = must0;
  for (i = 0; i <= dfa->tindex; ++i)
    {
      mp[i].in = (char **) malloc(sizeof *mp[i].in);
      mp[i].left = malloc(2);
      mp[i].right = malloc(2);
      mp[i].is = malloc(2);
      if (mp[i].in == NULL || mp[i].left == NULL ||
	  mp[i].right == NULL || mp[i].is == NULL)
	goto done;
      mp[i].left[0] = mp[i].right[0] = mp[i].is[0] = '\0';
      mp[i].in[0] = NULL;
    }
#ifdef DEBUG
  fprintf(stderr, "dfamust:\n");
  for (i = 0; i < dfa->tindex; ++i)
    {
      fprintf(stderr, " %d:", i);
      prtok(dfa->tokens[i]);
    }
  putc('\n', stderr);
#endif
  for (ri = 0; ri < dfa->tindex; ++ri)
    {
      switch (t = dfa->tokens[ri])
	{
	case LPAREN:
	case RPAREN:
	  goto done;		/* "cannot happen" */
	case EMPTY:
	case BEGLINE:
	case ENDLINE:
	case BEGWORD:
	case ENDWORD:
	case LIMWORD:
	case NOTLIMWORD:
	case BACKREF:
	  resetmust(mp);
	  break;
	case STAR:
	case QMARK:
	  if (mp <= musts)
	    goto done;		/* "cannot happen" */
	  --mp;
	  resetmust(mp);
	  break;
	case OR:
	case ORTOP:
	  if (mp < &musts[2])
	    goto done;		/* "cannot happen" */
	  {
	    char **new;
	    must *lmp;
	    must *rmp;
	    int j, ln, rn, n;

	    rmp = --mp;
	    lmp = --mp;
	    /* Guaranteed to be.  Unlikely, but. . . */
	    if (strcmp(lmp->is, rmp->is) != 0)
	      lmp->is[0] = '\0';
	    /* Left side--easy */
	    i = 0;
	    while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
	      ++i;
	    lmp->left[i] = '\0';
	    /* Right side */
	    ln = strlen(lmp->right);
	    rn = strlen(rmp->right);
	    n = ln;
	    if (n > rn)
	      n = rn;
	    for (i = 0; i < n; ++i)
	      if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
		break;
	    for (j = 0; j < i; ++j)
	      lmp->right[j] = lmp->right[(ln - i) + j];
	    lmp->right[j] = '\0';
	    new = inboth(lmp->in, rmp->in);
	    if (new == NULL)
	      goto done;
	    freelist(lmp->in);
	    free((char *) lmp->in);
	    lmp->in = new;
	  }
	  break;
	case PLUS:
	  if (mp <= musts)
	    goto done;		/* "cannot happen" */
	  --mp;
	  mp->is[0] = '\0';
	  break;
	case END:
	  if (mp != &musts[1])
	    goto done;		/* "cannot happen" */
	  for (i = 0; musts[0].in[i] != NULL; ++i)
	    if (strlen(musts[0].in[i]) > strlen(result))
	      result = musts[0].in[i];
	  if (strcmp(result, musts[0].is) == 0)
	    exact = 1;
	  goto done;
	case CAT:
	  if (mp < &musts[2])
	    goto done;		/* "cannot happen" */
	  {
	    must *lmp;
	    must *rmp;

	    rmp = --mp;
	    lmp = --mp;
	    /* In.  Everything in left, plus everything in
	       right, plus catenation of
	       left's right and right's left. */
	    lmp->in = addlists(lmp->in, rmp->in);
	    if (lmp->in == NULL)
	      goto done;
	    if (lmp->right[0] != '\0' &&
		rmp->left[0] != '\0')
	      {
		char *tp;

		tp = icpyalloc(lmp->right);
		if (tp == NULL)
		  goto done;
		tp = icatalloc(tp, rmp->left);
		if (tp == NULL)
		  goto done;
		lmp->in = enlist(lmp->in, tp,
				 strlen(tp));
		free(tp);
		if (lmp->in == NULL)
		  goto done;
	      }
	    /* Left-hand */
	    if (lmp->is[0] != '\0')
	      {
		lmp->left = icatalloc(lmp->left,
				      rmp->left);
		if (lmp->left == NULL)
		  goto done;
	      }
	    /* Right-hand */
	    if (rmp->is[0] == '\0')
	      lmp->right[0] = '\0';
	    lmp->right = icatalloc(lmp->right, rmp->right);
	    if (lmp->right == NULL)
	      goto done;
	    /* Guaranteed to be */
	    if (lmp->is[0] != '\0' && rmp->is[0] != '\0')
	      {
		lmp->is = icatalloc(lmp->is, rmp->is);
		if (lmp->is == NULL)
		  goto done;
	      }
	    else
	      lmp->is[0] = '\0';
	  }
	  break;
	default:
	  if (t < END)
	    {
	      /* "cannot happen" */
	      goto done;
	    }
	  else if (t == '\0')
	    {
	      /* not on *my* shift */
	      goto done;
	    }
	  else if (t >= CSET
#ifdef MBS_SUPPORT
		   || t == ANYCHAR
		   || t == MBCSET
#endif /* MBS_SUPPORT */
		   )
	    {
	      /* easy enough */
	      resetmust(mp);
	    }
	  else
	    {
	      /* plain character */
	      resetmust(mp);
	      mp->is[0] = mp->left[0] = mp->right[0] = t;
	      mp->is[1] = mp->left[1] = mp->right[1] = '\0';
	      mp->in = enlist(mp->in, mp->is, (size_t)1);
	      if (mp->in == NULL)
		goto done;
	    }
	  break;
	}
#ifdef DEBUG
      fprintf(stderr, " node: %d:", ri);
      prtok(dfa->tokens[ri]);
      fprintf(stderr, "\n  in:");
      for (i = 0; mp->in[i]; ++i)
	fprintf(stderr, " \"%s\"", mp->in[i]);
      fprintf(stderr, "\n  is: \"%s\"\n", mp->is);
      fprintf(stderr, "  left: \"%s\"\n", mp->left);
      fprintf(stderr, "  right: \"%s\"\n", mp->right);
#endif
      ++mp;
    }
 done:
  if (strlen(result))
    {
      dm = (struct dfamust *) malloc(sizeof (struct dfamust));
      dm->exact = exact;
      dm->must = malloc(strlen(result) + 1);
      strcpy(dm->must, result);
      dm->next = dfa->musts;
      dfa->musts = dm;
    }
  mp = musts;
  for (i = 0; i <= dfa->tindex; ++i)
    {
      freelist(mp[i].in);
      ifree((char *) mp[i].in);
      ifree(mp[i].left);
      ifree(mp[i].right);
      ifree(mp[i].is);
    }
  free((char *) mp);
}
/* vim:set shiftwidth=2: */