Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2013-2014 Ruslan Bukin <br@bsdpad.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * Vybrid Family Clock Controller Module (CCM)
 * Chapter 10, Vybrid Reference Manual, Rev. 5, 07/2013
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/timeet.h>
#include <sys/timetc.h>
#include <sys/watchdog.h>

#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>

#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>

#include <arm/freescale/vybrid/vf_common.h>

#define	CCM_CCR		0x00	/* Control Register */
#define	CCM_CSR		0x04	/* Status Register */
#define	CCM_CCSR	0x08	/* Clock Switcher Register */
#define	CCM_CACRR	0x0C	/* ARM Clock Root Register */
#define	CCM_CSCMR1	0x10	/* Serial Clock Multiplexer Register 1 */
#define	CCM_CSCDR1	0x14	/* Serial Clock Divider Register 1 */
#define	CCM_CSCDR2	0x18	/* Serial Clock Divider Register 2 */
#define	CCM_CSCDR3	0x1C	/* Serial Clock Divider Register 3 */
#define	CCM_CSCMR2	0x20	/* Serial Clock Multiplexer Register 2 */
#define	CCM_CTOR	0x28	/* Testing Observability Register */
#define	CCM_CLPCR	0x2C	/* Low Power Control Register */
#define	CCM_CISR	0x30	/* Interrupt Status Register */
#define	CCM_CIMR	0x34	/* Interrupt Mask Register */
#define	CCM_CCOSR	0x38	/* Clock Output Source Register */
#define	CCM_CGPR	0x3C	/* General Purpose Register */

#define	CCM_CCGRN	12
#define	CCM_CCGR(n)	(0x40 + (n * 0x04))	/* Clock Gating Register */
#define	CCM_CMEOR(n)	(0x70 + (n * 0x70))	/* Module Enable Override */
#define	CCM_CCPGR(n)	(0x90 + (n * 0x04))	/* Platform Clock Gating */

#define	CCM_CPPDSR	0x88	/* PLL PFD Disable Status Register */
#define	CCM_CCOWR	0x8C	/* CORE Wakeup Register */

#define	PLL3_PFD4_EN	(1U << 31)
#define	PLL3_PFD3_EN	(1 << 30)
#define	PLL3_PFD2_EN	(1 << 29)
#define	PLL3_PFD1_EN	(1 << 28)
#define	PLL2_PFD4_EN	(1 << 15)
#define	PLL2_PFD3_EN	(1 << 14)
#define	PLL2_PFD2_EN	(1 << 13)
#define	PLL2_PFD1_EN	(1 << 12)
#define	PLL1_PFD4_EN	(1 << 11)
#define	PLL1_PFD3_EN	(1 << 10)
#define	PLL1_PFD2_EN	(1 << 9)
#define	PLL1_PFD1_EN	(1 << 8)

/* CCM_CCR */
#define	FIRC_EN		(1 << 16)
#define	FXOSC_EN	(1 << 12)
#define	FXOSC_RDY	(1 << 5)

/* CCM_CSCDR1 */
#define	ENET_TS_EN	(1 << 23)
#define	RMII_CLK_EN	(1 << 24)
#define	SAI3_EN		(1 << 19)

/* CCM_CSCDR2 */
#define	ESAI_EN		(1 << 30)
#define	ESDHC1_EN	(1 << 29)
#define	ESDHC0_EN	(1 << 28)
#define	NFC_EN		(1 << 9)
#define	ESDHC1_DIV_S	20
#define	ESDHC1_DIV_M	0xf
#define	ESDHC0_DIV_S	16
#define	ESDHC0_DIV_M	0xf

/* CCM_CSCDR3 */
#define	DCU0_EN			(1 << 19)

#define	QSPI1_EN		(1 << 12)
#define	QSPI1_DIV		(1 << 11)
#define	QSPI1_X2_DIV		(1 << 10)
#define	QSPI1_X4_DIV_M		0x3
#define	QSPI1_X4_DIV_S		8

#define	QSPI0_EN		(1 << 4)
#define	QSPI0_DIV		(1 << 3)
#define	QSPI0_X2_DIV		(1 << 2)
#define	QSPI0_X4_DIV_M		0x3
#define	QSPI0_X4_DIV_S		0

#define	SAI3_DIV_SHIFT		12
#define	SAI3_DIV_MASK		0xf
#define	ESAI_DIV_SHIFT		24
#define	ESAI_DIV_MASK		0xf

#define	PLL4_CLK_DIV_SHIFT	6
#define	PLL4_CLK_DIV_MASK	0x7

#define	IPG_CLK_DIV_SHIFT	11
#define	IPG_CLK_DIV_MASK	0x3

#define	ESAI_CLK_SEL_SHIFT	20
#define	ESAI_CLK_SEL_MASK	0x3

#define	SAI3_CLK_SEL_SHIFT	6
#define	SAI3_CLK_SEL_MASK	0x3

#define	CKO1_EN			(1 << 10)
#define	CKO1_DIV_MASK		0xf
#define	CKO1_DIV_SHIFT		6
#define	CKO1_SEL_MASK		0x3f
#define	CKO1_SEL_SHIFT		0
#define	CKO1_PLL4_MAIN		0x6
#define	CKO1_PLL4_DIVD		0x7

struct clk {
	uint32_t	reg;
	uint32_t	enable_reg;
	uint32_t	div_mask;
	uint32_t	div_shift;
	uint32_t	div_val;
	uint32_t	sel_reg;
	uint32_t	sel_mask;
	uint32_t	sel_shift;
	uint32_t	sel_val;
};

static struct clk ipg_clk = {
	.reg = CCM_CACRR,
	.enable_reg = 0,
	.div_mask = IPG_CLK_DIV_MASK,
	.div_shift = IPG_CLK_DIV_SHIFT,
	.div_val = 1, /* Divide by 2 */
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

/*
  PLL4 clock divider (before switching the clocks should be gated)
  000 Divide by 1 (only if PLL frequency less than or equal to 650 MHz)
  001 Divide by 4
  010 Divide by 6
  011 Divide by 8
  100 Divide by 10
  101 Divide by 12
  110 Divide by 14
  111 Divide by 16
*/

static struct clk pll4_clk = {
	.reg = CCM_CACRR,
	.enable_reg = 0,
	.div_mask = PLL4_CLK_DIV_MASK,
	.div_shift = PLL4_CLK_DIV_SHIFT,
	.div_val = 5, /* Divide by 12 */
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

static struct clk sai3_clk = {
	.reg = CCM_CSCDR1,
	.enable_reg = SAI3_EN,
	.div_mask = SAI3_DIV_MASK,
	.div_shift = SAI3_DIV_SHIFT,
	.div_val = 1,
	.sel_reg = CCM_CSCMR1,
	.sel_mask = SAI3_CLK_SEL_MASK,
	.sel_shift = SAI3_CLK_SEL_SHIFT,
	.sel_val = 0x3, /* Divided PLL4 main clock */
};

static struct clk cko1_clk = {
	.reg = CCM_CCOSR,
	.enable_reg = CKO1_EN,
	.div_mask = CKO1_DIV_MASK,
	.div_shift = CKO1_DIV_SHIFT,
	.div_val = 1,
	.sel_reg = CCM_CCOSR,
	.sel_mask = CKO1_SEL_MASK,
	.sel_shift = CKO1_SEL_SHIFT,
	.sel_val = CKO1_PLL4_DIVD,
};

static struct clk esdhc0_clk = {
	.reg = CCM_CSCDR2,
	.enable_reg = ESDHC0_EN,
	.div_mask = ESDHC0_DIV_M,
	.div_shift = ESDHC0_DIV_S,
	.div_val = 0x9,
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

static struct clk esdhc1_clk = {
	.reg = CCM_CSCDR2,
	.enable_reg = ESDHC1_EN,
	.div_mask = ESDHC1_DIV_M,
	.div_shift = ESDHC1_DIV_S,
	.div_val = 0x9,
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

static struct clk qspi0_clk = {
	.reg = CCM_CSCDR3,
	.enable_reg = QSPI0_EN,
	.div_mask = 0,
	.div_shift = 0,
	.div_val = 0,
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

static struct clk dcu0_clk = {
	.reg = CCM_CSCDR3,
	.enable_reg = DCU0_EN,
	.div_mask = 0x7,
	.div_shift = 16, /* DCU0_DIV */
	.div_val = 0, /* divide by 1 */
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

static struct clk enet_clk = {
	.reg = CCM_CSCDR1,
	.enable_reg = (ENET_TS_EN | RMII_CLK_EN),
	.div_mask = 0,
	.div_shift = 0,
	.div_val = 0,
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

static struct clk nand_clk = {
	.reg = CCM_CSCDR2,
	.enable_reg = NFC_EN,
	.div_mask = 0,
	.div_shift = 0,
	.div_val = 0,
	.sel_reg = 0,
	.sel_mask = 0,
	.sel_shift = 0,
	.sel_val = 0,
};

/*
  Divider to generate ESAI clock
  0000    Divide by 1
  0001    Divide by 2
  ...     ...
  1111    Divide by 16
*/

static struct clk esai_clk = {
	.reg = CCM_CSCDR2,
	.enable_reg = ESAI_EN,
	.div_mask = ESAI_DIV_MASK,
	.div_shift = ESAI_DIV_SHIFT,
	.div_val = 3, /* Divide by 4 */
	.sel_reg = CCM_CSCMR1,
	.sel_mask = ESAI_CLK_SEL_MASK,
	.sel_shift = ESAI_CLK_SEL_SHIFT,
	.sel_val = 0x3, /* Divided PLL4 main clock */
};

struct clock_entry {
	char		*name;
	struct clk	*clk;
};

static struct clock_entry clock_map[] = {
	{"ipg",		&ipg_clk},
	{"pll4",	&pll4_clk},
	{"sai3",	&sai3_clk},
	{"cko1",	&cko1_clk},
	{"esdhc0",	&esdhc0_clk},
	{"esdhc1",	&esdhc1_clk},
	{"qspi0",	&qspi0_clk},
	{"dcu0",	&dcu0_clk},
	{"enet",	&enet_clk},
	{"nand",	&nand_clk},
	{"esai",	&esai_clk},
	{NULL,	NULL}
};

struct ccm_softc {
	struct resource		*res[1];
	bus_space_tag_t		bst;
	bus_space_handle_t	bsh;
	device_t		dev;
};

static struct resource_spec ccm_spec[] = {
	{ SYS_RES_MEMORY,       0,      RF_ACTIVE },
	{ -1, 0 }
};

static int
ccm_probe(device_t dev)
{

	if (!ofw_bus_status_okay(dev))
		return (ENXIO);

	if (!ofw_bus_is_compatible(dev, "fsl,mvf600-ccm"))
		return (ENXIO);

	device_set_desc(dev, "Vybrid Family CCM Unit");
	return (BUS_PROBE_DEFAULT);
}

static int
set_clock(struct ccm_softc *sc, char *name)
{
	struct clk *clk;
	int reg;
	int i;

	for (i = 0; clock_map[i].name != NULL; i++) {
		if (strcmp(clock_map[i].name, name) == 0) {
#if 0
			device_printf(sc->dev, "Configuring %s clk\n", name);
#endif
			clk = clock_map[i].clk;
			if (clk->sel_reg != 0) {
				reg = READ4(sc, clk->sel_reg);
				reg &= ~(clk->sel_mask << clk->sel_shift);
				reg |= (clk->sel_val << clk->sel_shift);
				WRITE4(sc, clk->sel_reg, reg);
			}

			reg = READ4(sc, clk->reg);
			reg |= clk->enable_reg;
			reg &= ~(clk->div_mask << clk->div_shift);
			reg |= (clk->div_val << clk->div_shift);
			WRITE4(sc, clk->reg, reg);
		}
	}

	return (0);
}

static int
ccm_fdt_set(struct ccm_softc *sc)
{
	phandle_t child, parent, root;
	int len;
	char *fdt_config, *name;

	root = OF_finddevice("/");
	len = 0;
	parent = root;

	/* Find 'clock_names' prop in the tree */
	for (child = OF_child(parent); child != 0; child = OF_peer(child)) {

		/* Find a 'leaf'. Start the search from this node. */
		while (OF_child(child)) {
			parent = child;
			child = OF_child(child);
		}

		if (!ofw_bus_node_status_okay(child))
			continue;

		if ((len = OF_getproplen(child, "clock_names")) > 0) {
			len = OF_getproplen(child, "clock_names");
			OF_getprop_alloc(child, "clock_names",
			    (void **)&fdt_config);

			while (len > 0) {
				name = fdt_config;
				fdt_config += strlen(name) + 1;
				len -= strlen(name) + 1;
				set_clock(sc, name);
			}
		}

		if (OF_peer(child) == 0) {
			/* No more siblings. */
			child = parent;
			parent = OF_parent(child);
		}
	}

	return (0);
}

static int
ccm_attach(device_t dev)
{
	struct ccm_softc *sc;
	int reg;
	int i;

	sc = device_get_softc(dev);
	sc->dev = dev;

	if (bus_alloc_resources(dev, ccm_spec, sc->res)) {
		device_printf(dev, "could not allocate resources\n");
		return (ENXIO);
	}

	/* Memory interface */
	sc->bst = rman_get_bustag(sc->res[0]);
	sc->bsh = rman_get_bushandle(sc->res[0]);

	/* Enable oscillator */
	reg = READ4(sc, CCM_CCR);
	reg |= (FIRC_EN | FXOSC_EN);
	WRITE4(sc, CCM_CCR, reg);

	/* Wait 10 times */
	for (i = 0; i < 10; i++) {
		if (READ4(sc, CCM_CSR) & FXOSC_RDY) {
			device_printf(sc->dev, "On board oscillator is ready.\n");
			break;
		}

		cpufunc_nullop();
	}

	/* Clock is on during all modes, except stop mode. */
	for (i = 0; i < CCM_CCGRN; i++) {
		WRITE4(sc, CCM_CCGR(i), 0xffffffff);
	}

	/* Take and apply FDT clocks */
	ccm_fdt_set(sc);

	return (0);
}

static device_method_t ccm_methods[] = {
	DEVMETHOD(device_probe,		ccm_probe),
	DEVMETHOD(device_attach,	ccm_attach),
	{ 0, 0 }
};

static driver_t ccm_driver = {
	"ccm",
	ccm_methods,
	sizeof(struct ccm_softc),
};

static devclass_t ccm_devclass;

DRIVER_MODULE(ccm, simplebus, ccm_driver, ccm_devclass, 0, 0);