Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/*-
 * Copyright 2015 John Wehle <john@feith.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * Amlogic aml8726 multiprocessor support.
 *
 * Some processors require powering on which involves poking registers
 * on the aobus and cbus ... it's expected that these locations are set
 * in stone.
 *
 * Locking is not used as these routines should only be called by the BP
 * during startup and should complete prior to the APs being released (the
 * issue being to ensure that a register such as AML_SOC_CPU_CLK_CNTL_REG
 * is not concurrently modified).
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/smp.h>

#include <vm/vm.h>
#include <vm/pmap.h>

#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/smp.h>
#include <machine/fdt.h>
#include <machine/intr.h>

#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>

#include <arm/amlogic/aml8726/aml8726_soc.h>

static const char *scu_compatible[] = {
	"arm,cortex-a5-scu",
	"arm,cortex-a9-scu",
	NULL
};

static const char *scu_errata_764369[] = {
	"arm,cortex-a9-scu",
	NULL
};

static const char *cpucfg_compatible[] = {
	"amlogic,aml8726-cpuconfig",
	NULL
};

static struct {
	boolean_t errata_764369;
	u_long scu_size;
	struct resource scu_res;
	u_long cpucfg_size;
	struct resource cpucfg_res;
	struct resource aobus_res;
	struct resource cbus_res;
} aml8726_smp;

#define	AML_SCU_CONTROL_REG			0
#define	AML_SCU_CONTROL_ENABLE			1
#define	AML_SCU_CONFIG_REG			4
#define	AML_SCU_CONFIG_NCPU_MASK		0x3
#define	AML_SCU_CPU_PWR_STATUS_REG		8
#define	AML_SCU_CPU_PWR_STATUS_CPU3_MASK	(3 << 24)
#define	AML_SCU_CPU_PWR_STATUS_CPU2_MASK	(3 << 16)
#define	AML_SCU_CPU_PWR_STATUS_CPU1_MASK	(3 << 8)
#define	AML_SCU_CPU_PWR_STATUS_CPU0_MASK	3
#define	AML_SCU_INV_TAGS_REG			12
#define	AML_SCU_DIAG_CONTROL_REG		48
#define	AML_SCU_DIAG_CONTROL_DISABLE_MIGBIT	1

#define	AML_CPUCONF_CONTROL_REG			0
#define	AML_CPUCONF_CPU1_ADDR_REG		4
#define	AML_CPUCONF_CPU2_ADDR_REG		8
#define	AML_CPUCONF_CPU3_ADDR_REG		12

/* aobus */

#define	AML_M8_CPU_PWR_CNTL0_REG		0xe0
#define	AML_M8B_CPU_PWR_CNTL0_MODE_CPU3_MASK	(3 << 22)
#define	AML_M8B_CPU_PWR_CNTL0_MODE_CPU2_MASK	(3 << 20)
#define	AML_M8B_CPU_PWR_CNTL0_MODE_CPU1_MASK	(3 << 18)

#define	AML_M8_CPU_PWR_CNTL0_ISO_CPU3		(1 << 3)
#define	AML_M8_CPU_PWR_CNTL0_ISO_CPU2		(1 << 2)
#define	AML_M8_CPU_PWR_CNTL0_ISO_CPU1		(1 << 1)

#define	AML_M8_CPU_PWR_CNTL1_REG		0xe4
#define	AML_M8B_CPU_PWR_CNTL1_PWR_CPU3		(1 << 19)
#define	AML_M8B_CPU_PWR_CNTL1_PWR_CPU2		(1 << 18)
#define	AML_M8B_CPU_PWR_CNTL1_PWR_CPU1		(1 << 17)

#define	AML_M8_CPU_PWR_CNTL1_MODE_CPU3_MASK	(3 << 8)
#define	AML_M8_CPU_PWR_CNTL1_MODE_CPU2_MASK	(3 << 6)
#define	AML_M8_CPU_PWR_CNTL1_MODE_CPU1_MASK	(3 << 4)

#define	AML_M8B_CPU_PWR_MEM_PD0_REG		0xf4
#define	AML_M8B_CPU_PWR_MEM_PD0_CPU3		(0xf << 20)
#define	AML_M8B_CPU_PWR_MEM_PD0_CPU2		(0xf << 24)
#define	AML_M8B_CPU_PWR_MEM_PD0_CPU1		(0xf << 28)

/* cbus */

#define	AML_SOC_CPU_CLK_CNTL_REG		0x419c
#define	AML_M8_CPU_CLK_CNTL_RESET_CPU3		(1 << 27)
#define	AML_M8_CPU_CLK_CNTL_RESET_CPU2		(1 << 26)
#define	AML_M8_CPU_CLK_CNTL_RESET_CPU1		(1 << 25)

#define	SCU_WRITE_4(reg, value)		bus_write_4(&aml8726_smp.scu_res,    \
    (reg), (value))
#define	SCU_READ_4(reg)			bus_read_4(&aml8726_smp.scu_res, (reg))
#define	SCU_BARRIER(reg)		bus_barrier(&aml8726_smp.scu_res,    \
    (reg), 4, (BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE))

#define	CPUCONF_WRITE_4(reg, value)	bus_write_4(&aml8726_smp.cpucfg_res, \
    (reg), (value))
#define	CPUCONF_READ_4(reg)		bus_read_4(&aml8726_smp.cpucfg_res,  \
    (reg))
#define	CPUCONF_BARRIER(reg)		bus_barrier(&aml8726_smp.cpucfg_res, \
    (reg), 4, (BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE))

#define	AOBUS_WRITE_4(reg, value)	bus_write_4(&aml8726_smp.aobus_res,  \
    (reg), (value))
#define	AOBUS_READ_4(reg)		bus_read_4(&aml8726_smp.aobus_res,   \
    (reg))
#define	AOBUS_BARRIER(reg)		bus_barrier(&aml8726_smp.aobus_res,  \
    (reg), 4, (BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE))

#define	CBUS_WRITE_4(reg, value)	bus_write_4(&aml8726_smp.cbus_res,   \
    (reg), (value))
#define CBUS_READ_4(reg)		bus_read_4(&aml8726_smp.cbus_res,    \
    (reg))
#define	CBUS_BARRIER(reg)		bus_barrier(&aml8726_smp.cbus_res,   \
    (reg), 4, (BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE))

static phandle_t
find_node_for_device(const char *device, const char **compatible)
{
	int i;
	phandle_t node;

	/*
	 * Try to access the node directly i.e. through /aliases/.
	 */

	if ((node = OF_finddevice(device)) != -1)
		for (i = 0; compatible[i]; i++)
			if (fdt_is_compatible_strict(node, compatible[i]))
				return node;

	/*
	 * Find the node the long way.
	 */

	for (i = 0; compatible[i]; i++) {
		if ((node = OF_finddevice("/soc")) == -1)
			return (0);

		if ((node = fdt_find_compatible(node, compatible[i], 1)) != 0)
			return node;
	}

	return (0);
}


static int
alloc_resource_for_node(phandle_t node, struct resource *res, u_long *size)
{
	int err;
	u_long pbase, psize;
	u_long start;

	if ((err = fdt_get_range(OF_parent(node), 0, &pbase, &psize)) != 0 ||
	    (err = fdt_regsize(node, &start, size)) != 0)
		return (err);

	start += pbase;

	memset(res, 0, sizeof(*res));

	res->r_bustag = fdtbus_bs_tag;

	err = bus_space_map(res->r_bustag, start, *size, 0, &res->r_bushandle);

	return (err);
}


static void
power_on_cpu(int cpu)
{
	uint32_t scpsr;
	uint32_t value;

	if (cpu <= 0)
		return;

	/*
	 * Power on the CPU if the intricate details are known, otherwise
	 * just hope for the best (it may have already be powered on by
	 * the hardware / firmware).
	 */

	switch (aml8726_soc_hw_rev) {
	case AML_SOC_HW_REV_M8:
	case AML_SOC_HW_REV_M8B:
		/*
		 * Set the SCU power status for the CPU to normal mode.
		 */
		scpsr = SCU_READ_4(AML_SCU_CPU_PWR_STATUS_REG);
		scpsr &= ~(AML_SCU_CPU_PWR_STATUS_CPU1_MASK << ((cpu - 1) * 8));
		SCU_WRITE_4(AML_SCU_CPU_PWR_STATUS_REG, scpsr);
		SCU_BARRIER(AML_SCU_CPU_PWR_STATUS_REG);

		if (aml8726_soc_hw_rev == AML_SOC_HW_REV_M8B) {
			/*
			 * Reset may cause the current power status from the
			 * actual CPU to be written to the SCU (over-writing
			 * the value  we've just written) so set it to normal
			 * mode as well.
			 */
			 value = AOBUS_READ_4(AML_M8_CPU_PWR_CNTL0_REG);
			 value &= ~(AML_M8B_CPU_PWR_CNTL0_MODE_CPU1_MASK <<
			    ((cpu - 1) * 2));
			 AOBUS_WRITE_4(AML_M8_CPU_PWR_CNTL0_REG, value);
			 AOBUS_BARRIER(AML_M8_CPU_PWR_CNTL0_REG);
		 }

		DELAY(5);

		/*
		 * Assert reset.
		 */
		value = CBUS_READ_4(AML_SOC_CPU_CLK_CNTL_REG);
		value |= AML_M8_CPU_CLK_CNTL_RESET_CPU1 << (cpu - 1); 
		CBUS_WRITE_4(AML_SOC_CPU_CLK_CNTL_REG, value);
		CBUS_BARRIER(AML_SOC_CPU_CLK_CNTL_REG);

		if (aml8726_soc_hw_rev == AML_SOC_HW_REV_M8B) {
			/*
			 * Release RAM pull-down.
			 */
			 value = AOBUS_READ_4(AML_M8B_CPU_PWR_MEM_PD0_REG);
			 value &= ~((uint32_t)AML_M8B_CPU_PWR_MEM_PD0_CPU1 >>
			    ((cpu - 1) * 4));
			 AOBUS_WRITE_4(AML_M8B_CPU_PWR_MEM_PD0_REG, value);
			 AOBUS_BARRIER(AML_M8B_CPU_PWR_MEM_PD0_REG);
		 }

		/*
		 * Power on CPU.
		 */
		value = AOBUS_READ_4(AML_M8_CPU_PWR_CNTL1_REG);
		value &= ~(AML_M8_CPU_PWR_CNTL1_MODE_CPU1_MASK <<
		    ((cpu - 1) * 2));
		AOBUS_WRITE_4(AML_M8_CPU_PWR_CNTL1_REG, value);
		AOBUS_BARRIER(AML_M8_CPU_PWR_CNTL1_REG);

		DELAY(10);

		if (aml8726_soc_hw_rev == AML_SOC_HW_REV_M8B) {
			/*
			 * Wait for power on confirmation.
			 */
			for ( ; ; ) {
				value = AOBUS_READ_4(AML_M8_CPU_PWR_CNTL1_REG);
				value &= AML_M8B_CPU_PWR_CNTL1_PWR_CPU1 <<
				    (cpu - 1);
				if (value)
					break;
				DELAY(10);
			}
		}

		/*
		 * Release peripheral clamp.
		 */
		value = AOBUS_READ_4(AML_M8_CPU_PWR_CNTL0_REG);
		value &= ~(AML_M8_CPU_PWR_CNTL0_ISO_CPU1 << (cpu - 1));
		AOBUS_WRITE_4(AML_M8_CPU_PWR_CNTL0_REG, value);
		AOBUS_BARRIER(AML_M8_CPU_PWR_CNTL0_REG);

		/*
		 * Release reset.
		 */
		value = CBUS_READ_4(AML_SOC_CPU_CLK_CNTL_REG);
		value &= ~(AML_M8_CPU_CLK_CNTL_RESET_CPU1 << (cpu - 1));
		CBUS_WRITE_4(AML_SOC_CPU_CLK_CNTL_REG, value);
		CBUS_BARRIER(AML_SOC_CPU_CLK_CNTL_REG);

		if (aml8726_soc_hw_rev == AML_SOC_HW_REV_M8B) {
			/*
			 * The Amlogic Linux platform code sets the SCU power
			 * status for the CPU again for some reason so we
			 * follow suit (perhaps in case the reset caused
			 * a stale power status from the actual CPU to be
			 * written to the SCU).
			 */
			SCU_WRITE_4(AML_SCU_CPU_PWR_STATUS_REG, scpsr);
			SCU_BARRIER(AML_SCU_CPU_PWR_STATUS_REG);
		}
		break;
	default:
		break;
	}
}

void
platform_mp_setmaxid(void)
{
	int err;
	int i;
	int ncpu;
	phandle_t cpucfg_node;
	phandle_t scu_node;
	uint32_t value;

	if (mp_ncpus != 0)
		return;

	ncpu = 1;

	/*
	 * Is the hardware necessary for SMP present?
	 */

	if ((scu_node = find_node_for_device("scu", scu_compatible)) == 0)
		goto moveon;

	if ((cpucfg_node = find_node_for_device("cpuconfig",
	    cpucfg_compatible)) == 0)
		goto moveon;

	if (alloc_resource_for_node(scu_node, &aml8726_smp.scu_res,
	    &aml8726_smp.scu_size) != 0)
		panic("Could not allocate resource for SCU");

	if (alloc_resource_for_node(cpucfg_node, &aml8726_smp.cpucfg_res,
	    &aml8726_smp.cpucfg_size) != 0)
		panic("Could not allocate resource for CPUCONFIG");


	/*
	 * Strictly speaking the aobus and cbus may not be required in
	 * order to start an AP (it depends on the processor), however
	 * always mapping them in simplifies the code.
	 */

	aml8726_smp.aobus_res.r_bustag = fdtbus_bs_tag;

	err = bus_space_map(aml8726_smp.aobus_res.r_bustag,
	    AML_SOC_AOBUS_BASE_ADDR, 0x100000,
	    0, &aml8726_smp.aobus_res.r_bushandle);

	if (err)
		panic("Could not allocate resource for AOBUS");

	aml8726_smp.cbus_res.r_bustag = fdtbus_bs_tag;

	err = bus_space_map(aml8726_smp.cbus_res.r_bustag,
	    AML_SOC_CBUS_BASE_ADDR, 0x100000,
	    0, &aml8726_smp.cbus_res.r_bushandle);

	if (err)
		panic("Could not allocate resource for CBUS");

	aml8726_smp.errata_764369 = false;
	for (i = 0; scu_errata_764369[i]; i++)
		if (fdt_is_compatible_strict(scu_node, scu_errata_764369[i])) {
			aml8726_smp.errata_764369 = true;
			break;
		}

	/*
	 * Read the number of CPUs present.
	 */
	value = SCU_READ_4(AML_SCU_CONFIG_REG);
	ncpu = (value & AML_SCU_CONFIG_NCPU_MASK) + 1;

moveon:
	mp_ncpus = ncpu;
	mp_maxid = ncpu - 1;
}

void
platform_mp_start_ap(void)
{
	int i;
	uint32_t reg;
	uint32_t value;
	vm_paddr_t paddr;

	if (mp_ncpus < 2)
		return;

	/*
	 * Invalidate SCU cache tags.  The 0x0000ffff constant invalidates
	 * all ways on all cores 0-3.  Per the ARM docs, it's harmless to
	 * write to the bits for cores that are not present.
	 */
	SCU_WRITE_4(AML_SCU_INV_TAGS_REG, 0x0000ffff);

	if (aml8726_smp.errata_764369) {
		/*
		 * Erratum ARM/MP: 764369 (problems with cache maintenance).
		 * Setting the "disable-migratory bit" in the undocumented SCU
		 * Diagnostic Control Register helps work around the problem.
		 */
		value = SCU_READ_4(AML_SCU_DIAG_CONTROL_REG);
		value |= AML_SCU_DIAG_CONTROL_DISABLE_MIGBIT;
		SCU_WRITE_4(AML_SCU_DIAG_CONTROL_REG, value);
	}

	/*
	 * Enable the SCU, then clean the cache on this core.  After these
	 * two operations the cache tag ram in the SCU is coherent with
	 * the contents of the cache on this core.  The other cores aren't
	 * running yet so their caches can't contain valid data yet, however
	 * we've initialized their SCU tag ram above, so they will be
	 * coherent from startup.
	 */
	value = SCU_READ_4(AML_SCU_CONTROL_REG);
	value |= AML_SCU_CONTROL_ENABLE;
	SCU_WRITE_4(AML_SCU_CONTROL_REG, value);
	SCU_BARRIER(AML_SCU_CONTROL_REG);
	dcache_wbinv_poc_all();

	/* Set the boot address and power on each AP. */
	paddr = pmap_kextract((vm_offset_t)mpentry);
	for (i = 1; i < mp_ncpus; i++) {
		reg = AML_CPUCONF_CPU1_ADDR_REG + ((i - 1) * 4);
		CPUCONF_WRITE_4(reg, paddr);
		CPUCONF_BARRIER(reg);

		power_on_cpu(i);
	}

	/*
	 * Enable the APs.
	 *
	 * The Amlogic Linux platform code sets the lsb for some reason
	 * in addition to the enable bit for each AP so we follow suit
	 * (the lsb may be the enable bit for the BP, though in that case
	 * it should already be set since it's currently running).
	 */
	value = CPUCONF_READ_4(AML_CPUCONF_CONTROL_REG);
	value |= 1;
	for (i = 1; i < mp_ncpus; i++)
		value |= (1 << i);
	CPUCONF_WRITE_4(AML_CPUCONF_CONTROL_REG, value);
	CPUCONF_BARRIER(AML_CPUCONF_CONTROL_REG);

	/* Wakeup the now enabled APs */
	dsb();
	sev();

	/*
	 * Free the resources which are not needed after startup.
	 */
	bus_space_unmap(aml8726_smp.scu_res.r_bustag,
	    aml8726_smp.scu_res.r_bushandle,
	    aml8726_smp.scu_size);
	bus_space_unmap(aml8726_smp.cpucfg_res.r_bustag,
	    aml8726_smp.cpucfg_res.r_bushandle,
	    aml8726_smp.cpucfg_size);
	bus_space_unmap(aml8726_smp.aobus_res.r_bustag,
	    aml8726_smp.aobus_res.r_bushandle,
	    0x100000);
	bus_space_unmap(aml8726_smp.cbus_res.r_bustag,
	    aml8726_smp.cbus_res.r_bushandle,
	    0x100000);
	memset(&aml8726_smp, 0, sizeof(aml8726_smp));
}

/*
 * Stub drivers for cosmetic purposes.
 */
struct aml8726_scu_softc {
	device_t	dev;
};

static int
aml8726_scu_probe(device_t dev)
{
	int i;

	for (i = 0; scu_compatible[i]; i++)
		if (ofw_bus_is_compatible(dev, scu_compatible[i]))
			break;

	if (!scu_compatible[i])
		return (ENXIO);

	device_set_desc(dev, "ARM Snoop Control Unit");

	return (BUS_PROBE_DEFAULT);
}

static int
aml8726_scu_attach(device_t dev)
{
	struct aml8726_scu_softc *sc = device_get_softc(dev);

	sc->dev = dev;

	return (0);
}

static int
aml8726_scu_detach(device_t dev)
{

	return (0);
}

static device_method_t aml8726_scu_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		aml8726_scu_probe),
	DEVMETHOD(device_attach,	aml8726_scu_attach),
	DEVMETHOD(device_detach,	aml8726_scu_detach),

	DEVMETHOD_END
};

static driver_t aml8726_scu_driver = {
	"scu",
	aml8726_scu_methods,
	sizeof(struct aml8726_scu_softc),
};

static devclass_t aml8726_scu_devclass;

EARLY_DRIVER_MODULE(scu, simplebus, aml8726_scu_driver, aml8726_scu_devclass,
    0, 0, BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE);

struct aml8726_cpucfg_softc {
	device_t	dev;
};

static int
aml8726_cpucfg_probe(device_t dev)
{
	int i;

	for (i = 0; cpucfg_compatible[i]; i++)
		if (ofw_bus_is_compatible(dev, cpucfg_compatible[i]))
			break;

	if (!cpucfg_compatible[i])
		return (ENXIO);

	device_set_desc(dev, "Amlogic CPU Config");

	return (BUS_PROBE_DEFAULT);
}

static int
aml8726_cpucfg_attach(device_t dev)
{
	struct aml8726_cpucfg_softc *sc = device_get_softc(dev);

	sc->dev = dev;

	return (0);
}

static int
aml8726_cpucfg_detach(device_t dev)
{

	return (0);
}

static device_method_t aml8726_cpucfg_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		aml8726_cpucfg_probe),
	DEVMETHOD(device_attach,	aml8726_cpucfg_attach),
	DEVMETHOD(device_detach,	aml8726_cpucfg_detach),

	DEVMETHOD_END
};

static driver_t aml8726_cpucfg_driver = {
	"cpuconfig",
	aml8726_cpucfg_methods,
	sizeof(struct aml8726_cpucfg_softc),
};

static devclass_t aml8726_cpucfg_devclass;

EARLY_DRIVER_MODULE(cpuconfig, simplebus, aml8726_cpucfg_driver,
    aml8726_cpucfg_devclass, 0, 0, BUS_PASS_CPU + BUS_PASS_ORDER_MIDDLE);