Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
 * Copyright (c) 2014 Integros [integros.com]
 */

/* Portions Copyright 2010 Robert Milkowski */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/arc.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
#include <sys/dsl_dataset.h>
#include <sys/vdev_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_pool.h>
#include <sys/abd.h>

/*
 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
 * calls that change the file system. Each itx has enough information to
 * be able to replay them after a system crash, power loss, or
 * equivalent failure mode. These are stored in memory until either:
 *
 *   1. they are committed to the pool by the DMU transaction group
 *      (txg), at which point they can be discarded; or
 *   2. they are committed to the on-disk ZIL for the dataset being
 *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
 *      requirement).
 *
 * In the event of a crash or power loss, the itxs contained by each
 * dataset's on-disk ZIL will be replayed when that dataset is first
 * instantianted (e.g. if the dataset is a normal fileystem, when it is
 * first mounted).
 *
 * As hinted at above, there is one ZIL per dataset (both the in-memory
 * representation, and the on-disk representation). The on-disk format
 * consists of 3 parts:
 *
 * 	- a single, per-dataset, ZIL header; which points to a chain of
 * 	- zero or more ZIL blocks; each of which contains
 * 	- zero or more ZIL records
 *
 * A ZIL record holds the information necessary to replay a single
 * system call transaction. A ZIL block can hold many ZIL records, and
 * the blocks are chained together, similarly to a singly linked list.
 *
 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
 * block in the chain, and the ZIL header points to the first block in
 * the chain.
 *
 * Note, there is not a fixed place in the pool to hold these ZIL
 * blocks; they are dynamically allocated and freed as needed from the
 * blocks available on the pool, though they can be preferentially
 * allocated from a dedicated "log" vdev.
 */

/*
 * This controls the amount of time that a ZIL block (lwb) will remain
 * "open" when it isn't "full", and it has a thread waiting for it to be
 * committed to stable storage. Please refer to the zil_commit_waiter()
 * function (and the comments within it) for more details.
 */
int zfs_commit_timeout_pct = 5;

/*
 * Disable intent logging replay.  This global ZIL switch affects all pools.
 */
int zil_replay_disable = 0;
SYSCTL_DECL(_vfs_zfs);
SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
    &zil_replay_disable, 0, "Disable intent logging replay");

/*
 * Tunable parameter for debugging or performance analysis.  Setting
 * zfs_nocacheflush will cause corruption on power loss if a volatile
 * out-of-order write cache is enabled.
 */
boolean_t zfs_nocacheflush = B_FALSE;
SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RWTUN,
    &zfs_nocacheflush, 0, "Disable cache flush");
boolean_t zfs_trim_enabled = B_TRUE;
SYSCTL_DECL(_vfs_zfs_trim);
SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
    "Enable ZFS TRIM");

/*
 * Limit SLOG write size per commit executed with synchronous priority.
 * Any writes above that will be executed with lower (asynchronous) priority
 * to limit potential SLOG device abuse by single active ZIL writer.
 */
uint64_t zil_slog_bulk = 768 * 1024;
SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");

static kmem_cache_t *zil_lwb_cache;
static kmem_cache_t *zil_zcw_cache;

#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))

static int
zil_bp_compare(const void *x1, const void *x2)
{
	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;

	int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
	if (likely(cmp))
		return (cmp);

	return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
}

static void
zil_bp_tree_init(zilog_t *zilog)
{
	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
}

static void
zil_bp_tree_fini(zilog_t *zilog)
{
	avl_tree_t *t = &zilog->zl_bp_tree;
	zil_bp_node_t *zn;
	void *cookie = NULL;

	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
		kmem_free(zn, sizeof (zil_bp_node_t));

	avl_destroy(t);
}

int
zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
{
	avl_tree_t *t = &zilog->zl_bp_tree;
	const dva_t *dva;
	zil_bp_node_t *zn;
	avl_index_t where;

	if (BP_IS_EMBEDDED(bp))
		return (0);

	dva = BP_IDENTITY(bp);

	if (avl_find(t, dva, &where) != NULL)
		return (SET_ERROR(EEXIST));

	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
	zn->zn_dva = *dva;
	avl_insert(t, zn, where);

	return (0);
}

static zil_header_t *
zil_header_in_syncing_context(zilog_t *zilog)
{
	return ((zil_header_t *)zilog->zl_header);
}

static void
zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
{
	zio_cksum_t *zc = &bp->blk_cksum;

	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
}

/*
 * Read a log block and make sure it's valid.
 */
static int
zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
    char **end)
{
	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
	arc_flags_t aflags = ARC_FLAG_WAIT;
	arc_buf_t *abuf = NULL;
	zbookmark_phys_t zb;
	int error;

	if (zilog->zl_header->zh_claim_txg == 0)
		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;

	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
		zio_flags |= ZIO_FLAG_SPECULATIVE;

	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);

	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);

	if (error == 0) {
		zio_cksum_t cksum = bp->blk_cksum;

		/*
		 * Validate the checksummed log block.
		 *
		 * Sequence numbers should be... sequential.  The checksum
		 * verifier for the next block should be bp's checksum plus 1.
		 *
		 * Also check the log chain linkage and size used.
		 */
		cksum.zc_word[ZIL_ZC_SEQ]++;

		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
			zil_chain_t *zilc = abuf->b_data;
			char *lr = (char *)(zilc + 1);
			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);

			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
				error = SET_ERROR(ECKSUM);
			} else {
				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
				bcopy(lr, dst, len);
				*end = (char *)dst + len;
				*nbp = zilc->zc_next_blk;
			}
		} else {
			char *lr = abuf->b_data;
			uint64_t size = BP_GET_LSIZE(bp);
			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;

			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
				error = SET_ERROR(ECKSUM);
			} else {
				ASSERT3U(zilc->zc_nused, <=,
				    SPA_OLD_MAXBLOCKSIZE);
				bcopy(lr, dst, zilc->zc_nused);
				*end = (char *)dst + zilc->zc_nused;
				*nbp = zilc->zc_next_blk;
			}
		}

		arc_buf_destroy(abuf, &abuf);
	}

	return (error);
}

/*
 * Read a TX_WRITE log data block.
 */
static int
zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
{
	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
	const blkptr_t *bp = &lr->lr_blkptr;
	arc_flags_t aflags = ARC_FLAG_WAIT;
	arc_buf_t *abuf = NULL;
	zbookmark_phys_t zb;
	int error;

	if (BP_IS_HOLE(bp)) {
		if (wbuf != NULL)
			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
		return (0);
	}

	if (zilog->zl_header->zh_claim_txg == 0)
		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;

	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));

	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);

	if (error == 0) {
		if (wbuf != NULL)
			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
		arc_buf_destroy(abuf, &abuf);
	}

	return (error);
}

/*
 * Parse the intent log, and call parse_func for each valid record within.
 */
int
zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
{
	const zil_header_t *zh = zilog->zl_header;
	boolean_t claimed = !!zh->zh_claim_txg;
	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
	uint64_t max_blk_seq = 0;
	uint64_t max_lr_seq = 0;
	uint64_t blk_count = 0;
	uint64_t lr_count = 0;
	blkptr_t blk, next_blk;
	char *lrbuf, *lrp;
	int error = 0;

	/*
	 * Old logs didn't record the maximum zh_claim_lr_seq.
	 */
	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
		claim_lr_seq = UINT64_MAX;

	/*
	 * Starting at the block pointed to by zh_log we read the log chain.
	 * For each block in the chain we strongly check that block to
	 * ensure its validity.  We stop when an invalid block is found.
	 * For each block pointer in the chain we call parse_blk_func().
	 * For each record in each valid block we call parse_lr_func().
	 * If the log has been claimed, stop if we encounter a sequence
	 * number greater than the highest claimed sequence number.
	 */
	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
	zil_bp_tree_init(zilog);

	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
		int reclen;
		char *end;

		if (blk_seq > claim_blk_seq)
			break;
		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
			break;
		ASSERT3U(max_blk_seq, <, blk_seq);
		max_blk_seq = blk_seq;
		blk_count++;

		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
			break;

		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
		if (error != 0)
			break;

		for (lrp = lrbuf; lrp < end; lrp += reclen) {
			lr_t *lr = (lr_t *)lrp;
			reclen = lr->lrc_reclen;
			ASSERT3U(reclen, >=, sizeof (lr_t));
			if (lr->lrc_seq > claim_lr_seq)
				goto done;
			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
				goto done;
			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
			max_lr_seq = lr->lrc_seq;
			lr_count++;
		}
	}
done:
	zilog->zl_parse_error = error;
	zilog->zl_parse_blk_seq = max_blk_seq;
	zilog->zl_parse_lr_seq = max_lr_seq;
	zilog->zl_parse_blk_count = blk_count;
	zilog->zl_parse_lr_count = lr_count;

	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));

	zil_bp_tree_fini(zilog);
	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);

	return (error);
}

/* ARGSUSED */
static int
zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
{
	ASSERT(!BP_IS_HOLE(bp));

	/*
	 * As we call this function from the context of a rewind to a
	 * checkpoint, each ZIL block whose txg is later than the txg
	 * that we rewind to is invalid. Thus, we return -1 so
	 * zil_parse() doesn't attempt to read it.
	 */
	if (bp->blk_birth >= first_txg)
		return (-1);

	if (zil_bp_tree_add(zilog, bp) != 0)
		return (0);

	zio_free(zilog->zl_spa, first_txg, bp);
	return (0);
}

/* ARGSUSED */
static int
zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
{
	return (0);
}

static int
zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
{
	/*
	 * Claim log block if not already committed and not already claimed.
	 * If tx == NULL, just verify that the block is claimable.
	 */
	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
	    zil_bp_tree_add(zilog, bp) != 0)
		return (0);

	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
}

static int
zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
{
	lr_write_t *lr = (lr_write_t *)lrc;
	int error;

	if (lrc->lrc_txtype != TX_WRITE)
		return (0);

	/*
	 * If the block is not readable, don't claim it.  This can happen
	 * in normal operation when a log block is written to disk before
	 * some of the dmu_sync() blocks it points to.  In this case, the
	 * transaction cannot have been committed to anyone (we would have
	 * waited for all writes to be stable first), so it is semantically
	 * correct to declare this the end of the log.
	 */
	if (lr->lr_blkptr.blk_birth >= first_txg &&
	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
		return (error);
	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
}

/* ARGSUSED */
static int
zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
{
	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);

	return (0);
}

static int
zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
{
	lr_write_t *lr = (lr_write_t *)lrc;
	blkptr_t *bp = &lr->lr_blkptr;

	/*
	 * If we previously claimed it, we need to free it.
	 */
	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
	    !BP_IS_HOLE(bp))
		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);

	return (0);
}

static int
zil_lwb_vdev_compare(const void *x1, const void *x2)
{
	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;

	return (AVL_CMP(v1, v2));
}

static lwb_t *
zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
{
	lwb_t *lwb;

	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
	lwb->lwb_zilog = zilog;
	lwb->lwb_blk = *bp;
	lwb->lwb_slog = slog;
	lwb->lwb_state = LWB_STATE_CLOSED;
	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
	lwb->lwb_max_txg = txg;
	lwb->lwb_write_zio = NULL;
	lwb->lwb_root_zio = NULL;
	lwb->lwb_tx = NULL;
	lwb->lwb_issued_timestamp = 0;
	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
		lwb->lwb_nused = sizeof (zil_chain_t);
		lwb->lwb_sz = BP_GET_LSIZE(bp);
	} else {
		lwb->lwb_nused = 0;
		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
	}

	mutex_enter(&zilog->zl_lock);
	list_insert_tail(&zilog->zl_lwb_list, lwb);
	mutex_exit(&zilog->zl_lock);

	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
	VERIFY(list_is_empty(&lwb->lwb_waiters));

	return (lwb);
}

static void
zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
{
	ASSERT(MUTEX_HELD(&zilog->zl_lock));
	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
	VERIFY(list_is_empty(&lwb->lwb_waiters));
	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
	    lwb->lwb_state == LWB_STATE_DONE);

	/*
	 * Clear the zilog's field to indicate this lwb is no longer
	 * valid, and prevent use-after-free errors.
	 */
	if (zilog->zl_last_lwb_opened == lwb)
		zilog->zl_last_lwb_opened = NULL;

	kmem_cache_free(zil_lwb_cache, lwb);
}

/*
 * Called when we create in-memory log transactions so that we know
 * to cleanup the itxs at the end of spa_sync().
 */
void
zilog_dirty(zilog_t *zilog, uint64_t txg)
{
	dsl_pool_t *dp = zilog->zl_dmu_pool;
	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);

	ASSERT(spa_writeable(zilog->zl_spa));

	if (ds->ds_is_snapshot)
		panic("dirtying snapshot!");

	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
		/* up the hold count until we can be written out */
		dmu_buf_add_ref(ds->ds_dbuf, zilog);

		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
	}
}

/*
 * Determine if the zil is dirty in the specified txg. Callers wanting to
 * ensure that the dirty state does not change must hold the itxg_lock for
 * the specified txg. Holding the lock will ensure that the zil cannot be
 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
 * state.
 */
boolean_t
zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
{
	dsl_pool_t *dp = zilog->zl_dmu_pool;

	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
		return (B_TRUE);
	return (B_FALSE);
}

/*
 * Determine if the zil is dirty. The zil is considered dirty if it has
 * any pending itx records that have not been cleaned by zil_clean().
 */
boolean_t
zilog_is_dirty(zilog_t *zilog)
{
	dsl_pool_t *dp = zilog->zl_dmu_pool;

	for (int t = 0; t < TXG_SIZE; t++) {
		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
			return (B_TRUE);
	}
	return (B_FALSE);
}

/*
 * Create an on-disk intent log.
 */
static lwb_t *
zil_create(zilog_t *zilog)
{
	const zil_header_t *zh = zilog->zl_header;
	lwb_t *lwb = NULL;
	uint64_t txg = 0;
	dmu_tx_t *tx = NULL;
	blkptr_t blk;
	int error = 0;
	boolean_t slog = FALSE;

	/*
	 * Wait for any previous destroy to complete.
	 */
	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);

	ASSERT(zh->zh_claim_txg == 0);
	ASSERT(zh->zh_replay_seq == 0);

	blk = zh->zh_log;

	/*
	 * Allocate an initial log block if:
	 *    - there isn't one already
	 *    - the existing block is the wrong endianess
	 */
	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
		tx = dmu_tx_create(zilog->zl_os);
		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
		txg = dmu_tx_get_txg(tx);

		if (!BP_IS_HOLE(&blk)) {
			zio_free(zilog->zl_spa, txg, &blk);
			BP_ZERO(&blk);
		}

		error = zio_alloc_zil(zilog->zl_spa,
		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
		    ZIL_MIN_BLKSZ, &slog);

		if (error == 0)
			zil_init_log_chain(zilog, &blk);
	}

	/*
	 * Allocate a log write block (lwb) for the first log block.
	 */
	if (error == 0)
		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);

	/*
	 * If we just allocated the first log block, commit our transaction
	 * and wait for zil_sync() to stuff the block poiner into zh_log.
	 * (zh is part of the MOS, so we cannot modify it in open context.)
	 */
	if (tx != NULL) {
		dmu_tx_commit(tx);
		txg_wait_synced(zilog->zl_dmu_pool, txg);
	}

	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);

	return (lwb);
}

/*
 * In one tx, free all log blocks and clear the log header. If keep_first
 * is set, then we're replaying a log with no content. We want to keep the
 * first block, however, so that the first synchronous transaction doesn't
 * require a txg_wait_synced() in zil_create(). We don't need to
 * txg_wait_synced() here either when keep_first is set, because both
 * zil_create() and zil_destroy() will wait for any in-progress destroys
 * to complete.
 */
void
zil_destroy(zilog_t *zilog, boolean_t keep_first)
{
	const zil_header_t *zh = zilog->zl_header;
	lwb_t *lwb;
	dmu_tx_t *tx;
	uint64_t txg;

	/*
	 * Wait for any previous destroy to complete.
	 */
	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);

	zilog->zl_old_header = *zh;		/* debugging aid */

	if (BP_IS_HOLE(&zh->zh_log))
		return;

	tx = dmu_tx_create(zilog->zl_os);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
	txg = dmu_tx_get_txg(tx);

	mutex_enter(&zilog->zl_lock);

	ASSERT3U(zilog->zl_destroy_txg, <, txg);
	zilog->zl_destroy_txg = txg;
	zilog->zl_keep_first = keep_first;

	if (!list_is_empty(&zilog->zl_lwb_list)) {
		ASSERT(zh->zh_claim_txg == 0);
		VERIFY(!keep_first);
		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
			list_remove(&zilog->zl_lwb_list, lwb);
			if (lwb->lwb_buf != NULL)
				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
			zil_free_lwb(zilog, lwb);
		}
	} else if (!keep_first) {
		zil_destroy_sync(zilog, tx);
	}
	mutex_exit(&zilog->zl_lock);

	dmu_tx_commit(tx);
}

void
zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
{
	ASSERT(list_is_empty(&zilog->zl_lwb_list));
	(void) zil_parse(zilog, zil_free_log_block,
	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
}

int
zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
{
	dmu_tx_t *tx = txarg;
	zilog_t *zilog;
	uint64_t first_txg;
	zil_header_t *zh;
	objset_t *os;
	int error;

	error = dmu_objset_own_obj(dp, ds->ds_object,
	    DMU_OST_ANY, B_FALSE, FTAG, &os);
	if (error != 0) {
		/*
		 * EBUSY indicates that the objset is inconsistent, in which
		 * case it can not have a ZIL.
		 */
		if (error != EBUSY) {
			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
			    (unsigned long long)ds->ds_object, error);
		}
		return (0);
	}

	zilog = dmu_objset_zil(os);
	zh = zil_header_in_syncing_context(zilog);
	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
	first_txg = spa_min_claim_txg(zilog->zl_spa);

	/*
	 * If the spa_log_state is not set to be cleared, check whether
	 * the current uberblock is a checkpoint one and if the current
	 * header has been claimed before moving on.
	 *
	 * If the current uberblock is a checkpointed uberblock then
	 * one of the following scenarios took place:
	 *
	 * 1] We are currently rewinding to the checkpoint of the pool.
	 * 2] We crashed in the middle of a checkpoint rewind but we
	 *    did manage to write the checkpointed uberblock to the
	 *    vdev labels, so when we tried to import the pool again
	 *    the checkpointed uberblock was selected from the import
	 *    procedure.
	 *
	 * In both cases we want to zero out all the ZIL blocks, except
	 * the ones that have been claimed at the time of the checkpoint
	 * (their zh_claim_txg != 0). The reason is that these blocks
	 * may be corrupted since we may have reused their locations on
	 * disk after we took the checkpoint.
	 *
	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
	 * when we first figure out whether the current uberblock is
	 * checkpointed or not. Unfortunately, that would discard all
	 * the logs, including the ones that are claimed, and we would
	 * leak space.
	 */
	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
	    zh->zh_claim_txg == 0)) {
		if (!BP_IS_HOLE(&zh->zh_log)) {
			(void) zil_parse(zilog, zil_clear_log_block,
			    zil_noop_log_record, tx, first_txg);
		}
		BP_ZERO(&zh->zh_log);
		dsl_dataset_dirty(dmu_objset_ds(os), tx);
		dmu_objset_disown(os, FTAG);
		return (0);
	}

	/*
	 * If we are not rewinding and opening the pool normally, then
	 * the min_claim_txg should be equal to the first txg of the pool.
	 */
	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));

	/*
	 * Claim all log blocks if we haven't already done so, and remember
	 * the highest claimed sequence number.  This ensures that if we can
	 * read only part of the log now (e.g. due to a missing device),
	 * but we can read the entire log later, we will not try to replay
	 * or destroy beyond the last block we successfully claimed.
	 */
	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
		(void) zil_parse(zilog, zil_claim_log_block,
		    zil_claim_log_record, tx, first_txg);
		zh->zh_claim_txg = first_txg;
		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
			zh->zh_flags |= ZIL_REPLAY_NEEDED;
		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
		dsl_dataset_dirty(dmu_objset_ds(os), tx);
	}

	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
	dmu_objset_disown(os, FTAG);
	return (0);
}

/*
 * Check the log by walking the log chain.
 * Checksum errors are ok as they indicate the end of the chain.
 * Any other error (no device or read failure) returns an error.
 */
/* ARGSUSED */
int
zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
{
	zilog_t *zilog;
	objset_t *os;
	blkptr_t *bp;
	int error;

	ASSERT(tx == NULL);

	error = dmu_objset_from_ds(ds, &os);
	if (error != 0) {
		cmn_err(CE_WARN, "can't open objset %llu, error %d",
		    (unsigned long long)ds->ds_object, error);
		return (0);
	}

	zilog = dmu_objset_zil(os);
	bp = (blkptr_t *)&zilog->zl_header->zh_log;

	if (!BP_IS_HOLE(bp)) {
		vdev_t *vd;
		boolean_t valid = B_TRUE;

		/*
		 * Check the first block and determine if it's on a log device
		 * which may have been removed or faulted prior to loading this
		 * pool.  If so, there's no point in checking the rest of the
		 * log as its content should have already been synced to the
		 * pool.
		 */
		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
		if (vd->vdev_islog && vdev_is_dead(vd))
			valid = vdev_log_state_valid(vd);
		spa_config_exit(os->os_spa, SCL_STATE, FTAG);

		if (!valid)
			return (0);

		/*
		 * Check whether the current uberblock is checkpointed (e.g.
		 * we are rewinding) and whether the current header has been
		 * claimed or not. If it hasn't then skip verifying it. We
		 * do this because its ZIL blocks may be part of the pool's
		 * state before the rewind, which is no longer valid.
		 */
		zil_header_t *zh = zil_header_in_syncing_context(zilog);
		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
		    zh->zh_claim_txg == 0)
			return (0);
	}

	/*
	 * Because tx == NULL, zil_claim_log_block() will not actually claim
	 * any blocks, but just determine whether it is possible to do so.
	 * In addition to checking the log chain, zil_claim_log_block()
	 * will invoke zio_claim() with a done func of spa_claim_notify(),
	 * which will update spa_max_claim_txg.  See spa_load() for details.
	 */
	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
	    zilog->zl_header->zh_claim_txg ? -1ULL :
	    spa_min_claim_txg(os->os_spa));

	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
}

/*
 * When an itx is "skipped", this function is used to properly mark the
 * waiter as "done, and signal any thread(s) waiting on it. An itx can
 * be skipped (and not committed to an lwb) for a variety of reasons,
 * one of them being that the itx was committed via spa_sync(), prior to
 * it being committed to an lwb; this can happen if a thread calling
 * zil_commit() is racing with spa_sync().
 */
static void
zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
{
	mutex_enter(&zcw->zcw_lock);
	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
	zcw->zcw_done = B_TRUE;
	cv_broadcast(&zcw->zcw_cv);
	mutex_exit(&zcw->zcw_lock);
}

/*
 * This function is used when the given waiter is to be linked into an
 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
 * At this point, the waiter will no longer be referenced by the itx,
 * and instead, will be referenced by the lwb.
 */
static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
{
	/*
	 * The lwb_waiters field of the lwb is protected by the zilog's
	 * zl_lock, thus it must be held when calling this function.
	 */
	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));

	mutex_enter(&zcw->zcw_lock);
	ASSERT(!list_link_active(&zcw->zcw_node));
	ASSERT3P(zcw->zcw_lwb, ==, NULL);
	ASSERT3P(lwb, !=, NULL);
	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
	    lwb->lwb_state == LWB_STATE_ISSUED);

	list_insert_tail(&lwb->lwb_waiters, zcw);
	zcw->zcw_lwb = lwb;
	mutex_exit(&zcw->zcw_lock);
}

/*
 * This function is used when zio_alloc_zil() fails to allocate a ZIL
 * block, and the given waiter must be linked to the "nolwb waiters"
 * list inside of zil_process_commit_list().
 */
static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
{
	mutex_enter(&zcw->zcw_lock);
	ASSERT(!list_link_active(&zcw->zcw_node));
	ASSERT3P(zcw->zcw_lwb, ==, NULL);
	list_insert_tail(nolwb, zcw);
	mutex_exit(&zcw->zcw_lock);
}

void
zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
{
	avl_tree_t *t = &lwb->lwb_vdev_tree;
	avl_index_t where;
	zil_vdev_node_t *zv, zvsearch;
	int ndvas = BP_GET_NDVAS(bp);
	int i;

	if (zfs_nocacheflush)
		return;

	mutex_enter(&lwb->lwb_vdev_lock);
	for (i = 0; i < ndvas; i++) {
		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
		if (avl_find(t, &zvsearch, &where) == NULL) {
			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
			zv->zv_vdev = zvsearch.zv_vdev;
			avl_insert(t, zv, where);
		}
	}
	mutex_exit(&lwb->lwb_vdev_lock);
}

void
zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
{
	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
}

/*
 * This function is a called after all VDEVs associated with a given lwb
 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
 * as the lwb write completes, if "zfs_nocacheflush" is set.
 *
 * The intention is for this function to be called as soon as the
 * contents of an lwb are considered "stable" on disk, and will survive
 * any sudden loss of power. At this point, any threads waiting for the
 * lwb to reach this state are signalled, and the "waiter" structures
 * are marked "done".
 */
static void
zil_lwb_flush_vdevs_done(zio_t *zio)
{
	lwb_t *lwb = zio->io_private;
	zilog_t *zilog = lwb->lwb_zilog;
	dmu_tx_t *tx = lwb->lwb_tx;
	zil_commit_waiter_t *zcw;

	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);

	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);

	mutex_enter(&zilog->zl_lock);

	/*
	 * Ensure the lwb buffer pointer is cleared before releasing the
	 * txg. If we have had an allocation failure and the txg is
	 * waiting to sync then we want zil_sync() to remove the lwb so
	 * that it's not picked up as the next new one in
	 * zil_process_commit_list(). zil_sync() will only remove the
	 * lwb if lwb_buf is null.
	 */
	lwb->lwb_buf = NULL;
	lwb->lwb_tx = NULL;

	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;

	lwb->lwb_root_zio = NULL;
	lwb->lwb_state = LWB_STATE_DONE;

	if (zilog->zl_last_lwb_opened == lwb) {
		/*
		 * Remember the highest committed log sequence number
		 * for ztest. We only update this value when all the log
		 * writes succeeded, because ztest wants to ASSERT that
		 * it got the whole log chain.
		 */
		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
	}

	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
		mutex_enter(&zcw->zcw_lock);

		ASSERT(list_link_active(&zcw->zcw_node));
		list_remove(&lwb->lwb_waiters, zcw);

		ASSERT3P(zcw->zcw_lwb, ==, lwb);
		zcw->zcw_lwb = NULL;

		zcw->zcw_zio_error = zio->io_error;

		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
		zcw->zcw_done = B_TRUE;
		cv_broadcast(&zcw->zcw_cv);

		mutex_exit(&zcw->zcw_lock);
	}

	mutex_exit(&zilog->zl_lock);

	/*
	 * Now that we've written this log block, we have a stable pointer
	 * to the next block in the chain, so it's OK to let the txg in
	 * which we allocated the next block sync.
	 */
	dmu_tx_commit(tx);
}

/*
 * This is called when an lwb write completes. This means, this specific
 * lwb was written to disk, and all dependent lwb have also been
 * written to disk.
 *
 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
 * the VDEVs involved in writing out this specific lwb. The lwb will be
 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
 * zio completion callback for the lwb's root zio.
 */
static void
zil_lwb_write_done(zio_t *zio)
{
	lwb_t *lwb = zio->io_private;
	spa_t *spa = zio->io_spa;
	zilog_t *zilog = lwb->lwb_zilog;
	avl_tree_t *t = &lwb->lwb_vdev_tree;
	void *cookie = NULL;
	zil_vdev_node_t *zv;

	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);

	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
	ASSERT(!BP_IS_GANG(zio->io_bp));
	ASSERT(!BP_IS_HOLE(zio->io_bp));
	ASSERT(BP_GET_FILL(zio->io_bp) == 0);

	abd_put(zio->io_abd);

	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);

	mutex_enter(&zilog->zl_lock);
	lwb->lwb_write_zio = NULL;
	mutex_exit(&zilog->zl_lock);

	if (avl_numnodes(t) == 0)
		return;

	/*
	 * If there was an IO error, we're not going to call zio_flush()
	 * on these vdevs, so we simply empty the tree and free the
	 * nodes. We avoid calling zio_flush() since there isn't any
	 * good reason for doing so, after the lwb block failed to be
	 * written out.
	 */
	if (zio->io_error != 0) {
		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
			kmem_free(zv, sizeof (*zv));
		return;
	}

	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
		if (vd != NULL)
			zio_flush(lwb->lwb_root_zio, vd);
		kmem_free(zv, sizeof (*zv));
	}
}

/*
 * This function's purpose is to "open" an lwb such that it is ready to
 * accept new itxs being committed to it. To do this, the lwb's zio
 * structures are created, and linked to the lwb. This function is
 * idempotent; if the passed in lwb has already been opened, this
 * function is essentially a no-op.
 */
static void
zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
{
	zbookmark_phys_t zb;
	zio_priority_t prio;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT3P(lwb, !=, NULL);
	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);

	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);

	if (lwb->lwb_root_zio == NULL) {
		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
		    BP_GET_LSIZE(&lwb->lwb_blk));

		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
			prio = ZIO_PRIORITY_SYNC_WRITE;
		else
			prio = ZIO_PRIORITY_ASYNC_WRITE;

		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
		ASSERT3P(lwb->lwb_root_zio, !=, NULL);

		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
		ASSERT3P(lwb->lwb_write_zio, !=, NULL);

		lwb->lwb_state = LWB_STATE_OPENED;

		mutex_enter(&zilog->zl_lock);

		/*
		 * The zilog's "zl_last_lwb_opened" field is used to
		 * build the lwb/zio dependency chain, which is used to
		 * preserve the ordering of lwb completions that is
		 * required by the semantics of the ZIL. Each new lwb
		 * zio becomes a parent of the "previous" lwb zio, such
		 * that the new lwb's zio cannot complete until the
		 * "previous" lwb's zio completes.
		 *
		 * This is required by the semantics of zil_commit();
		 * the commit waiters attached to the lwbs will be woken
		 * in the lwb zio's completion callback, so this zio
		 * dependency graph ensures the waiters are woken in the
		 * correct order (the same order the lwbs were created).
		 */
		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
		if (last_lwb_opened != NULL &&
		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
			zio_add_child(lwb->lwb_root_zio,
			    last_lwb_opened->lwb_root_zio);
		}
		zilog->zl_last_lwb_opened = lwb;

		mutex_exit(&zilog->zl_lock);
	}

	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
}

/*
 * Define a limited set of intent log block sizes.
 *
 * These must be a multiple of 4KB. Note only the amount used (again
 * aligned to 4KB) actually gets written. However, we can't always just
 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
 */
uint64_t zil_block_buckets[] = {
    4096,		/* non TX_WRITE */
    8192+4096,		/* data base */
    32*1024 + 4096, 	/* NFS writes */
    UINT64_MAX
};

/*
 * Start a log block write and advance to the next log block.
 * Calls are serialized.
 */
static lwb_t *
zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
{
	lwb_t *nlwb = NULL;
	zil_chain_t *zilc;
	spa_t *spa = zilog->zl_spa;
	blkptr_t *bp;
	dmu_tx_t *tx;
	uint64_t txg;
	uint64_t zil_blksz, wsz;
	int i, error;
	boolean_t slog;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);

	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
		zilc = (zil_chain_t *)lwb->lwb_buf;
		bp = &zilc->zc_next_blk;
	} else {
		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
		bp = &zilc->zc_next_blk;
	}

	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);

	/*
	 * Allocate the next block and save its address in this block
	 * before writing it in order to establish the log chain.
	 * Note that if the allocation of nlwb synced before we wrote
	 * the block that points at it (lwb), we'd leak it if we crashed.
	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
	 * We dirty the dataset to ensure that zil_sync() will be called
	 * to clean up in the event of allocation failure or I/O failure.
	 */

	tx = dmu_tx_create(zilog->zl_os);

	/*
	 * Since we are not going to create any new dirty data, and we
	 * can even help with clearing the existing dirty data, we
	 * should not be subject to the dirty data based delays. We
	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
	 */
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));

	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
	txg = dmu_tx_get_txg(tx);

	lwb->lwb_tx = tx;

	/*
	 * Log blocks are pre-allocated. Here we select the size of the next
	 * block, based on size used in the last block.
	 * - first find the smallest bucket that will fit the block from a
	 *   limited set of block sizes. This is because it's faster to write
	 *   blocks allocated from the same metaslab as they are adjacent or
	 *   close.
	 * - next find the maximum from the new suggested size and an array of
	 *   previous sizes. This lessens a picket fence effect of wrongly
	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
	 *   requests.
	 *
	 * Note we only write what is used, but we can't just allocate
	 * the maximum block size because we can exhaust the available
	 * pool log space.
	 */
	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
		continue;
	zil_blksz = zil_block_buckets[i];
	if (zil_blksz == UINT64_MAX)
		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
	for (i = 0; i < ZIL_PREV_BLKS; i++)
		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);

	BP_ZERO(bp);

	/* pass the old blkptr in order to spread log blocks across devs */
	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
	if (error == 0) {
		ASSERT3U(bp->blk_birth, ==, txg);
		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;

		/*
		 * Allocate a new log write block (lwb).
		 */
		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
	}

	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
		/* For Slim ZIL only write what is used. */
		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
		ASSERT3U(wsz, <=, lwb->lwb_sz);
		zio_shrink(lwb->lwb_write_zio, wsz);

	} else {
		wsz = lwb->lwb_sz;
	}

	zilc->zc_pad = 0;
	zilc->zc_nused = lwb->lwb_nused;
	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;

	/*
	 * clear unused data for security
	 */
	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);

	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);

	zil_lwb_add_block(lwb, &lwb->lwb_blk);
	lwb->lwb_issued_timestamp = gethrtime();
	lwb->lwb_state = LWB_STATE_ISSUED;

	zio_nowait(lwb->lwb_root_zio);
	zio_nowait(lwb->lwb_write_zio);

	/*
	 * If there was an allocation failure then nlwb will be null which
	 * forces a txg_wait_synced().
	 */
	return (nlwb);
}

static lwb_t *
zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
{
	lr_t *lrcb, *lrc;
	lr_write_t *lrwb, *lrw;
	char *lr_buf;
	uint64_t dlen, dnow, lwb_sp, reclen, txg;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT3P(lwb, !=, NULL);
	ASSERT3P(lwb->lwb_buf, !=, NULL);

	zil_lwb_write_open(zilog, lwb);

	lrc = &itx->itx_lr;
	lrw = (lr_write_t *)lrc;

	/*
	 * A commit itx doesn't represent any on-disk state; instead
	 * it's simply used as a place holder on the commit list, and
	 * provides a mechanism for attaching a "commit waiter" onto the
	 * correct lwb (such that the waiter can be signalled upon
	 * completion of that lwb). Thus, we don't process this itx's
	 * log record if it's a commit itx (these itx's don't have log
	 * records), and instead link the itx's waiter onto the lwb's
	 * list of waiters.
	 *
	 * For more details, see the comment above zil_commit().
	 */
	if (lrc->lrc_txtype == TX_COMMIT) {
		mutex_enter(&zilog->zl_lock);
		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
		itx->itx_private = NULL;
		mutex_exit(&zilog->zl_lock);
		return (lwb);
	}

	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
		dlen = P2ROUNDUP_TYPED(
		    lrw->lr_length, sizeof (uint64_t), uint64_t);
	} else {
		dlen = 0;
	}
	reclen = lrc->lrc_reclen;
	zilog->zl_cur_used += (reclen + dlen);
	txg = lrc->lrc_txg;

	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));

cont:
	/*
	 * If this record won't fit in the current log block, start a new one.
	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
	 */
	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
		lwb = zil_lwb_write_issue(zilog, lwb);
		if (lwb == NULL)
			return (NULL);
		zil_lwb_write_open(zilog, lwb);
		ASSERT(LWB_EMPTY(lwb));
		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
	}

	dnow = MIN(dlen, lwb_sp - reclen);
	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
	bcopy(lrc, lr_buf, reclen);
	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */

	/*
	 * If it's a write, fetch the data or get its blkptr as appropriate.
	 */
	if (lrc->lrc_txtype == TX_WRITE) {
		if (txg > spa_freeze_txg(zilog->zl_spa))
			txg_wait_synced(zilog->zl_dmu_pool, txg);
		if (itx->itx_wr_state != WR_COPIED) {
			char *dbuf;
			int error;

			if (itx->itx_wr_state == WR_NEED_COPY) {
				dbuf = lr_buf + reclen;
				lrcb->lrc_reclen += dnow;
				if (lrwb->lr_length > dnow)
					lrwb->lr_length = dnow;
				lrw->lr_offset += dnow;
				lrw->lr_length -= dnow;
			} else {
				ASSERT(itx->itx_wr_state == WR_INDIRECT);
				dbuf = NULL;
			}

			/*
			 * We pass in the "lwb_write_zio" rather than
			 * "lwb_root_zio" so that the "lwb_write_zio"
			 * becomes the parent of any zio's created by
			 * the "zl_get_data" callback. The vdevs are
			 * flushed after the "lwb_write_zio" completes,
			 * so we want to make sure that completion
			 * callback waits for these additional zio's,
			 * such that the vdevs used by those zio's will
			 * be included in the lwb's vdev tree, and those
			 * vdevs will be properly flushed. If we passed
			 * in "lwb_root_zio" here, then these additional
			 * vdevs may not be flushed; e.g. if these zio's
			 * completed after "lwb_write_zio" completed.
			 */
			error = zilog->zl_get_data(itx->itx_private,
			    lrwb, dbuf, lwb, lwb->lwb_write_zio);

			if (error == EIO) {
				txg_wait_synced(zilog->zl_dmu_pool, txg);
				return (lwb);
			}
			if (error != 0) {
				ASSERT(error == ENOENT || error == EEXIST ||
				    error == EALREADY);
				return (lwb);
			}
		}
	}

	/*
	 * We're actually making an entry, so update lrc_seq to be the
	 * log record sequence number.  Note that this is generally not
	 * equal to the itx sequence number because not all transactions
	 * are synchronous, and sometimes spa_sync() gets there first.
	 */
	lrcb->lrc_seq = ++zilog->zl_lr_seq;
	lwb->lwb_nused += reclen + dnow;

	zil_lwb_add_txg(lwb, txg);

	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));

	dlen -= dnow;
	if (dlen > 0) {
		zilog->zl_cur_used += reclen;
		goto cont;
	}

	return (lwb);
}

itx_t *
zil_itx_create(uint64_t txtype, size_t lrsize)
{
	itx_t *itx;

	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);

	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
	itx->itx_lr.lrc_txtype = txtype;
	itx->itx_lr.lrc_reclen = lrsize;
	itx->itx_lr.lrc_seq = 0;	/* defensive */
	itx->itx_sync = B_TRUE;		/* default is synchronous */

	return (itx);
}

void
zil_itx_destroy(itx_t *itx)
{
	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
}

/*
 * Free up the sync and async itxs. The itxs_t has already been detached
 * so no locks are needed.
 */
static void
zil_itxg_clean(itxs_t *itxs)
{
	itx_t *itx;
	list_t *list;
	avl_tree_t *t;
	void *cookie;
	itx_async_node_t *ian;

	list = &itxs->i_sync_list;
	while ((itx = list_head(list)) != NULL) {
		/*
		 * In the general case, commit itxs will not be found
		 * here, as they'll be committed to an lwb via
		 * zil_lwb_commit(), and free'd in that function. Having
		 * said that, it is still possible for commit itxs to be
		 * found here, due to the following race:
		 *
		 *	- a thread calls zil_commit() which assigns the
		 *	  commit itx to a per-txg i_sync_list
		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
		 *	  while the waiter is still on the i_sync_list
		 *
		 * There's nothing to prevent syncing the txg while the
		 * waiter is on the i_sync_list. This normally doesn't
		 * happen because spa_sync() is slower than zil_commit(),
		 * but if zil_commit() calls txg_wait_synced() (e.g.
		 * because zil_create() or zil_commit_writer_stall() is
		 * called) we will hit this case.
		 */
		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
			zil_commit_waiter_skip(itx->itx_private);

		list_remove(list, itx);
		zil_itx_destroy(itx);
	}

	cookie = NULL;
	t = &itxs->i_async_tree;
	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
		list = &ian->ia_list;
		while ((itx = list_head(list)) != NULL) {
			list_remove(list, itx);
			/* commit itxs should never be on the async lists. */
			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
			zil_itx_destroy(itx);
		}
		list_destroy(list);
		kmem_free(ian, sizeof (itx_async_node_t));
	}
	avl_destroy(t);

	kmem_free(itxs, sizeof (itxs_t));
}

static int
zil_aitx_compare(const void *x1, const void *x2)
{
	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;

	return (AVL_CMP(o1, o2));
}

/*
 * Remove all async itx with the given oid.
 */
static void
zil_remove_async(zilog_t *zilog, uint64_t oid)
{
	uint64_t otxg, txg;
	itx_async_node_t *ian;
	avl_tree_t *t;
	avl_index_t where;
	list_t clean_list;
	itx_t *itx;

	ASSERT(oid != 0);
	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
		otxg = ZILTEST_TXG;
	else
		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

		mutex_enter(&itxg->itxg_lock);
		if (itxg->itxg_txg != txg) {
			mutex_exit(&itxg->itxg_lock);
			continue;
		}

		/*
		 * Locate the object node and append its list.
		 */
		t = &itxg->itxg_itxs->i_async_tree;
		ian = avl_find(t, &oid, &where);
		if (ian != NULL)
			list_move_tail(&clean_list, &ian->ia_list);
		mutex_exit(&itxg->itxg_lock);
	}
	while ((itx = list_head(&clean_list)) != NULL) {
		list_remove(&clean_list, itx);
		/* commit itxs should never be on the async lists. */
		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
		zil_itx_destroy(itx);
	}
	list_destroy(&clean_list);
}

void
zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
{
	uint64_t txg;
	itxg_t *itxg;
	itxs_t *itxs, *clean = NULL;

	/*
	 * Object ids can be re-instantiated in the next txg so
	 * remove any async transactions to avoid future leaks.
	 * This can happen if a fsync occurs on the re-instantiated
	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
	 * the new file data and flushes a write record for the old object.
	 */
	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
		zil_remove_async(zilog, itx->itx_oid);

	/*
	 * Ensure the data of a renamed file is committed before the rename.
	 */
	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
		zil_async_to_sync(zilog, itx->itx_oid);

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
		txg = ZILTEST_TXG;
	else
		txg = dmu_tx_get_txg(tx);

	itxg = &zilog->zl_itxg[txg & TXG_MASK];
	mutex_enter(&itxg->itxg_lock);
	itxs = itxg->itxg_itxs;
	if (itxg->itxg_txg != txg) {
		if (itxs != NULL) {
			/*
			 * The zil_clean callback hasn't got around to cleaning
			 * this itxg. Save the itxs for release below.
			 * This should be rare.
			 */
			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
			    "txg %llu", itxg->itxg_txg);
			clean = itxg->itxg_itxs;
		}
		itxg->itxg_txg = txg;
		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);

		list_create(&itxs->i_sync_list, sizeof (itx_t),
		    offsetof(itx_t, itx_node));
		avl_create(&itxs->i_async_tree, zil_aitx_compare,
		    sizeof (itx_async_node_t),
		    offsetof(itx_async_node_t, ia_node));
	}
	if (itx->itx_sync) {
		list_insert_tail(&itxs->i_sync_list, itx);
	} else {
		avl_tree_t *t = &itxs->i_async_tree;
		uint64_t foid =
		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
		itx_async_node_t *ian;
		avl_index_t where;

		ian = avl_find(t, &foid, &where);
		if (ian == NULL) {
			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
			list_create(&ian->ia_list, sizeof (itx_t),
			    offsetof(itx_t, itx_node));
			ian->ia_foid = foid;
			avl_insert(t, ian, where);
		}
		list_insert_tail(&ian->ia_list, itx);
	}

	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);

	/*
	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
	 * need to be careful to always dirty the ZIL using the "real"
	 * TXG (not itxg_txg) even when the SPA is frozen.
	 */
	zilog_dirty(zilog, dmu_tx_get_txg(tx));
	mutex_exit(&itxg->itxg_lock);

	/* Release the old itxs now we've dropped the lock */
	if (clean != NULL)
		zil_itxg_clean(clean);
}

/*
 * If there are any in-memory intent log transactions which have now been
 * synced then start up a taskq to free them. We should only do this after we
 * have written out the uberblocks (i.e. txg has been comitted) so that
 * don't inadvertently clean out in-memory log records that would be required
 * by zil_commit().
 */
void
zil_clean(zilog_t *zilog, uint64_t synced_txg)
{
	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
	itxs_t *clean_me;

	ASSERT3U(synced_txg, <, ZILTEST_TXG);

	mutex_enter(&itxg->itxg_lock);
	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
		mutex_exit(&itxg->itxg_lock);
		return;
	}
	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
	ASSERT3U(itxg->itxg_txg, !=, 0);
	clean_me = itxg->itxg_itxs;
	itxg->itxg_itxs = NULL;
	itxg->itxg_txg = 0;
	mutex_exit(&itxg->itxg_lock);
	/*
	 * Preferably start a task queue to free up the old itxs but
	 * if taskq_dispatch can't allocate resources to do that then
	 * free it in-line. This should be rare. Note, using TQ_SLEEP
	 * created a bad performance problem.
	 */
	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
		zil_itxg_clean(clean_me);
}

/*
 * This function will traverse the queue of itxs that need to be
 * committed, and move them onto the ZIL's zl_itx_commit_list.
 */
static void
zil_get_commit_list(zilog_t *zilog)
{
	uint64_t otxg, txg;
	list_t *commit_list = &zilog->zl_itx_commit_list;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
		otxg = ZILTEST_TXG;
	else
		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

	/*
	 * This is inherently racy, since there is nothing to prevent
	 * the last synced txg from changing. That's okay since we'll
	 * only commit things in the future.
	 */
	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

		mutex_enter(&itxg->itxg_lock);
		if (itxg->itxg_txg != txg) {
			mutex_exit(&itxg->itxg_lock);
			continue;
		}

		/*
		 * If we're adding itx records to the zl_itx_commit_list,
		 * then the zil better be dirty in this "txg". We can assert
		 * that here since we're holding the itxg_lock which will
		 * prevent spa_sync from cleaning it. Once we add the itxs
		 * to the zl_itx_commit_list we must commit it to disk even
		 * if it's unnecessary (i.e. the txg was synced).
		 */
		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);

		mutex_exit(&itxg->itxg_lock);
	}
}

/*
 * Move the async itxs for a specified object to commit into sync lists.
 */
void
zil_async_to_sync(zilog_t *zilog, uint64_t foid)
{
	uint64_t otxg, txg;
	itx_async_node_t *ian;
	avl_tree_t *t;
	avl_index_t where;

	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
		otxg = ZILTEST_TXG;
	else
		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;

	/*
	 * This is inherently racy, since there is nothing to prevent
	 * the last synced txg from changing.
	 */
	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];

		mutex_enter(&itxg->itxg_lock);
		if (itxg->itxg_txg != txg) {
			mutex_exit(&itxg->itxg_lock);
			continue;
		}

		/*
		 * If a foid is specified then find that node and append its
		 * list. Otherwise walk the tree appending all the lists
		 * to the sync list. We add to the end rather than the
		 * beginning to ensure the create has happened.
		 */
		t = &itxg->itxg_itxs->i_async_tree;
		if (foid != 0) {
			ian = avl_find(t, &foid, &where);
			if (ian != NULL) {
				list_move_tail(&itxg->itxg_itxs->i_sync_list,
				    &ian->ia_list);
			}
		} else {
			void *cookie = NULL;

			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
				list_move_tail(&itxg->itxg_itxs->i_sync_list,
				    &ian->ia_list);
				list_destroy(&ian->ia_list);
				kmem_free(ian, sizeof (itx_async_node_t));
			}
		}
		mutex_exit(&itxg->itxg_lock);
	}
}

/*
 * This function will prune commit itxs that are at the head of the
 * commit list (it won't prune past the first non-commit itx), and
 * either: a) attach them to the last lwb that's still pending
 * completion, or b) skip them altogether.
 *
 * This is used as a performance optimization to prevent commit itxs
 * from generating new lwbs when it's unnecessary to do so.
 */
static void
zil_prune_commit_list(zilog_t *zilog)
{
	itx_t *itx;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));

	while (itx = list_head(&zilog->zl_itx_commit_list)) {
		lr_t *lrc = &itx->itx_lr;
		if (lrc->lrc_txtype != TX_COMMIT)
			break;

		mutex_enter(&zilog->zl_lock);

		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
			/*
			 * All of the itxs this waiter was waiting on
			 * must have already completed (or there were
			 * never any itx's for it to wait on), so it's
			 * safe to skip this waiter and mark it done.
			 */
			zil_commit_waiter_skip(itx->itx_private);
		} else {
			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
			itx->itx_private = NULL;
		}

		mutex_exit(&zilog->zl_lock);

		list_remove(&zilog->zl_itx_commit_list, itx);
		zil_itx_destroy(itx);
	}

	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
}

static void
zil_commit_writer_stall(zilog_t *zilog)
{
	/*
	 * When zio_alloc_zil() fails to allocate the next lwb block on
	 * disk, we must call txg_wait_synced() to ensure all of the
	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
	 * to zil_process_commit_list()) will have to call zil_create(),
	 * and start a new ZIL chain.
	 *
	 * Since zil_alloc_zil() failed, the lwb that was previously
	 * issued does not have a pointer to the "next" lwb on disk.
	 * Thus, if another ZIL writer thread was to allocate the "next"
	 * on-disk lwb, that block could be leaked in the event of a
	 * crash (because the previous lwb on-disk would not point to
	 * it).
	 *
	 * We must hold the zilog's zl_issuer_lock while we do this, to
	 * ensure no new threads enter zil_process_commit_list() until
	 * all lwb's in the zl_lwb_list have been synced and freed
	 * (which is achieved via the txg_wait_synced() call).
	 */
	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
	txg_wait_synced(zilog->zl_dmu_pool, 0);
	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
}

/*
 * This function will traverse the commit list, creating new lwbs as
 * needed, and committing the itxs from the commit list to these newly
 * created lwbs. Additionally, as a new lwb is created, the previous
 * lwb will be issued to the zio layer to be written to disk.
 */
static void
zil_process_commit_list(zilog_t *zilog)
{
	spa_t *spa = zilog->zl_spa;
	list_t nolwb_waiters;
	lwb_t *lwb;
	itx_t *itx;

	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));

	/*
	 * Return if there's nothing to commit before we dirty the fs by
	 * calling zil_create().
	 */
	if (list_head(&zilog->zl_itx_commit_list) == NULL)
		return;

	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
	    offsetof(zil_commit_waiter_t, zcw_node));

	lwb = list_tail(&zilog->zl_lwb_list);
	if (lwb == NULL) {
		lwb = zil_create(zilog);
	} else {
		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
	}

	while (itx = list_head(&zilog->zl_itx_commit_list)) {
		lr_t *lrc = &itx->itx_lr;
		uint64_t txg = lrc->lrc_txg;

		ASSERT3U(txg, !=, 0);

		if (lrc->lrc_txtype == TX_COMMIT) {
			DTRACE_PROBE2(zil__process__commit__itx,
			    zilog_t *, zilog, itx_t *, itx);
		} else {
			DTRACE_PROBE2(zil__process__normal__itx,
			    zilog_t *, zilog, itx_t *, itx);
		}

		boolean_t synced = txg <= spa_last_synced_txg(spa);
		boolean_t frozen = txg > spa_freeze_txg(spa);

		/*
		 * If the txg of this itx has already been synced out, then
		 * we don't need to commit this itx to an lwb. This is
		 * because the data of this itx will have already been
		 * written to the main pool. This is inherently racy, and
		 * it's still ok to commit an itx whose txg has already
		 * been synced; this will result in a write that's
		 * unnecessary, but will do no harm.
		 *
		 * With that said, we always want to commit TX_COMMIT itxs
		 * to an lwb, regardless of whether or not that itx's txg
		 * has been synced out. We do this to ensure any OPENED lwb
		 * will always have at least one zil_commit_waiter_t linked
		 * to the lwb.
		 *
		 * As a counter-example, if we skipped TX_COMMIT itx's
		 * whose txg had already been synced, the following
		 * situation could occur if we happened to be racing with
		 * spa_sync:
		 *
		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
		 *    itx's txg is 10 and the last synced txg is 9.
		 * 2. spa_sync finishes syncing out txg 10.
		 * 3. we move to the next itx in the list, it's a TX_COMMIT
		 *    whose txg is 10, so we skip it rather than committing
		 *    it to the lwb used in (1).
		 *
		 * If the itx that is skipped in (3) is the last TX_COMMIT
		 * itx in the commit list, than it's possible for the lwb
		 * used in (1) to remain in the OPENED state indefinitely.
		 *
		 * To prevent the above scenario from occuring, ensuring
		 * that once an lwb is OPENED it will transition to ISSUED
		 * and eventually DONE, we always commit TX_COMMIT itx's to
		 * an lwb here, even if that itx's txg has already been
		 * synced.
		 *
		 * Finally, if the pool is frozen, we _always_ commit the
		 * itx.  The point of freezing the pool is to prevent data
		 * from being written to the main pool via spa_sync, and
		 * instead rely solely on the ZIL to persistently store the
		 * data; i.e.  when the pool is frozen, the last synced txg
		 * value can't be trusted.
		 */
		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
			if (lwb != NULL) {
				lwb = zil_lwb_commit(zilog, itx, lwb);
			} else if (lrc->lrc_txtype == TX_COMMIT) {
				ASSERT3P(lwb, ==, NULL);
				zil_commit_waiter_link_nolwb(
				    itx->itx_private, &nolwb_waiters);
			}
		}

		list_remove(&zilog->zl_itx_commit_list, itx);
		zil_itx_destroy(itx);
	}

	if (lwb == NULL) {
		/*
		 * This indicates zio_alloc_zil() failed to allocate the
		 * "next" lwb on-disk. When this happens, we must stall
		 * the ZIL write pipeline; see the comment within
		 * zil_commit_writer_stall() for more details.
		 */
		zil_commit_writer_stall(zilog);

		/*
		 * Additionally, we have to signal and mark the "nolwb"
		 * waiters as "done" here, since without an lwb, we
		 * can't do this via zil_lwb_flush_vdevs_done() like
		 * normal.
		 */
		zil_commit_waiter_t *zcw;
		while (zcw = list_head(&nolwb_waiters)) {
			zil_commit_waiter_skip(zcw);
			list_remove(&nolwb_waiters, zcw);
		}
	} else {
		ASSERT(list_is_empty(&nolwb_waiters));
		ASSERT3P(lwb, !=, NULL);
		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);

		/*
		 * At this point, the ZIL block pointed at by the "lwb"
		 * variable is in one of the following states: "closed"
		 * or "open".
		 *
		 * If its "closed", then no itxs have been committed to
		 * it, so there's no point in issuing its zio (i.e.
		 * it's "empty").
		 *
		 * If its "open" state, then it contains one or more
		 * itxs that eventually need to be committed to stable
		 * storage. In this case we intentionally do not issue
		 * the lwb's zio to disk yet, and instead rely on one of
		 * the following two mechanisms for issuing the zio:
		 *
		 * 1. Ideally, there will be more ZIL activity occuring
		 * on the system, such that this function will be
		 * immediately called again (not necessarily by the same
		 * thread) and this lwb's zio will be issued via
		 * zil_lwb_commit(). This way, the lwb is guaranteed to
		 * be "full" when it is issued to disk, and we'll make
		 * use of the lwb's size the best we can.
		 *
		 * 2. If there isn't sufficient ZIL activity occuring on
		 * the system, such that this lwb's zio isn't issued via
		 * zil_lwb_commit(), zil_commit_waiter() will issue the
		 * lwb's zio. If this occurs, the lwb is not guaranteed
		 * to be "full" by the time its zio is issued, and means
		 * the size of the lwb was "too large" given the amount
		 * of ZIL activity occuring on the system at that time.
		 *
		 * We do this for a couple of reasons:
		 *
		 * 1. To try and reduce the number of IOPs needed to
		 * write the same number of itxs. If an lwb has space
		 * available in it's buffer for more itxs, and more itxs
		 * will be committed relatively soon (relative to the
		 * latency of performing a write), then it's beneficial
		 * to wait for these "next" itxs. This way, more itxs
		 * can be committed to stable storage with fewer writes.
		 *
		 * 2. To try and use the largest lwb block size that the
		 * incoming rate of itxs can support. Again, this is to
		 * try and pack as many itxs into as few lwbs as
		 * possible, without significantly impacting the latency
		 * of each individual itx.
		 */
	}
}

/*
 * This function is responsible for ensuring the passed in commit waiter
 * (and associated commit itx) is committed to an lwb. If the waiter is
 * not already committed to an lwb, all itxs in the zilog's queue of
 * itxs will be processed. The assumption is the passed in waiter's
 * commit itx will found in the queue just like the other non-commit
 * itxs, such that when the entire queue is processed, the waiter will
 * have been commited to an lwb.
 *
 * The lwb associated with the passed in waiter is not guaranteed to
 * have been issued by the time this function completes. If the lwb is
 * not issued, we rely on future calls to zil_commit_writer() to issue
 * the lwb, or the timeout mechanism found in zil_commit_waiter().
 */
static void
zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
	ASSERT(spa_writeable(zilog->zl_spa));

	mutex_enter(&zilog->zl_issuer_lock);

	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
		/*
		 * It's possible that, while we were waiting to acquire
		 * the "zl_issuer_lock", another thread committed this
		 * waiter to an lwb. If that occurs, we bail out early,
		 * without processing any of the zilog's queue of itxs.
		 *
		 * On certain workloads and system configurations, the
		 * "zl_issuer_lock" can become highly contended. In an
		 * attempt to reduce this contention, we immediately drop
		 * the lock if the waiter has already been processed.
		 *
		 * We've measured this optimization to reduce CPU spent
		 * contending on this lock by up to 5%, using a system
		 * with 32 CPUs, low latency storage (~50 usec writes),
		 * and 1024 threads performing sync writes.
		 */
		goto out;
	}

	zil_get_commit_list(zilog);
	zil_prune_commit_list(zilog);
	zil_process_commit_list(zilog);

out:
	mutex_exit(&zilog->zl_issuer_lock);
}

static void
zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
	ASSERT3B(zcw->zcw_done, ==, B_FALSE);

	lwb_t *lwb = zcw->zcw_lwb;
	ASSERT3P(lwb, !=, NULL);
	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);

	/*
	 * If the lwb has already been issued by another thread, we can
	 * immediately return since there's no work to be done (the
	 * point of this function is to issue the lwb). Additionally, we
	 * do this prior to acquiring the zl_issuer_lock, to avoid
	 * acquiring it when it's not necessary to do so.
	 */
	if (lwb->lwb_state == LWB_STATE_ISSUED ||
	    lwb->lwb_state == LWB_STATE_DONE)
		return;

	/*
	 * In order to call zil_lwb_write_issue() we must hold the
	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
	 * since we're already holding the commit waiter's "zcw_lock",
	 * and those two locks are aquired in the opposite order
	 * elsewhere.
	 */
	mutex_exit(&zcw->zcw_lock);
	mutex_enter(&zilog->zl_issuer_lock);
	mutex_enter(&zcw->zcw_lock);

	/*
	 * Since we just dropped and re-acquired the commit waiter's
	 * lock, we have to re-check to see if the waiter was marked
	 * "done" during that process. If the waiter was marked "done",
	 * the "lwb" pointer is no longer valid (it can be free'd after
	 * the waiter is marked "done"), so without this check we could
	 * wind up with a use-after-free error below.
	 */
	if (zcw->zcw_done)
		goto out;

	ASSERT3P(lwb, ==, zcw->zcw_lwb);

	/*
	 * We've already checked this above, but since we hadn't acquired
	 * the zilog's zl_issuer_lock, we have to perform this check a
	 * second time while holding the lock.
	 *
	 * We don't need to hold the zl_lock since the lwb cannot transition
	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
	 * _can_ transition from ISSUED to DONE, but it's OK to race with
	 * that transition since we treat the lwb the same, whether it's in
	 * the ISSUED or DONE states.
	 *
	 * The important thing, is we treat the lwb differently depending on
	 * if it's ISSUED or OPENED, and block any other threads that might
	 * attempt to issue this lwb. For that reason we hold the
	 * zl_issuer_lock when checking the lwb_state; we must not call
	 * zil_lwb_write_issue() if the lwb had already been issued.
	 *
	 * See the comment above the lwb_state_t structure definition for
	 * more details on the lwb states, and locking requirements.
	 */
	if (lwb->lwb_state == LWB_STATE_ISSUED ||
	    lwb->lwb_state == LWB_STATE_DONE)
		goto out;

	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);

	/*
	 * As described in the comments above zil_commit_waiter() and
	 * zil_process_commit_list(), we need to issue this lwb's zio
	 * since we've reached the commit waiter's timeout and it still
	 * hasn't been issued.
	 */
	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);

	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);

	/*
	 * Since the lwb's zio hadn't been issued by the time this thread
	 * reached its timeout, we reset the zilog's "zl_cur_used" field
	 * to influence the zil block size selection algorithm.
	 *
	 * By having to issue the lwb's zio here, it means the size of the
	 * lwb was too large, given the incoming throughput of itxs.  By
	 * setting "zl_cur_used" to zero, we communicate this fact to the
	 * block size selection algorithm, so it can take this informaiton
	 * into account, and potentially select a smaller size for the
	 * next lwb block that is allocated.
	 */
	zilog->zl_cur_used = 0;

	if (nlwb == NULL) {
		/*
		 * When zil_lwb_write_issue() returns NULL, this
		 * indicates zio_alloc_zil() failed to allocate the
		 * "next" lwb on-disk. When this occurs, the ZIL write
		 * pipeline must be stalled; see the comment within the
		 * zil_commit_writer_stall() function for more details.
		 *
		 * We must drop the commit waiter's lock prior to
		 * calling zil_commit_writer_stall() or else we can wind
		 * up with the following deadlock:
		 *
		 * - This thread is waiting for the txg to sync while
		 *   holding the waiter's lock; txg_wait_synced() is
		 *   used within txg_commit_writer_stall().
		 *
		 * - The txg can't sync because it is waiting for this
		 *   lwb's zio callback to call dmu_tx_commit().
		 *
		 * - The lwb's zio callback can't call dmu_tx_commit()
		 *   because it's blocked trying to acquire the waiter's
		 *   lock, which occurs prior to calling dmu_tx_commit()
		 */
		mutex_exit(&zcw->zcw_lock);
		zil_commit_writer_stall(zilog);
		mutex_enter(&zcw->zcw_lock);
	}

out:
	mutex_exit(&zilog->zl_issuer_lock);
	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
}

/*
 * This function is responsible for performing the following two tasks:
 *
 * 1. its primary responsibility is to block until the given "commit
 *    waiter" is considered "done".
 *
 * 2. its secondary responsibility is to issue the zio for the lwb that
 *    the given "commit waiter" is waiting on, if this function has
 *    waited "long enough" and the lwb is still in the "open" state.
 *
 * Given a sufficient amount of itxs being generated and written using
 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
 * function. If this does not occur, this secondary responsibility will
 * ensure the lwb is issued even if there is not other synchronous
 * activity on the system.
 *
 * For more details, see zil_process_commit_list(); more specifically,
 * the comment at the bottom of that function.
 */
static void
zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
	ASSERT(spa_writeable(zilog->zl_spa));

	mutex_enter(&zcw->zcw_lock);

	/*
	 * The timeout is scaled based on the lwb latency to avoid
	 * significantly impacting the latency of each individual itx.
	 * For more details, see the comment at the bottom of the
	 * zil_process_commit_list() function.
	 */
	int pct = MAX(zfs_commit_timeout_pct, 1);
#if defined(illumos) || !defined(_KERNEL)
	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
	hrtime_t wakeup = gethrtime() + sleep;
#else
	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
	sbintime_t wakeup = getsbinuptime() + sleep;
#endif
	boolean_t timedout = B_FALSE;

	while (!zcw->zcw_done) {
		ASSERT(MUTEX_HELD(&zcw->zcw_lock));

		lwb_t *lwb = zcw->zcw_lwb;

		/*
		 * Usually, the waiter will have a non-NULL lwb field here,
		 * but it's possible for it to be NULL as a result of
		 * zil_commit() racing with spa_sync().
		 *
		 * When zil_clean() is called, it's possible for the itxg
		 * list (which may be cleaned via a taskq) to contain
		 * commit itxs. When this occurs, the commit waiters linked
		 * off of these commit itxs will not be committed to an
		 * lwb.  Additionally, these commit waiters will not be
		 * marked done until zil_commit_waiter_skip() is called via
		 * zil_itxg_clean().
		 *
		 * Thus, it's possible for this commit waiter (i.e. the
		 * "zcw" variable) to be found in this "in between" state;
		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
		 * been skipped, so it's "zcw_done" field is still B_FALSE.
		 */
		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);

		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
			ASSERT3B(timedout, ==, B_FALSE);

			/*
			 * If the lwb hasn't been issued yet, then we
			 * need to wait with a timeout, in case this
			 * function needs to issue the lwb after the
			 * timeout is reached; responsibility (2) from
			 * the comment above this function.
			 */
#if defined(illumos) || !defined(_KERNEL)
			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
			    CALLOUT_FLAG_ABSOLUTE);

			if (timeleft >= 0 || zcw->zcw_done)
				continue;
#else
			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
				continue;
#endif

			timedout = B_TRUE;
			zil_commit_waiter_timeout(zilog, zcw);

			if (!zcw->zcw_done) {
				/*
				 * If the commit waiter has already been
				 * marked "done", it's possible for the
				 * waiter's lwb structure to have already
				 * been freed.  Thus, we can only reliably
				 * make these assertions if the waiter
				 * isn't done.
				 */
				ASSERT3P(lwb, ==, zcw->zcw_lwb);
				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
			}
		} else {
			/*
			 * If the lwb isn't open, then it must have already
			 * been issued. In that case, there's no need to
			 * use a timeout when waiting for the lwb to
			 * complete.
			 *
			 * Additionally, if the lwb is NULL, the waiter
			 * will soon be signalled and marked done via
			 * zil_clean() and zil_itxg_clean(), so no timeout
			 * is required.
			 */

			IMPLY(lwb != NULL,
			    lwb->lwb_state == LWB_STATE_ISSUED ||
			    lwb->lwb_state == LWB_STATE_DONE);
			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
		}
	}

	mutex_exit(&zcw->zcw_lock);
}

static zil_commit_waiter_t *
zil_alloc_commit_waiter()
{
	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);

	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
	list_link_init(&zcw->zcw_node);
	zcw->zcw_lwb = NULL;
	zcw->zcw_done = B_FALSE;
	zcw->zcw_zio_error = 0;

	return (zcw);
}

static void
zil_free_commit_waiter(zil_commit_waiter_t *zcw)
{
	ASSERT(!list_link_active(&zcw->zcw_node));
	ASSERT3P(zcw->zcw_lwb, ==, NULL);
	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
	mutex_destroy(&zcw->zcw_lock);
	cv_destroy(&zcw->zcw_cv);
	kmem_cache_free(zil_zcw_cache, zcw);
}

/*
 * This function is used to create a TX_COMMIT itx and assign it. This
 * way, it will be linked into the ZIL's list of synchronous itxs, and
 * then later committed to an lwb (or skipped) when
 * zil_process_commit_list() is called.
 */
static void
zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
{
	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));

	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
	itx->itx_sync = B_TRUE;
	itx->itx_private = zcw;

	zil_itx_assign(zilog, itx, tx);

	dmu_tx_commit(tx);
}

/*
 * Commit ZFS Intent Log transactions (itxs) to stable storage.
 *
 * When writing ZIL transactions to the on-disk representation of the
 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
 * itxs can be committed to a single lwb. Once a lwb is written and
 * committed to stable storage (i.e. the lwb is written, and vdevs have
 * been flushed), each itx that was committed to that lwb is also
 * considered to be committed to stable storage.
 *
 * When an itx is committed to an lwb, the log record (lr_t) contained
 * by the itx is copied into the lwb's zio buffer, and once this buffer
 * is written to disk, it becomes an on-disk ZIL block.
 *
 * As itxs are generated, they're inserted into the ZIL's queue of
 * uncommitted itxs. The semantics of zil_commit() are such that it will
 * block until all itxs that were in the queue when it was called, are
 * committed to stable storage.
 *
 * If "foid" is zero, this means all "synchronous" and "asynchronous"
 * itxs, for all objects in the dataset, will be committed to stable
 * storage prior to zil_commit() returning. If "foid" is non-zero, all
 * "synchronous" itxs for all objects, but only "asynchronous" itxs
 * that correspond to the foid passed in, will be committed to stable
 * storage prior to zil_commit() returning.
 *
 * Generally speaking, when zil_commit() is called, the consumer doesn't
 * actually care about _all_ of the uncommitted itxs. Instead, they're
 * simply trying to waiting for a specific itx to be committed to disk,
 * but the interface(s) for interacting with the ZIL don't allow such
 * fine-grained communication. A better interface would allow a consumer
 * to create and assign an itx, and then pass a reference to this itx to
 * zil_commit(); such that zil_commit() would return as soon as that
 * specific itx was committed to disk (instead of waiting for _all_
 * itxs to be committed).
 *
 * When a thread calls zil_commit() a special "commit itx" will be
 * generated, along with a corresponding "waiter" for this commit itx.
 * zil_commit() will wait on this waiter's CV, such that when the waiter
 * is marked done, and signalled, zil_commit() will return.
 *
 * This commit itx is inserted into the queue of uncommitted itxs. This
 * provides an easy mechanism for determining which itxs were in the
 * queue prior to zil_commit() having been called, and which itxs were
 * added after zil_commit() was called.
 *
 * The commit it is special; it doesn't have any on-disk representation.
 * When a commit itx is "committed" to an lwb, the waiter associated
 * with it is linked onto the lwb's list of waiters. Then, when that lwb
 * completes, each waiter on the lwb's list is marked done and signalled
 * -- allowing the thread waiting on the waiter to return from zil_commit().
 *
 * It's important to point out a few critical factors that allow us
 * to make use of the commit itxs, commit waiters, per-lwb lists of
 * commit waiters, and zio completion callbacks like we're doing:
 *
 *   1. The list of waiters for each lwb is traversed, and each commit
 *      waiter is marked "done" and signalled, in the zio completion
 *      callback of the lwb's zio[*].
 *
 *      * Actually, the waiters are signalled in the zio completion
 *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
 *        that are sent to the vdevs upon completion of the lwb zio.
 *
 *   2. When the itxs are inserted into the ZIL's queue of uncommitted
 *      itxs, the order in which they are inserted is preserved[*]; as
 *      itxs are added to the queue, they are added to the tail of
 *      in-memory linked lists.
 *
 *      When committing the itxs to lwbs (to be written to disk), they
 *      are committed in the same order in which the itxs were added to
 *      the uncommitted queue's linked list(s); i.e. the linked list of
 *      itxs to commit is traversed from head to tail, and each itx is
 *      committed to an lwb in that order.
 *
 *      * To clarify:
 *
 *        - the order of "sync" itxs is preserved w.r.t. other
 *          "sync" itxs, regardless of the corresponding objects.
 *        - the order of "async" itxs is preserved w.r.t. other
 *          "async" itxs corresponding to the same object.
 *        - the order of "async" itxs is *not* preserved w.r.t. other
 *          "async" itxs corresponding to different objects.
 *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
 *          versa) is *not* preserved, even for itxs that correspond
 *          to the same object.
 *
 *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
 *      zil_get_commit_list(), and zil_process_commit_list().
 *
 *   3. The lwbs represent a linked list of blocks on disk. Thus, any
 *      lwb cannot be considered committed to stable storage, until its
 *      "previous" lwb is also committed to stable storage. This fact,
 *      coupled with the fact described above, means that itxs are
 *      committed in (roughly) the order in which they were generated.
 *      This is essential because itxs are dependent on prior itxs.
 *      Thus, we *must not* deem an itx as being committed to stable
 *      storage, until *all* prior itxs have also been committed to
 *      stable storage.
 *
 *      To enforce this ordering of lwb zio's, while still leveraging as
 *      much of the underlying storage performance as possible, we rely
 *      on two fundamental concepts:
 *
 *          1. The creation and issuance of lwb zio's is protected by
 *             the zilog's "zl_issuer_lock", which ensures only a single
 *             thread is creating and/or issuing lwb's at a time
 *          2. The "previous" lwb is a child of the "current" lwb
 *             (leveraging the zio parent-child depenency graph)
 *
 *      By relying on this parent-child zio relationship, we can have
 *      many lwb zio's concurrently issued to the underlying storage,
 *      but the order in which they complete will be the same order in
 *      which they were created.
 */
void
zil_commit(zilog_t *zilog, uint64_t foid)
{
	/*
	 * We should never attempt to call zil_commit on a snapshot for
	 * a couple of reasons:
	 *
	 * 1. A snapshot may never be modified, thus it cannot have any
	 *    in-flight itxs that would have modified the dataset.
	 *
	 * 2. By design, when zil_commit() is called, a commit itx will
	 *    be assigned to this zilog; as a result, the zilog will be
	 *    dirtied. We must not dirty the zilog of a snapshot; there's
	 *    checks in the code that enforce this invariant, and will
	 *    cause a panic if it's not upheld.
	 */
	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);

	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
		return;

	if (!spa_writeable(zilog->zl_spa)) {
		/*
		 * If the SPA is not writable, there should never be any
		 * pending itxs waiting to be committed to disk. If that
		 * weren't true, we'd skip writing those itxs out, and
		 * would break the sematics of zil_commit(); thus, we're
		 * verifying that truth before we return to the caller.
		 */
		ASSERT(list_is_empty(&zilog->zl_lwb_list));
		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
		for (int i = 0; i < TXG_SIZE; i++)
			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
		return;
	}

	/*
	 * If the ZIL is suspended, we don't want to dirty it by calling
	 * zil_commit_itx_assign() below, nor can we write out
	 * lwbs like would be done in zil_commit_write(). Thus, we
	 * simply rely on txg_wait_synced() to maintain the necessary
	 * semantics, and avoid calling those functions altogether.
	 */
	if (zilog->zl_suspend > 0) {
		txg_wait_synced(zilog->zl_dmu_pool, 0);
		return;
	}

	zil_commit_impl(zilog, foid);
}

void
zil_commit_impl(zilog_t *zilog, uint64_t foid)
{
	/*
	 * Move the "async" itxs for the specified foid to the "sync"
	 * queues, such that they will be later committed (or skipped)
	 * to an lwb when zil_process_commit_list() is called.
	 *
	 * Since these "async" itxs must be committed prior to this
	 * call to zil_commit returning, we must perform this operation
	 * before we call zil_commit_itx_assign().
	 */
	zil_async_to_sync(zilog, foid);

	/*
	 * We allocate a new "waiter" structure which will initially be
	 * linked to the commit itx using the itx's "itx_private" field.
	 * Since the commit itx doesn't represent any on-disk state,
	 * when it's committed to an lwb, rather than copying the its
	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
	 * added to the lwb's list of waiters. Then, when the lwb is
	 * committed to stable storage, each waiter in the lwb's list of
	 * waiters will be marked "done", and signalled.
	 *
	 * We must create the waiter and assign the commit itx prior to
	 * calling zil_commit_writer(), or else our specific commit itx
	 * is not guaranteed to be committed to an lwb prior to calling
	 * zil_commit_waiter().
	 */
	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
	zil_commit_itx_assign(zilog, zcw);

	zil_commit_writer(zilog, zcw);
	zil_commit_waiter(zilog, zcw);

	if (zcw->zcw_zio_error != 0) {
		/*
		 * If there was an error writing out the ZIL blocks that
		 * this thread is waiting on, then we fallback to
		 * relying on spa_sync() to write out the data this
		 * thread is waiting on. Obviously this has performance
		 * implications, but the expectation is for this to be
		 * an exceptional case, and shouldn't occur often.
		 */
		DTRACE_PROBE2(zil__commit__io__error,
		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
		txg_wait_synced(zilog->zl_dmu_pool, 0);
	}

	zil_free_commit_waiter(zcw);
}

/*
 * Called in syncing context to free committed log blocks and update log header.
 */
void
zil_sync(zilog_t *zilog, dmu_tx_t *tx)
{
	zil_header_t *zh = zil_header_in_syncing_context(zilog);
	uint64_t txg = dmu_tx_get_txg(tx);
	spa_t *spa = zilog->zl_spa;
	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
	lwb_t *lwb;

	/*
	 * We don't zero out zl_destroy_txg, so make sure we don't try
	 * to destroy it twice.
	 */
	if (spa_sync_pass(spa) != 1)
		return;

	mutex_enter(&zilog->zl_lock);

	ASSERT(zilog->zl_stop_sync == 0);

	if (*replayed_seq != 0) {
		ASSERT(zh->zh_replay_seq < *replayed_seq);
		zh->zh_replay_seq = *replayed_seq;
		*replayed_seq = 0;
	}

	if (zilog->zl_destroy_txg == txg) {
		blkptr_t blk = zh->zh_log;

		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);

		bzero(zh, sizeof (zil_header_t));
		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));

		if (zilog->zl_keep_first) {
			/*
			 * If this block was part of log chain that couldn't
			 * be claimed because a device was missing during
			 * zil_claim(), but that device later returns,
			 * then this block could erroneously appear valid.
			 * To guard against this, assign a new GUID to the new
			 * log chain so it doesn't matter what blk points to.
			 */
			zil_init_log_chain(zilog, &blk);
			zh->zh_log = blk;
		}
	}

	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
		zh->zh_log = lwb->lwb_blk;
		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
			break;
		list_remove(&zilog->zl_lwb_list, lwb);
		zio_free(spa, txg, &lwb->lwb_blk);
		zil_free_lwb(zilog, lwb);

		/*
		 * If we don't have anything left in the lwb list then
		 * we've had an allocation failure and we need to zero
		 * out the zil_header blkptr so that we don't end
		 * up freeing the same block twice.
		 */
		if (list_head(&zilog->zl_lwb_list) == NULL)
			BP_ZERO(&zh->zh_log);
	}
	mutex_exit(&zilog->zl_lock);
}

/* ARGSUSED */
static int
zil_lwb_cons(void *vbuf, void *unused, int kmflag)
{
	lwb_t *lwb = vbuf;
	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
	    offsetof(zil_commit_waiter_t, zcw_node));
	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
	return (0);
}

/* ARGSUSED */
static void
zil_lwb_dest(void *vbuf, void *unused)
{
	lwb_t *lwb = vbuf;
	mutex_destroy(&lwb->lwb_vdev_lock);
	avl_destroy(&lwb->lwb_vdev_tree);
	list_destroy(&lwb->lwb_waiters);
}

void
zil_init(void)
{
	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);

	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
}

void
zil_fini(void)
{
	kmem_cache_destroy(zil_zcw_cache);
	kmem_cache_destroy(zil_lwb_cache);
}

void
zil_set_sync(zilog_t *zilog, uint64_t sync)
{
	zilog->zl_sync = sync;
}

void
zil_set_logbias(zilog_t *zilog, uint64_t logbias)
{
	zilog->zl_logbias = logbias;
}

zilog_t *
zil_alloc(objset_t *os, zil_header_t *zh_phys)
{
	zilog_t *zilog;

	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);

	zilog->zl_header = zh_phys;
	zilog->zl_os = os;
	zilog->zl_spa = dmu_objset_spa(os);
	zilog->zl_dmu_pool = dmu_objset_pool(os);
	zilog->zl_destroy_txg = TXG_INITIAL - 1;
	zilog->zl_logbias = dmu_objset_logbias(os);
	zilog->zl_sync = dmu_objset_syncprop(os);
	zilog->zl_dirty_max_txg = 0;
	zilog->zl_last_lwb_opened = NULL;
	zilog->zl_last_lwb_latency = 0;

	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);

	for (int i = 0; i < TXG_SIZE; i++) {
		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
		    MUTEX_DEFAULT, NULL);
	}

	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
	    offsetof(lwb_t, lwb_node));

	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
	    offsetof(itx_t, itx_node));

	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);

	return (zilog);
}

void
zil_free(zilog_t *zilog)
{
	zilog->zl_stop_sync = 1;

	ASSERT0(zilog->zl_suspend);
	ASSERT0(zilog->zl_suspending);

	ASSERT(list_is_empty(&zilog->zl_lwb_list));
	list_destroy(&zilog->zl_lwb_list);

	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
	list_destroy(&zilog->zl_itx_commit_list);

	for (int i = 0; i < TXG_SIZE; i++) {
		/*
		 * It's possible for an itx to be generated that doesn't dirty
		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
		 * callback to remove the entry. We remove those here.
		 *
		 * Also free up the ziltest itxs.
		 */
		if (zilog->zl_itxg[i].itxg_itxs)
			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
	}

	mutex_destroy(&zilog->zl_issuer_lock);
	mutex_destroy(&zilog->zl_lock);

	cv_destroy(&zilog->zl_cv_suspend);

	kmem_free(zilog, sizeof (zilog_t));
}

/*
 * Open an intent log.
 */
zilog_t *
zil_open(objset_t *os, zil_get_data_t *get_data)
{
	zilog_t *zilog = dmu_objset_zil(os);

	ASSERT3P(zilog->zl_get_data, ==, NULL);
	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
	ASSERT(list_is_empty(&zilog->zl_lwb_list));

	zilog->zl_get_data = get_data;

	return (zilog);
}

/*
 * Close an intent log.
 */
void
zil_close(zilog_t *zilog)
{
	lwb_t *lwb;
	uint64_t txg;

	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
		zil_commit(zilog, 0);
	} else {
		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
		ASSERT0(zilog->zl_dirty_max_txg);
		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
	}

	mutex_enter(&zilog->zl_lock);
	lwb = list_tail(&zilog->zl_lwb_list);
	if (lwb == NULL)
		txg = zilog->zl_dirty_max_txg;
	else
		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
	mutex_exit(&zilog->zl_lock);

	/*
	 * We need to use txg_wait_synced() to wait long enough for the
	 * ZIL to be clean, and to wait for all pending lwbs to be
	 * written out.
	 */
	if (txg)
		txg_wait_synced(zilog->zl_dmu_pool, txg);

	if (txg < spa_freeze_txg(zilog->zl_spa))
		ASSERT(!zilog_is_dirty(zilog));

	zilog->zl_get_data = NULL;

	/*
	 * We should have only one lwb left on the list; remove it now.
	 */
	mutex_enter(&zilog->zl_lock);
	lwb = list_head(&zilog->zl_lwb_list);
	if (lwb != NULL) {
		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
		list_remove(&zilog->zl_lwb_list, lwb);
		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
		zil_free_lwb(zilog, lwb);
	}
	mutex_exit(&zilog->zl_lock);
}

static char *suspend_tag = "zil suspending";

/*
 * Suspend an intent log.  While in suspended mode, we still honor
 * synchronous semantics, but we rely on txg_wait_synced() to do it.
 * On old version pools, we suspend the log briefly when taking a
 * snapshot so that it will have an empty intent log.
 *
 * Long holds are not really intended to be used the way we do here --
 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
 * could fail.  Therefore we take pains to only put a long hold if it is
 * actually necessary.  Fortunately, it will only be necessary if the
 * objset is currently mounted (or the ZVOL equivalent).  In that case it
 * will already have a long hold, so we are not really making things any worse.
 *
 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
 * zvol_state_t), and use their mechanism to prevent their hold from being
 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
 * very little gain.
 *
 * if cookiep == NULL, this does both the suspend & resume.
 * Otherwise, it returns with the dataset "long held", and the cookie
 * should be passed into zil_resume().
 */
int
zil_suspend(const char *osname, void **cookiep)
{
	objset_t *os;
	zilog_t *zilog;
	const zil_header_t *zh;
	int error;

	error = dmu_objset_hold(osname, suspend_tag, &os);
	if (error != 0)
		return (error);
	zilog = dmu_objset_zil(os);

	mutex_enter(&zilog->zl_lock);
	zh = zilog->zl_header;

	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
		mutex_exit(&zilog->zl_lock);
		dmu_objset_rele(os, suspend_tag);
		return (SET_ERROR(EBUSY));
	}

	/*
	 * Don't put a long hold in the cases where we can avoid it.  This
	 * is when there is no cookie so we are doing a suspend & resume
	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
	 * for the suspend because it's already suspended, or there's no ZIL.
	 */
	if (cookiep == NULL && !zilog->zl_suspending &&
	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
		mutex_exit(&zilog->zl_lock);
		dmu_objset_rele(os, suspend_tag);
		return (0);
	}

	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);

	zilog->zl_suspend++;

	if (zilog->zl_suspend > 1) {
		/*
		 * Someone else is already suspending it.
		 * Just wait for them to finish.
		 */

		while (zilog->zl_suspending)
			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
		mutex_exit(&zilog->zl_lock);

		if (cookiep == NULL)
			zil_resume(os);
		else
			*cookiep = os;
		return (0);
	}

	/*
	 * If there is no pointer to an on-disk block, this ZIL must not
	 * be active (e.g. filesystem not mounted), so there's nothing
	 * to clean up.
	 */
	if (BP_IS_HOLE(&zh->zh_log)) {
		ASSERT(cookiep != NULL); /* fast path already handled */

		*cookiep = os;
		mutex_exit(&zilog->zl_lock);
		return (0);
	}

	zilog->zl_suspending = B_TRUE;
	mutex_exit(&zilog->zl_lock);

	/*
	 * We need to use zil_commit_impl to ensure we wait for all
	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
	 * to disk before proceeding. If we used zil_commit instead, it
	 * would just call txg_wait_synced(), because zl_suspend is set.
	 * txg_wait_synced() doesn't wait for these lwb's to be
	 * LWB_STATE_DONE before returning.
	 */
	zil_commit_impl(zilog, 0);

	/*
	 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
	 * txg_wait_synced() to ensure the data from the zilog has
	 * migrated to the main pool before calling zil_destroy().
	 */
	txg_wait_synced(zilog->zl_dmu_pool, 0);

	zil_destroy(zilog, B_FALSE);

	mutex_enter(&zilog->zl_lock);
	zilog->zl_suspending = B_FALSE;
	cv_broadcast(&zilog->zl_cv_suspend);
	mutex_exit(&zilog->zl_lock);

	if (cookiep == NULL)
		zil_resume(os);
	else
		*cookiep = os;
	return (0);
}

void
zil_resume(void *cookie)
{
	objset_t *os = cookie;
	zilog_t *zilog = dmu_objset_zil(os);

	mutex_enter(&zilog->zl_lock);
	ASSERT(zilog->zl_suspend != 0);
	zilog->zl_suspend--;
	mutex_exit(&zilog->zl_lock);
	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
}

typedef struct zil_replay_arg {
	zil_replay_func_t **zr_replay;
	void		*zr_arg;
	boolean_t	zr_byteswap;
	char		*zr_lr;
} zil_replay_arg_t;

static int
zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
{
	char name[ZFS_MAX_DATASET_NAME_LEN];

	zilog->zl_replaying_seq--;	/* didn't actually replay this one */

	dmu_objset_name(zilog->zl_os, name);

	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
	    (u_longlong_t)lr->lrc_seq,
	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
	    (lr->lrc_txtype & TX_CI) ? "CI" : "");

	return (error);
}

static int
zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
{
	zil_replay_arg_t *zr = zra;
	const zil_header_t *zh = zilog->zl_header;
	uint64_t reclen = lr->lrc_reclen;
	uint64_t txtype = lr->lrc_txtype;
	int error = 0;

	zilog->zl_replaying_seq = lr->lrc_seq;

	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
		return (0);

	if (lr->lrc_txg < claim_txg)		/* already committed */
		return (0);

	/* Strip case-insensitive bit, still present in log record */
	txtype &= ~TX_CI;

	if (txtype == 0 || txtype >= TX_MAX_TYPE)
		return (zil_replay_error(zilog, lr, EINVAL));

	/*
	 * If this record type can be logged out of order, the object
	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
	 */
	if (TX_OOO(txtype)) {
		error = dmu_object_info(zilog->zl_os,
		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
		if (error == ENOENT || error == EEXIST)
			return (0);
	}

	/*
	 * Make a copy of the data so we can revise and extend it.
	 */
	bcopy(lr, zr->zr_lr, reclen);

	/*
	 * If this is a TX_WRITE with a blkptr, suck in the data.
	 */
	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
		error = zil_read_log_data(zilog, (lr_write_t *)lr,
		    zr->zr_lr + reclen);
		if (error != 0)
			return (zil_replay_error(zilog, lr, error));
	}

	/*
	 * The log block containing this lr may have been byteswapped
	 * so that we can easily examine common fields like lrc_txtype.
	 * However, the log is a mix of different record types, and only the
	 * replay vectors know how to byteswap their records.  Therefore, if
	 * the lr was byteswapped, undo it before invoking the replay vector.
	 */
	if (zr->zr_byteswap)
		byteswap_uint64_array(zr->zr_lr, reclen);

	/*
	 * We must now do two things atomically: replay this log record,
	 * and update the log header sequence number to reflect the fact that
	 * we did so. At the end of each replay function the sequence number
	 * is updated if we are in replay mode.
	 */
	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
	if (error != 0) {
		/*
		 * The DMU's dnode layer doesn't see removes until the txg
		 * commits, so a subsequent claim can spuriously fail with
		 * EEXIST. So if we receive any error we try syncing out
		 * any removes then retry the transaction.  Note that we
		 * specify B_FALSE for byteswap now, so we don't do it twice.
		 */
		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
		if (error != 0)
			return (zil_replay_error(zilog, lr, error));
	}
	return (0);
}

/* ARGSUSED */
static int
zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
{
	zilog->zl_replay_blks++;

	return (0);
}

/*
 * If this dataset has a non-empty intent log, replay it and destroy it.
 */
void
zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
{
	zilog_t *zilog = dmu_objset_zil(os);
	const zil_header_t *zh = zilog->zl_header;
	zil_replay_arg_t zr;

	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
		zil_destroy(zilog, B_TRUE);
		return;
	}

	zr.zr_replay = replay_func;
	zr.zr_arg = arg;
	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);

	/*
	 * Wait for in-progress removes to sync before starting replay.
	 */
	txg_wait_synced(zilog->zl_dmu_pool, 0);

	zilog->zl_replay = B_TRUE;
	zilog->zl_replay_time = ddi_get_lbolt();
	ASSERT(zilog->zl_replay_blks == 0);
	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
	    zh->zh_claim_txg);
	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);

	zil_destroy(zilog, B_FALSE);
	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
	zilog->zl_replay = B_FALSE;
}

boolean_t
zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
{
	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
		return (B_TRUE);

	if (zilog->zl_replay) {
		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
		    zilog->zl_replaying_seq;
		return (B_TRUE);
	}

	return (B_FALSE);
}

/* ARGSUSED */
int
zil_reset(const char *osname, void *arg)
{
	int error;

	error = zil_suspend(osname, NULL);
	if (error != 0)
		return (SET_ERROR(EEXIST));
	return (0);
}