/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2018 Ian Lepore <ian@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for imx Enhanced Configurable SPI; master-mode only.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/gpio.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#include <dev/gpio/gpiobusvar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/openfirm.h>
#include <dev/spibus/spi.h>
#include <dev/spibus/spibusvar.h>
#include "spibus_if.h"
#define ECSPI_RXDATA 0x00
#define ECSPI_TXDATA 0x04
#define ECSPI_CTLREG 0x08
#define CTLREG_BLEN_SHIFT 20
#define CTLREG_BLEN_MASK 0x0fff
#define CTLREG_CSEL_SHIFT 18
#define CTLREG_CSEL_MASK 0x03
#define CTLREG_DRCTL_SHIFT 16
#define CTLREG_DRCTL_MASK 0x03
#define CTLREG_PREDIV_SHIFT 12
#define CTLREG_PREDIV_MASK 0x0f
#define CTLREG_POSTDIV_SHIFT 8
#define CTLREG_POSTDIV_MASK 0x0f
#define CTLREG_CMODE_SHIFT 4
#define CTLREG_CMODE_MASK 0x0f
#define CTLREG_CMODES_MASTER (CTLREG_CMODE_MASK << CTLREG_CMODE_SHIFT)
#define CTLREG_SMC (1u << 3)
#define CTLREG_XCH (1u << 2)
#define CTLREG_HT (1u << 1)
#define CTLREG_EN (1u << 0)
#define ECSPI_CFGREG 0x0c
#define CFGREG_HTLEN_SHIFT 24
#define CFGREG_SCLKCTL_SHIFT 20
#define CFGREG_DATACTL_SHIFT 16
#define CFGREG_SSPOL_SHIFT 12
#define CFGREG_SSCTL_SHIFT 8
#define CFGREG_SCLKPOL_SHIFT 4
#define CFGREG_SCLKPHA_SHIFT 0
#define CFGREG_MASK 0x0f /* all CFGREG fields are 4 bits */
#define ECSPI_INTREG 0x10
#define INTREG_TCEN (1u << 7)
#define INTREG_ROEN (1u << 6)
#define INTREG_RFEN (1u << 5)
#define INTREG_RDREN (1u << 4)
#define INTREG_RREN (1u << 3)
#define INTREG_TFEN (1u << 2)
#define INTREG_TDREN (1u << 1)
#define INTREG_TEEN (1u << 0)
#define ECSPI_DMAREG 0x14
#define DMA_RX_THRESH_SHIFT 16
#define DMA_RX_THRESH_MASK 0x3f
#define DMA_TX_THRESH_SHIFT 0
#define DMA_TX_THRESH_MASK 0x3f
#define ECSPI_STATREG 0x18
#define SREG_TC (1u << 7)
#define SREG_RO (1u << 6)
#define SREG_RF (1u << 5)
#define SREG_RDR (1u << 4)
#define SREG_RR (1u << 3)
#define SREG_TF (1u << 2)
#define SREG_TDR (1u << 1)
#define SREG_TE (1u << 0)
#define ECSPI_PERIODREG 0x1c
#define ECSPI_TESTREG 0x20
#define CS_MAX 4 /* Max number of chip selects. */
#define CS_MASK 0x03 /* Mask flag bits out of chipsel. */
#define FIFO_SIZE 64
#define FIFO_RXTHRESH 32
#define FIFO_TXTHRESH 32
struct spi_softc {
device_t dev;
device_t spibus;
struct mtx mtx;
struct resource *memres;
struct resource *intres;
void *inthandle;
gpio_pin_t cspins[CS_MAX];
u_int debug;
u_int basefreq;
uint32_t ctlreg;
uint32_t intreg;
uint32_t fifocnt;
uint8_t *rxbuf;
uint32_t rxidx;
uint32_t rxlen;
uint8_t *txbuf;
uint32_t txidx;
uint32_t txlen;
};
static struct ofw_compat_data compat_data[] = {
{"fsl,imx51-ecspi", true},
{"fsl,imx53-ecspi", true},
{"fsl,imx6dl-ecspi", true},
{"fsl,imx6q-ecspi", true},
{"fsl,imx6sx-ecspi", true},
{"fsl,imx6ul-ecspi", true},
{NULL, false}
};
static inline uint32_t
RD4(struct spi_softc *sc, bus_size_t offset)
{
return (bus_read_4(sc->memres, offset));
}
static inline void
WR4(struct spi_softc *sc, bus_size_t offset, uint32_t value)
{
bus_write_4(sc->memres, offset, value);
}
static u_int
spi_calc_clockdiv(struct spi_softc *sc, u_int busfreq)
{
u_int post, pre;
/* Returning 0 effectively sets both dividers to 1. */
if (sc->basefreq <= busfreq)
return (0);
/*
* Brute-force this; all real-world bus speeds are going to be found on
* the 1st or 2nd time through this loop.
*/
for (post = 0; post < 16; ++post) {
pre = ((sc->basefreq >> post) / busfreq) - 1;
if (pre < 16)
break;
}
if (post == 16) {
/* The lowest we can go is ~115 Hz. */
pre = 15;
post = 15;
}
if (sc->debug >= 2) {
device_printf(sc->dev,
"base %u bus %u; pre %u, post %u; actual busfreq %u\n",
sc->basefreq, busfreq, pre, post,
(sc->basefreq / (pre + 1)) / (1 << post));
}
return (pre << CTLREG_PREDIV_SHIFT) | (post << CTLREG_POSTDIV_SHIFT);
}
static void
spi_set_chipsel(struct spi_softc *sc, u_int cs, bool active)
{
bool pinactive;
/*
* This is kinda crazy... the gpio pins for chipsel are defined as
* active-high in the dts, but are supposed to be treated as active-low
* by this driver. So to turn on chipsel we have to invert the value
* passed to gpio_pin_set_active(). Then, to make it more fun, any
* slave can say its chipsel is active-high, so if that option is
* on, we have to invert the value again.
*/
pinactive = !active ^ (bool)(cs & SPIBUS_CS_HIGH);
if (sc->debug >= 2) {
device_printf(sc->dev, "chipsel %u changed to %u\n",
(cs & ~SPIBUS_CS_HIGH), pinactive);
}
/*
* Change the pin, then do a dummy read of its current state to ensure
* that the state change reaches the hardware before proceeding.
*/
gpio_pin_set_active(sc->cspins[cs & ~SPIBUS_CS_HIGH], pinactive);
gpio_pin_is_active(sc->cspins[cs & ~SPIBUS_CS_HIGH], &pinactive);
}
static void
spi_hw_setup(struct spi_softc *sc, u_int cs, u_int mode, u_int freq)
{
uint32_t reg;
/*
* Set up control register, and write it first to bring the device out
* of reset.
*/
sc->ctlreg = CTLREG_EN | CTLREG_CMODES_MASTER | CTLREG_SMC;
sc->ctlreg |= spi_calc_clockdiv(sc, freq);
sc->ctlreg |= 7 << CTLREG_BLEN_SHIFT; /* XXX byte at a time */
WR4(sc, ECSPI_CTLREG, sc->ctlreg);
/*
* Set up the config register. Note that we do all transfers with the
* SPI hardware's chip-select set to zero. The actual chip select is
* handled with a gpio pin.
*/
reg = 0;
if (cs & SPIBUS_CS_HIGH)
reg |= 1u << CFGREG_SSPOL_SHIFT;
if (mode & SPIBUS_MODE_CPHA)
reg |= 1u << CFGREG_SCLKPHA_SHIFT;
if (mode & SPIBUS_MODE_CPOL) {
reg |= 1u << CFGREG_SCLKPOL_SHIFT;
reg |= 1u << CFGREG_SCLKCTL_SHIFT;
}
WR4(sc, ECSPI_CFGREG, reg);
/*
* Set up the rx/tx FIFO interrupt thresholds.
*/
reg = (FIFO_RXTHRESH << DMA_RX_THRESH_SHIFT);
reg |= (FIFO_TXTHRESH << DMA_TX_THRESH_SHIFT);
WR4(sc, ECSPI_DMAREG, reg);
/*
* Do a dummy read, to make sure the preceding writes reach the spi
* hardware before we assert any gpio chip select.
*/
(void)RD4(sc, ECSPI_CFGREG);
}
static void
spi_empty_rxfifo(struct spi_softc *sc)
{
while (sc->rxidx < sc->rxlen && (RD4(sc, ECSPI_STATREG) & SREG_RR)) {
sc->rxbuf[sc->rxidx++] = (uint8_t)RD4(sc, ECSPI_RXDATA);
--sc->fifocnt;
}
}
static void
spi_fill_txfifo(struct spi_softc *sc)
{
while (sc->txidx < sc->txlen && sc->fifocnt < FIFO_SIZE) {
WR4(sc, ECSPI_TXDATA, sc->txbuf[sc->txidx++]);
++sc->fifocnt;
}
/*
* If we're out of data, disable tx data ready (threshold) interrupts,
* and enable tx fifo empty interrupts.
*/
if (sc->txidx == sc->txlen)
sc->intreg = (sc->intreg & ~INTREG_TDREN) | INTREG_TEEN;
}
static void
spi_intr(void *arg)
{
struct spi_softc *sc = arg;
uint32_t intreg, status;
mtx_lock(&sc->mtx);
sc = arg;
intreg = sc->intreg;
status = RD4(sc, ECSPI_STATREG);
WR4(sc, ECSPI_STATREG, status); /* Clear w1c bits. */
/*
* If we get an overflow error, just signal that the transfer is done
* and wakeup the waiting thread, which will see that txidx != txlen and
* return an IO error to the caller.
*/
if (__predict_false(status & SREG_RO)) {
if (sc->debug || bootverbose) {
device_printf(sc->dev, "rxoverflow rxidx %u txidx %u\n",
sc->rxidx, sc->txidx);
}
sc->intreg = 0;
wakeup(sc);
mtx_unlock(&sc->mtx);
return;
}
if (status & SREG_RR)
spi_empty_rxfifo(sc);
if (status & SREG_TDR)
spi_fill_txfifo(sc);
/*
* If we're out of bytes to send...
* - If Transfer Complete is set (shift register is empty) and we've
* received everything we expect, we're all done.
* - Else if Tx Fifo Empty is set, we need to stop waiting for that and
* switch to waiting for Transfer Complete (wait for shift register
* to empty out), and also for Receive Ready (last of incoming data).
*/
if (sc->txidx == sc->txlen) {
if ((status & SREG_TC) && sc->fifocnt == 0) {
sc->intreg = 0;
wakeup(sc);
} else if (status & SREG_TE) {
sc->intreg &= ~(sc->intreg & ~INTREG_TEEN);
sc->intreg |= INTREG_TCEN | INTREG_RREN;
}
}
/*
* If interrupt flags changed, write the new flags to the hardware and
* do a dummy readback to ensure the changes reach the hardware before
* we exit the isr.
*/
if (sc->intreg != intreg) {
WR4(sc, ECSPI_INTREG, sc->intreg);
(void)RD4(sc, ECSPI_INTREG);
}
if (sc->debug >= 3) {
device_printf(sc->dev,
"spi_intr, sreg 0x%08x intreg was 0x%08x now 0x%08x\n",
status, intreg, sc->intreg);
}
mtx_unlock(&sc->mtx);
}
static int
spi_xfer_buf(struct spi_softc *sc, void *rxbuf, void *txbuf, uint32_t len)
{
int err;
if (sc->debug >= 1) {
device_printf(sc->dev,
"spi_xfer_buf, rxbuf %p txbuf %p len %u\n",
rxbuf, txbuf, len);
}
if (len == 0)
return (0);
sc->rxbuf = rxbuf;
sc->rxlen = len;
sc->rxidx = 0;
sc->txbuf = txbuf;
sc->txlen = len;
sc->txidx = 0;
sc->intreg = INTREG_RDREN | INTREG_TDREN;
spi_fill_txfifo(sc);
/* Enable interrupts last; spi_fill_txfifo() can change sc->intreg */
WR4(sc, ECSPI_INTREG, sc->intreg);
err = 0;
while (err == 0 && sc->intreg != 0)
err = msleep(sc, &sc->mtx, 0, "imxspi", 10 * hz);
if (sc->rxidx != sc->rxlen || sc->txidx != sc->txlen)
err = EIO;
return (err);
}
static int
spi_transfer(device_t dev, device_t child, struct spi_command *cmd)
{
struct spi_softc *sc = device_get_softc(dev);
uint32_t cs, mode, clock;
int err;
spibus_get_cs(child, &cs);
spibus_get_clock(child, &clock);
spibus_get_mode(child, &mode);
if (cs > CS_MAX || sc->cspins[cs] == NULL) {
if (sc->debug || bootverbose)
device_printf(sc->dev, "Invalid chip select %u\n", cs);
return (EINVAL);
}
mtx_lock(&sc->mtx);
device_busy(sc->dev);
if (sc->debug >= 1) {
device_printf(sc->dev,
"spi_transfer, cs 0x%x clock %u mode %u\n",
cs, clock, mode);
}
/* Set up the hardware and select the device. */
spi_hw_setup(sc, cs, mode, clock);
spi_set_chipsel(sc, cs, true);
/* Transfer command then data bytes. */
err = 0;
if (cmd->tx_cmd_sz > 0)
err = spi_xfer_buf(sc, cmd->rx_cmd, cmd->tx_cmd,
cmd->tx_cmd_sz);
if (cmd->tx_data_sz > 0 && err == 0)
err = spi_xfer_buf(sc, cmd->rx_data, cmd->tx_data,
cmd->tx_data_sz);
/* Deselect the device, turn off (and reset) hardware. */
spi_set_chipsel(sc, cs, false);
WR4(sc, ECSPI_CTLREG, 0);
device_unbusy(sc->dev);
mtx_unlock(&sc->mtx);
return (err);
}
static phandle_t
spi_get_node(device_t bus, device_t dev)
{
/*
* Share our controller node with our spibus child; it instantiates
* devices by walking the children contained within our node.
*/
return ofw_bus_get_node(bus);
}
static int
spi_detach(device_t dev)
{
struct spi_softc *sc = device_get_softc(dev);
int error, idx;
if ((error = bus_generic_detach(sc->dev)) != 0)
return (error);
if (sc->spibus != NULL)
device_delete_child(dev, sc->spibus);
for (idx = 0; idx < nitems(sc->cspins); ++idx) {
if (sc->cspins[idx] != NULL)
gpio_pin_release(sc->cspins[idx]);
}
if (sc->inthandle != NULL)
bus_teardown_intr(sc->dev, sc->intres, sc->inthandle);
if (sc->intres != NULL)
bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->intres);
if (sc->memres != NULL)
bus_release_resource(sc->dev, SYS_RES_MEMORY, 0, sc->memres);
mtx_destroy(&sc->mtx);
return (0);
}
static int
spi_attach(device_t dev)
{
struct spi_softc *sc = device_get_softc(dev);
phandle_t node;
int err, idx, rid;
sc->dev = dev;
sc->basefreq = imx_ccm_ecspi_hz();
mtx_init(&sc->mtx, device_get_nameunit(dev), NULL, MTX_DEF);
/* Set up debug-enable sysctl. */
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "debug", CTLFLAG_RWTUN, &sc->debug, 0,
"Enable debug, higher values = more info");
/* Allocate mmio register access resources. */
rid = 0;
sc->memres = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->memres == NULL) {
device_printf(sc->dev, "could not allocate registers\n");
spi_detach(sc->dev);
return (ENXIO);
}
/* Allocate interrupt resources and set up handler. */
rid = 0;
sc->intres = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->intres == NULL) {
device_printf(sc->dev, "could not allocate interrupt\n");
device_detach(sc->dev);
return (ENXIO);
}
err = bus_setup_intr(sc->dev, sc->intres, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, spi_intr, sc, &sc->inthandle);
if (err != 0) {
device_printf(sc->dev, "could not setup interrupt handler");
device_detach(sc->dev);
return (ENXIO);
}
/* Allocate gpio pins for configured chip selects. */
node = ofw_bus_get_node(sc->dev);
for (idx = 0; idx < nitems(sc->cspins); ++idx) {
err = gpio_pin_get_by_ofw_propidx(sc->dev, node, "cs-gpios",
idx, &sc->cspins[idx]);
if (err == 0) {
gpio_pin_setflags(sc->cspins[idx], GPIO_PIN_OUTPUT);
} else if (sc->debug >= 2) {
device_printf(sc->dev,
"cannot configure gpio for chip select %u\n", idx);
}
}
/*
* Hardware init: put all channels into Master mode, turn off the enable
* bit (gates off clocks); we only enable the hardware while xfers run.
*/
WR4(sc, ECSPI_CTLREG, CTLREG_CMODES_MASTER);
/*
* Add the spibus driver as a child, and setup a one-shot intrhook to
* attach it after interrupts are working. It will attach actual SPI
* devices as its children, and those devices may need to do IO during
* their attach. We can't do IO until timers and interrupts are working.
*/
sc->spibus = device_add_child(dev, "spibus", -1);
config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
return (0);
}
static int
spi_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data)
return (ENXIO);
device_set_desc(dev, "i.MX ECSPI Master");
return (BUS_PROBE_DEFAULT);
}
static device_method_t spi_methods[] = {
DEVMETHOD(device_probe, spi_probe),
DEVMETHOD(device_attach, spi_attach),
DEVMETHOD(device_detach, spi_detach),
/* spibus_if */
DEVMETHOD(spibus_transfer, spi_transfer),
/* ofw_bus_if */
DEVMETHOD(ofw_bus_get_node, spi_get_node),
DEVMETHOD_END
};
static driver_t spi_driver = {
"imx_spi",
spi_methods,
sizeof(struct spi_softc),
};
static devclass_t spi_devclass;
DRIVER_MODULE(imx_spi, simplebus, spi_driver, spi_devclass, 0, 0);
DRIVER_MODULE(ofw_spibus, imx_spi, ofw_spibus_driver, ofw_spibus_devclass, 0, 0);
MODULE_DEPEND(imx_spi, ofw_spibus, 1, 1, 1);
SIMPLEBUS_PNP_INFO(compat_data);