/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/aio.h>
#include <sys/file.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/module.h>
#include <sys/protosw.h>
#include <sys/proc.h>
#include <sys/domain.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/taskqueue.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/tcp_var.h>
#define TCPSTATES
#include <netinet/tcp_fsm.h>
#include <netinet/toecore.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_object.h>
#ifdef TCP_OFFLOAD
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_tcb.h"
#include "tom/t4_tom.h"
/*
* Use the 'backend3' field in AIO jobs to store the amount of data
* received by the AIO job so far.
*/
#define aio_received backend3
static void aio_ddp_requeue_task(void *context, int pending);
static void ddp_complete_all(struct toepcb *toep, int error);
static void t4_aio_cancel_active(struct kaiocb *job);
static void t4_aio_cancel_queued(struct kaiocb *job);
static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
static struct mtx ddp_orphan_pagesets_lock;
static struct task ddp_orphan_task;
#define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN)
/*
* A page set holds information about a buffer used for DDP. The page
* set holds resources such as the VM pages backing the buffer (either
* held or wired) and the page pods associated with the buffer.
* Recently used page sets are cached to allow for efficient reuse of
* buffers (avoiding the need to re-fault in pages, hold them, etc.).
* Note that cached page sets keep the backing pages wired. The
* number of wired pages is capped by only allowing for two wired
* pagesets per connection. This is not a perfect cap, but is a
* trade-off for performance.
*
* If an application ping-pongs two buffers for a connection via
* aio_read(2) then those buffers should remain wired and expensive VM
* fault lookups should be avoided after each buffer has been used
* once. If an application uses more than two buffers then this will
* fall back to doing expensive VM fault lookups for each operation.
*/
static void
free_pageset(struct tom_data *td, struct pageset *ps)
{
vm_page_t p;
int i;
if (ps->prsv.prsv_nppods > 0)
t4_free_page_pods(&ps->prsv);
if (ps->flags & PS_WIRED) {
for (i = 0; i < ps->npages; i++) {
p = ps->pages[i];
vm_page_lock(p);
vm_page_unwire(p, PQ_INACTIVE);
vm_page_unlock(p);
}
} else
vm_page_unhold_pages(ps->pages, ps->npages);
mtx_lock(&ddp_orphan_pagesets_lock);
TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
mtx_unlock(&ddp_orphan_pagesets_lock);
}
static void
ddp_free_orphan_pagesets(void *context, int pending)
{
struct pageset *ps;
mtx_lock(&ddp_orphan_pagesets_lock);
while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
ps = TAILQ_FIRST(&ddp_orphan_pagesets);
TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
mtx_unlock(&ddp_orphan_pagesets_lock);
if (ps->vm)
vmspace_free(ps->vm);
free(ps, M_CXGBE);
mtx_lock(&ddp_orphan_pagesets_lock);
}
mtx_unlock(&ddp_orphan_pagesets_lock);
}
static void
recycle_pageset(struct toepcb *toep, struct pageset *ps)
{
DDP_ASSERT_LOCKED(toep);
if (!(toep->ddp.flags & DDP_DEAD) && ps->flags & PS_WIRED) {
KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
nitems(toep->ddp.db), ("too many wired pagesets"));
TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
toep->ddp.cached_count++;
} else
free_pageset(toep->td, ps);
}
static void
ddp_complete_one(struct kaiocb *job, int error)
{
long copied;
/*
* If this job had copied data out of the socket buffer before
* it was cancelled, report it as a short read rather than an
* error.
*/
copied = job->aio_received;
if (copied != 0 || error == 0)
aio_complete(job, copied, 0);
else
aio_complete(job, -1, error);
}
static void
free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
{
if (db->job) {
/*
* XXX: If we are un-offloading the socket then we
* should requeue these on the socket somehow. If we
* got a FIN from the remote end, then this completes
* any remaining requests with an EOF read.
*/
if (!aio_clear_cancel_function(db->job))
ddp_complete_one(db->job, 0);
}
if (db->ps)
free_pageset(td, db->ps);
}
void
ddp_init_toep(struct toepcb *toep)
{
TAILQ_INIT(&toep->ddp.aiojobq);
TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep);
toep->ddp.flags = DDP_OK;
toep->ddp.active_id = -1;
mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
}
void
ddp_uninit_toep(struct toepcb *toep)
{
mtx_destroy(&toep->ddp.lock);
}
void
release_ddp_resources(struct toepcb *toep)
{
struct pageset *ps;
int i;
DDP_LOCK(toep);
toep->flags |= DDP_DEAD;
for (i = 0; i < nitems(toep->ddp.db); i++) {
free_ddp_buffer(toep->td, &toep->ddp.db[i]);
}
while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
free_pageset(toep->td, ps);
}
ddp_complete_all(toep, 0);
DDP_UNLOCK(toep);
}
#ifdef INVARIANTS
void
ddp_assert_empty(struct toepcb *toep)
{
int i;
MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE));
for (i = 0; i < nitems(toep->ddp.db); i++) {
MPASS(toep->ddp.db[i].job == NULL);
MPASS(toep->ddp.db[i].ps == NULL);
}
MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
}
#endif
static void
complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
unsigned int db_idx)
{
unsigned int db_flag;
toep->ddp.active_count--;
if (toep->ddp.active_id == db_idx) {
if (toep->ddp.active_count == 0) {
KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
("%s: active_count mismatch", __func__));
toep->ddp.active_id = -1;
} else
toep->ddp.active_id ^= 1;
#ifdef VERBOSE_TRACES
CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
toep->ddp.active_id);
#endif
} else {
KASSERT(toep->ddp.active_count != 0 &&
toep->ddp.active_id != -1,
("%s: active count mismatch", __func__));
}
db->cancel_pending = 0;
db->job = NULL;
recycle_pageset(toep, db->ps);
db->ps = NULL;
db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
KASSERT(toep->ddp.flags & db_flag,
("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
__func__, toep, toep->ddp.flags));
toep->ddp.flags &= ~db_flag;
}
/* XXX: handle_ddp_data code duplication */
void
insert_ddp_data(struct toepcb *toep, uint32_t n)
{
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp);
struct ddp_buffer *db;
struct kaiocb *job;
size_t placed;
long copied;
unsigned int db_flag, db_idx;
INP_WLOCK_ASSERT(inp);
DDP_ASSERT_LOCKED(toep);
tp->rcv_nxt += n;
#ifndef USE_DDP_RX_FLOW_CONTROL
KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
tp->rcv_wnd -= n;
#endif
#ifndef USE_DDP_RX_FLOW_CONTROL
toep->rx_credits += n;
#endif
CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
__func__, n);
while (toep->ddp.active_count > 0) {
MPASS(toep->ddp.active_id != -1);
db_idx = toep->ddp.active_id;
db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
MPASS((toep->ddp.flags & db_flag) != 0);
db = &toep->ddp.db[db_idx];
job = db->job;
copied = job->aio_received;
placed = n;
if (placed > job->uaiocb.aio_nbytes - copied)
placed = job->uaiocb.aio_nbytes - copied;
if (placed > 0)
job->msgrcv = 1;
if (!aio_clear_cancel_function(job)) {
/*
* Update the copied length for when
* t4_aio_cancel_active() completes this
* request.
*/
job->aio_received += placed;
} else if (copied + placed != 0) {
CTR4(KTR_CXGBE,
"%s: completing %p (copied %ld, placed %lu)",
__func__, job, copied, placed);
/* XXX: This always completes if there is some data. */
aio_complete(job, copied + placed, 0);
} else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
toep->ddp.waiting_count++;
} else
aio_cancel(job);
n -= placed;
complete_ddp_buffer(toep, db, db_idx);
}
MPASS(n == 0);
}
/* SET_TCB_FIELD sent as a ULP command looks like this */
#define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
/* RX_DATA_ACK sent as a ULP command looks like this */
#define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
static inline void *
mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
uint64_t word, uint64_t mask, uint64_t val)
{
struct ulptx_idata *ulpsc;
struct cpl_set_tcb_field_core *req;
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
ulpsc->len = htobe32(sizeof(*req));
req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
req->reply_ctrl = htobe16(V_NO_REPLY(1) |
V_QUEUENO(toep->ofld_rxq->iq.abs_id));
req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
req->mask = htobe64(mask);
req->val = htobe64(val);
ulpsc = (struct ulptx_idata *)(req + 1);
if (LEN__SET_TCB_FIELD_ULP % 16) {
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
ulpsc->len = htobe32(0);
return (ulpsc + 1);
}
return (ulpsc);
}
static inline void *
mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
{
struct ulptx_idata *ulpsc;
struct cpl_rx_data_ack_core *req;
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
ulpsc->len = htobe32(sizeof(*req));
req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
req->credit_dack = htobe32(F_RX_MODULATE_RX);
ulpsc = (struct ulptx_idata *)(req + 1);
if (LEN__RX_DATA_ACK_ULP % 16) {
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
ulpsc->len = htobe32(0);
return (ulpsc + 1);
}
return (ulpsc);
}
static struct wrqe *
mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
{
struct wrqe *wr;
struct work_request_hdr *wrh;
struct ulp_txpkt *ulpmc;
int len;
KASSERT(db_idx == 0 || db_idx == 1,
("%s: bad DDP buffer index %d", __func__, db_idx));
/*
* We'll send a compound work request that has 3 SET_TCB_FIELDs and an
* RX_DATA_ACK (with RX_MODULATE to speed up delivery).
*
* The work request header is 16B and always ends at a 16B boundary.
* The ULPTX master commands that follow must all end at 16B boundaries
* too so we round up the size to 16.
*/
len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
roundup2(LEN__RX_DATA_ACK_ULP, 16);
wr = alloc_wrqe(len, toep->ctrlq);
if (wr == NULL)
return (NULL);
wrh = wrtod(wr);
INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
ulpmc = (struct ulp_txpkt *)(wrh + 1);
/* Write the buffer's tag */
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
W_TCB_RX_DDP_BUF0_TAG + db_idx,
V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
/* Update the current offset in the DDP buffer and its total length */
if (db_idx == 0)
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
W_TCB_RX_DDP_BUF0_OFFSET,
V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
V_TCB_RX_DDP_BUF0_OFFSET(offset) |
V_TCB_RX_DDP_BUF0_LEN(ps->len));
else
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
W_TCB_RX_DDP_BUF1_OFFSET,
V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
V_TCB_RX_DDP_BUF1_OFFSET(offset) |
V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
/* Update DDP flags */
ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
ddp_flags_mask, ddp_flags);
/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
return (wr);
}
static int
handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
{
uint32_t report = be32toh(ddp_report);
unsigned int db_idx;
struct inpcb *inp = toep->inp;
struct ddp_buffer *db;
struct tcpcb *tp;
struct socket *so;
struct sockbuf *sb;
struct kaiocb *job;
long copied;
db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
if (__predict_false(!(report & F_DDP_INV)))
CXGBE_UNIMPLEMENTED("DDP buffer still valid");
INP_WLOCK(inp);
so = inp_inpcbtosocket(inp);
sb = &so->so_rcv;
DDP_LOCK(toep);
KASSERT(toep->ddp.active_id == db_idx,
("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
toep->ddp.active_id, toep->tid));
db = &toep->ddp.db[db_idx];
job = db->job;
if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
/*
* This can happen due to an administrative tcpdrop(8).
* Just fail the request with ECONNRESET.
*/
CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
__func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
if (aio_clear_cancel_function(job))
ddp_complete_one(job, ECONNRESET);
goto completed;
}
tp = intotcpcb(inp);
/*
* For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
* sequence number of the next byte to receive. The length of
* the data received for this message must be computed by
* comparing the new and old values of rcv_nxt.
*
* For RX_DATA_DDP, len might be non-zero, but it is only the
* length of the most recent DMA. It does not include the
* total length of the data received since the previous update
* for this DDP buffer. rcv_nxt is the sequence number of the
* first received byte from the most recent DMA.
*/
len += be32toh(rcv_nxt) - tp->rcv_nxt;
tp->rcv_nxt += len;
tp->t_rcvtime = ticks;
#ifndef USE_DDP_RX_FLOW_CONTROL
KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
tp->rcv_wnd -= len;
#endif
#ifdef VERBOSE_TRACES
CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx,
len, report);
#endif
/* receive buffer autosize */
MPASS(toep->vnet == so->so_vnet);
CURVNET_SET(toep->vnet);
SOCKBUF_LOCK(sb);
if (sb->sb_flags & SB_AUTOSIZE &&
V_tcp_do_autorcvbuf &&
sb->sb_hiwat < V_tcp_autorcvbuf_max &&
len > (sbspace(sb) / 8 * 7)) {
struct adapter *sc = td_adapter(toep->td);
unsigned int hiwat = sb->sb_hiwat;
unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
V_tcp_autorcvbuf_max);
if (!sbreserve_locked(sb, newsize, so, NULL))
sb->sb_flags &= ~SB_AUTOSIZE;
else
toep->rx_credits += newsize - hiwat;
}
SOCKBUF_UNLOCK(sb);
CURVNET_RESTORE();
#ifndef USE_DDP_RX_FLOW_CONTROL
toep->rx_credits += len;
#endif
job->msgrcv = 1;
if (db->cancel_pending) {
/*
* Update the job's length but defer completion to the
* TCB_RPL callback.
*/
job->aio_received += len;
goto out;
} else if (!aio_clear_cancel_function(job)) {
/*
* Update the copied length for when
* t4_aio_cancel_active() completes this request.
*/
job->aio_received += len;
} else {
copied = job->aio_received;
#ifdef VERBOSE_TRACES
CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)",
__func__, job, copied, len);
#endif
aio_complete(job, copied + len, 0);
t4_rcvd(&toep->td->tod, tp);
}
completed:
complete_ddp_buffer(toep, db, db_idx);
if (toep->ddp.waiting_count > 0)
ddp_queue_toep(toep);
out:
DDP_UNLOCK(toep);
INP_WUNLOCK(inp);
return (0);
}
void
handle_ddp_indicate(struct toepcb *toep)
{
DDP_ASSERT_LOCKED(toep);
MPASS(toep->ddp.active_count == 0);
MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
if (toep->ddp.waiting_count == 0) {
/*
* The pending requests that triggered the request for an
* an indicate were cancelled. Those cancels should have
* already disabled DDP. Just ignore this as the data is
* going into the socket buffer anyway.
*/
return;
}
CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
toep->tid, toep->ddp.waiting_count);
ddp_queue_toep(toep);
}
enum {
DDP_BUF0_INVALIDATED = 0x2,
DDP_BUF1_INVALIDATED
};
CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0);
static int
do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
unsigned int db_idx;
struct toepcb *toep;
struct inpcb *inp;
struct ddp_buffer *db;
struct kaiocb *job;
long copied;
if (cpl->status != CPL_ERR_NONE)
panic("XXX: tcp_rpl failed: %d", cpl->status);
toep = lookup_tid(sc, tid);
inp = toep->inp;
switch (cpl->cookie) {
case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
/*
* XXX: This duplicates a lot of code with handle_ddp_data().
*/
db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
MPASS(db_idx < nitems(toep->ddp.db));
INP_WLOCK(inp);
DDP_LOCK(toep);
db = &toep->ddp.db[db_idx];
/*
* handle_ddp_data() should leave the job around until
* this callback runs once a cancel is pending.
*/
MPASS(db != NULL);
MPASS(db->job != NULL);
MPASS(db->cancel_pending);
/*
* XXX: It's not clear what happens if there is data
* placed when the buffer is invalidated. I suspect we
* need to read the TCB to see how much data was placed.
*
* For now this just pretends like nothing was placed.
*
* XXX: Note that if we did check the PCB we would need to
* also take care of updating the tp, etc.
*/
job = db->job;
copied = job->aio_received;
if (copied == 0) {
CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
aio_cancel(job);
} else {
CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
__func__, job, copied);
aio_complete(job, copied, 0);
t4_rcvd(&toep->td->tod, intotcpcb(inp));
}
complete_ddp_buffer(toep, db, db_idx);
if (toep->ddp.waiting_count > 0)
ddp_queue_toep(toep);
DDP_UNLOCK(toep);
INP_WUNLOCK(inp);
break;
default:
panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
}
return (0);
}
void
handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
{
struct ddp_buffer *db;
struct kaiocb *job;
long copied;
unsigned int db_flag, db_idx;
int len, placed;
INP_WLOCK_ASSERT(toep->inp);
DDP_ASSERT_LOCKED(toep);
len = be32toh(rcv_nxt) - tp->rcv_nxt;
tp->rcv_nxt += len;
#ifndef USE_DDP_RX_FLOW_CONTROL
toep->rx_credits += len;
#endif
while (toep->ddp.active_count > 0) {
MPASS(toep->ddp.active_id != -1);
db_idx = toep->ddp.active_id;
db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
MPASS((toep->ddp.flags & db_flag) != 0);
db = &toep->ddp.db[db_idx];
job = db->job;
copied = job->aio_received;
placed = len;
if (placed > job->uaiocb.aio_nbytes - copied)
placed = job->uaiocb.aio_nbytes - copied;
if (placed > 0)
job->msgrcv = 1;
if (!aio_clear_cancel_function(job)) {
/*
* Update the copied length for when
* t4_aio_cancel_active() completes this
* request.
*/
job->aio_received += placed;
} else {
CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
__func__, toep->tid, db_idx, placed);
aio_complete(job, copied + placed, 0);
}
len -= placed;
complete_ddp_buffer(toep, db, db_idx);
}
MPASS(len == 0);
ddp_complete_all(toep, 0);
}
#define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
extern cpl_handler_t t4_cpl_handler[];
static int
do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
uint32_t vld;
struct toepcb *toep = lookup_tid(sc, tid);
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
KASSERT(!(toep->flags & TPF_SYNQE),
("%s: toep %p claims to be a synq entry", __func__, toep));
vld = be32toh(cpl->ddpvld);
if (__predict_false(vld & DDP_ERR)) {
panic("%s: DDP error 0x%x (tid %d, toep %p)",
__func__, vld, tid, toep);
}
if (toep->ulp_mode == ULP_MODE_ISCSI) {
t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
return (0);
}
handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
return (0);
}
static int
do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
KASSERT(!(toep->flags & TPF_SYNQE),
("%s: toep %p claims to be a synq entry", __func__, toep));
handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
return (0);
}
static void
enable_ddp(struct adapter *sc, struct toepcb *toep)
{
KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
("%s: toep %p has bad ddp_flags 0x%x",
__func__, toep, toep->ddp.flags));
CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
__func__, toep->tid, time_uptime);
DDP_ASSERT_LOCKED(toep);
toep->ddp.flags |= DDP_SC_REQ;
t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0);
t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
}
static int
calculate_hcf(int n1, int n2)
{
int a, b, t;
if (n1 <= n2) {
a = n1;
b = n2;
} else {
a = n2;
b = n1;
}
while (a != 0) {
t = a;
a = b % a;
b = t;
}
return (b);
}
static inline int
pages_to_nppods(int npages, int ddp_page_shift)
{
MPASS(ddp_page_shift >= PAGE_SHIFT);
return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
}
static int
alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
struct ppod_reservation *prsv)
{
vmem_addr_t addr; /* relative to start of region */
if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
&addr) != 0)
return (ENOMEM);
CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
__func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
nppods, 1 << pr->pr_page_shift[pgsz_idx]);
/*
* The hardware tagmask includes an extra invalid bit but the arena was
* seeded with valid values only. An allocation out of this arena will
* fit inside the tagmask but won't have the invalid bit set.
*/
MPASS((addr & pr->pr_tag_mask) == addr);
MPASS((addr & pr->pr_invalid_bit) == 0);
prsv->prsv_pr = pr;
prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
prsv->prsv_nppods = nppods;
return (0);
}
int
t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
{
int i, hcf, seglen, idx, nppods;
struct ppod_reservation *prsv = &ps->prsv;
KASSERT(prsv->prsv_nppods == 0,
("%s: page pods already allocated", __func__));
/*
* The DDP page size is unrelated to the VM page size. We combine
* contiguous physical pages into larger segments to get the best DDP
* page size possible. This is the largest of the four sizes in
* A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
* the page list.
*/
hcf = 0;
for (i = 0; i < ps->npages; i++) {
seglen = PAGE_SIZE;
while (i < ps->npages - 1 &&
ps->pages[i]->phys_addr + PAGE_SIZE ==
ps->pages[i + 1]->phys_addr) {
seglen += PAGE_SIZE;
i++;
}
hcf = calculate_hcf(hcf, seglen);
if (hcf < (1 << pr->pr_page_shift[1])) {
idx = 0;
goto have_pgsz; /* give up, short circuit */
}
}
#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
if ((hcf & PR_PAGE_MASK(idx)) == 0)
break;
}
#undef PR_PAGE_MASK
have_pgsz:
MPASS(idx <= M_PPOD_PGSZ);
nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
return (0);
MPASS(prsv->prsv_nppods > 0);
return (1);
}
int
t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
struct ppod_reservation *prsv)
{
int hcf, seglen, idx, npages, nppods;
uintptr_t start_pva, end_pva, pva, p1;
MPASS(buf > 0);
MPASS(len > 0);
/*
* The DDP page size is unrelated to the VM page size. We combine
* contiguous physical pages into larger segments to get the best DDP
* page size possible. This is the largest of the four sizes in
* A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
* in the page list.
*/
hcf = 0;
start_pva = trunc_page(buf);
end_pva = trunc_page(buf + len - 1);
pva = start_pva;
while (pva <= end_pva) {
seglen = PAGE_SIZE;
p1 = pmap_kextract(pva);
pva += PAGE_SIZE;
while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
seglen += PAGE_SIZE;
pva += PAGE_SIZE;
}
hcf = calculate_hcf(hcf, seglen);
if (hcf < (1 << pr->pr_page_shift[1])) {
idx = 0;
goto have_pgsz; /* give up, short circuit */
}
}
#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
if ((hcf & PR_PAGE_MASK(idx)) == 0)
break;
}
#undef PR_PAGE_MASK
have_pgsz:
MPASS(idx <= M_PPOD_PGSZ);
npages = 1;
npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
nppods = howmany(npages, PPOD_PAGES);
if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
return (ENOMEM);
MPASS(prsv->prsv_nppods > 0);
return (0);
}
void
t4_free_page_pods(struct ppod_reservation *prsv)
{
struct ppod_region *pr = prsv->prsv_pr;
vmem_addr_t addr;
MPASS(prsv != NULL);
MPASS(prsv->prsv_nppods != 0);
addr = prsv->prsv_tag & pr->pr_tag_mask;
MPASS((addr & pr->pr_invalid_bit) == 0);
CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
pr->pr_arena, addr, prsv->prsv_nppods);
vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
prsv->prsv_nppods = 0;
}
#define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
int
t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
struct pageset *ps)
{
struct wrqe *wr;
struct ulp_mem_io *ulpmc;
struct ulptx_idata *ulpsc;
struct pagepod *ppod;
int i, j, k, n, chunk, len, ddp_pgsz, idx;
u_int ppod_addr;
uint32_t cmd;
struct ppod_reservation *prsv = &ps->prsv;
struct ppod_region *pr = prsv->prsv_pr;
KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
("%s: page pods already written", __func__));
MPASS(prsv->prsv_nppods > 0);
cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
if (is_t4(sc))
cmd |= htobe32(F_ULP_MEMIO_ORDER);
else
cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
/* How many page pods are we writing in this cycle */
n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
chunk = PPOD_SZ(n);
len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
wr = alloc_wrqe(len, wrq);
if (wr == NULL)
return (ENOMEM); /* ok to just bail out */
ulpmc = wrtod(wr);
INIT_ULPTX_WR(ulpmc, len, 0, 0);
ulpmc->cmd = cmd;
ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
ulpsc->len = htobe32(chunk);
ppod = (struct pagepod *)(ulpsc + 1);
for (j = 0; j < n; i++, j++, ppod++) {
ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
V_PPOD_TID(tid) | prsv->prsv_tag);
ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
V_PPOD_OFST(ps->offset));
ppod->rsvd = 0;
idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
for (k = 0; k < nitems(ppod->addr); k++) {
if (idx < ps->npages) {
ppod->addr[k] =
htobe64(ps->pages[idx]->phys_addr);
idx += ddp_pgsz / PAGE_SIZE;
} else
ppod->addr[k] = 0;
#if 0
CTR5(KTR_CXGBE,
"%s: tid %d ppod[%d]->addr[%d] = %p",
__func__, toep->tid, i, k,
htobe64(ppod->addr[k]));
#endif
}
}
t4_wrq_tx(sc, wr);
}
ps->flags |= PS_PPODS_WRITTEN;
return (0);
}
int
t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
{
struct wrqe *wr;
struct ulp_mem_io *ulpmc;
struct ulptx_idata *ulpsc;
struct pagepod *ppod;
int i, j, k, n, chunk, len, ddp_pgsz;
u_int ppod_addr, offset;
uint32_t cmd;
struct ppod_region *pr = prsv->prsv_pr;
uintptr_t end_pva, pva, pa;
cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
if (is_t4(sc))
cmd |= htobe32(F_ULP_MEMIO_ORDER);
else
cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
offset = buf & PAGE_MASK;
ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
pva = trunc_page(buf);
end_pva = trunc_page(buf + buflen - 1);
for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
/* How many page pods are we writing in this cycle */
n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
MPASS(n > 0);
chunk = PPOD_SZ(n);
len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
wr = alloc_wrqe(len, wrq);
if (wr == NULL)
return (ENOMEM); /* ok to just bail out */
ulpmc = wrtod(wr);
INIT_ULPTX_WR(ulpmc, len, 0, 0);
ulpmc->cmd = cmd;
ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
ulpsc = (struct ulptx_idata *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
ulpsc->len = htobe32(chunk);
ppod = (struct pagepod *)(ulpsc + 1);
for (j = 0; j < n; i++, j++, ppod++) {
ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
V_PPOD_TID(tid) |
(prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
V_PPOD_OFST(offset));
ppod->rsvd = 0;
for (k = 0; k < nitems(ppod->addr); k++) {
if (pva > end_pva)
ppod->addr[k] = 0;
else {
pa = pmap_kextract(pva);
ppod->addr[k] = htobe64(pa);
pva += ddp_pgsz;
}
#if 0
CTR5(KTR_CXGBE,
"%s: tid %d ppod[%d]->addr[%d] = %p",
__func__, tid, i, k,
htobe64(ppod->addr[k]));
#endif
}
/*
* Walk back 1 segment so that the first address in the
* next pod is the same as the last one in the current
* pod.
*/
pva -= ddp_pgsz;
}
t4_wrq_tx(sc, wr);
}
MPASS(pva <= end_pva);
return (0);
}
static void
wire_pageset(struct pageset *ps)
{
vm_page_t p;
int i;
KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired"));
for (i = 0; i < ps->npages; i++) {
p = ps->pages[i];
vm_page_lock(p);
vm_page_wire(p);
vm_page_unhold(p);
vm_page_unlock(p);
}
ps->flags |= PS_WIRED;
}
/*
* Prepare a pageset for DDP. This wires the pageset and sets up page
* pods.
*/
static int
prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
{
struct tom_data *td = sc->tom_softc;
if (!(ps->flags & PS_WIRED))
wire_pageset(ps);
if (ps->prsv.prsv_nppods == 0 &&
!t4_alloc_page_pods_for_ps(&td->pr, ps)) {
return (0);
}
if (!(ps->flags & PS_PPODS_WRITTEN) &&
t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
return (0);
}
return (1);
}
int
t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
const char *name)
{
int i;
MPASS(pr != NULL);
MPASS(r->size > 0);
pr->pr_start = r->start;
pr->pr_len = r->size;
pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
/* The SGL -> page pod algorithm requires the sizes to be in order. */
for (i = 1; i < nitems(pr->pr_page_shift); i++) {
if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
return (ENXIO);
}
pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
return (ENXIO);
pr->pr_alias_shift = fls(pr->pr_tag_mask);
pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
M_FIRSTFIT | M_NOWAIT);
if (pr->pr_arena == NULL)
return (ENOMEM);
return (0);
}
void
t4_free_ppod_region(struct ppod_region *pr)
{
MPASS(pr != NULL);
if (pr->pr_arena)
vmem_destroy(pr->pr_arena);
bzero(pr, sizeof(*pr));
}
static int
pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
int pgoff, int len)
{
if (ps->start != start || ps->npages != npages ||
ps->offset != pgoff || ps->len != len)
return (1);
return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
}
static int
hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
{
struct vmspace *vm;
vm_map_t map;
vm_offset_t start, end, pgoff;
struct pageset *ps;
int n;
DDP_ASSERT_LOCKED(toep);
/*
* The AIO subsystem will cancel and drain all requests before
* permitting a process to exit or exec, so p_vmspace should
* be stable here.
*/
vm = job->userproc->p_vmspace;
map = &vm->vm_map;
start = (uintptr_t)job->uaiocb.aio_buf;
pgoff = start & PAGE_MASK;
end = round_page(start + job->uaiocb.aio_nbytes);
start = trunc_page(start);
if (end - start > MAX_DDP_BUFFER_SIZE) {
/*
* Truncate the request to a short read.
* Alternatively, we could DDP in chunks to the larger
* buffer, but that would be quite a bit more work.
*
* When truncating, round the request down to avoid
* crossing a cache line on the final transaction.
*/
end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
#ifdef VERBOSE_TRACES
CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
__func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
(unsigned long)(end - (start + pgoff)));
job->uaiocb.aio_nbytes = end - (start + pgoff);
#endif
end = round_page(end);
}
n = atop(end - start);
/*
* Try to reuse a cached pageset.
*/
TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
if (pscmp(ps, vm, start, n, pgoff,
job->uaiocb.aio_nbytes) == 0) {
TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
toep->ddp.cached_count--;
*pps = ps;
return (0);
}
}
/*
* If there are too many cached pagesets to create a new one,
* free a pageset before creating a new one.
*/
KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
if (toep->ddp.active_count + toep->ddp.cached_count ==
nitems(toep->ddp.db)) {
KASSERT(toep->ddp.cached_count > 0,
("no cached pageset to free"));
ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
toep->ddp.cached_count--;
free_pageset(toep->td, ps);
}
DDP_UNLOCK(toep);
/* Create a new pageset. */
ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
M_ZERO);
ps->pages = (vm_page_t *)(ps + 1);
ps->vm_timestamp = map->timestamp;
ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
VM_PROT_WRITE, ps->pages, n);
DDP_LOCK(toep);
if (ps->npages < 0) {
free(ps, M_CXGBE);
return (EFAULT);
}
KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
ps->npages, n));
ps->offset = pgoff;
ps->len = job->uaiocb.aio_nbytes;
atomic_add_int(&vm->vm_refcnt, 1);
ps->vm = vm;
ps->start = start;
CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
__func__, toep->tid, ps, job, ps->npages);
*pps = ps;
return (0);
}
static void
ddp_complete_all(struct toepcb *toep, int error)
{
struct kaiocb *job;
DDP_ASSERT_LOCKED(toep);
while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
job = TAILQ_FIRST(&toep->ddp.aiojobq);
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
toep->ddp.waiting_count--;
if (aio_clear_cancel_function(job))
ddp_complete_one(job, error);
}
}
static void
aio_ddp_cancel_one(struct kaiocb *job)
{
long copied;
/*
* If this job had copied data out of the socket buffer before
* it was cancelled, report it as a short read rather than an
* error.
*/
copied = job->aio_received;
if (copied != 0)
aio_complete(job, copied, 0);
else
aio_cancel(job);
}
/*
* Called when the main loop wants to requeue a job to retry it later.
* Deals with the race of the job being cancelled while it was being
* examined.
*/
static void
aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
{
DDP_ASSERT_LOCKED(toep);
if (!(toep->ddp.flags & DDP_DEAD) &&
aio_set_cancel_function(job, t4_aio_cancel_queued)) {
TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
toep->ddp.waiting_count++;
} else
aio_ddp_cancel_one(job);
}
static void
aio_ddp_requeue(struct toepcb *toep)
{
struct adapter *sc = td_adapter(toep->td);
struct socket *so;
struct sockbuf *sb;
struct inpcb *inp;
struct kaiocb *job;
struct ddp_buffer *db;
size_t copied, offset, resid;
struct pageset *ps;
struct mbuf *m;
uint64_t ddp_flags, ddp_flags_mask;
struct wrqe *wr;
int buf_flag, db_idx, error;
DDP_ASSERT_LOCKED(toep);
restart:
if (toep->ddp.flags & DDP_DEAD) {
MPASS(toep->ddp.waiting_count == 0);
MPASS(toep->ddp.active_count == 0);
return;
}
if (toep->ddp.waiting_count == 0 ||
toep->ddp.active_count == nitems(toep->ddp.db)) {
return;
}
job = TAILQ_FIRST(&toep->ddp.aiojobq);
so = job->fd_file->f_data;
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
/* We will never get anything unless we are or were connected. */
if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
SOCKBUF_UNLOCK(sb);
ddp_complete_all(toep, ENOTCONN);
return;
}
KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
("%s: pending sockbuf data and DDP is active", __func__));
/* Abort if socket has reported problems. */
/* XXX: Wait for any queued DDP's to finish and/or flush them? */
if (so->so_error && sbavail(sb) == 0) {
toep->ddp.waiting_count--;
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
if (!aio_clear_cancel_function(job)) {
SOCKBUF_UNLOCK(sb);
goto restart;
}
/*
* If this job has previously copied some data, report
* a short read and leave the error to be reported by
* a future request.
*/
copied = job->aio_received;
if (copied != 0) {
SOCKBUF_UNLOCK(sb);
aio_complete(job, copied, 0);
goto restart;
}
error = so->so_error;
so->so_error = 0;
SOCKBUF_UNLOCK(sb);
aio_complete(job, -1, error);
goto restart;
}
/*
* Door is closed. If there is pending data in the socket buffer,
* deliver it. If there are pending DDP requests, wait for those
* to complete. Once they have completed, return EOF reads.
*/
if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
SOCKBUF_UNLOCK(sb);
if (toep->ddp.active_count != 0)
return;
ddp_complete_all(toep, 0);
return;
}
/*
* If DDP is not enabled and there is no pending socket buffer
* data, try to enable DDP.
*/
if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
SOCKBUF_UNLOCK(sb);
/*
* Wait for the card to ACK that DDP is enabled before
* queueing any buffers. Currently this waits for an
* indicate to arrive. This could use a TCB_SET_FIELD_RPL
* message to know that DDP was enabled instead of waiting
* for the indicate which would avoid copying the indicate
* if no data is pending.
*
* XXX: Might want to limit the indicate size to the size
* of the first queued request.
*/
if ((toep->ddp.flags & DDP_SC_REQ) == 0)
enable_ddp(sc, toep);
return;
}
SOCKBUF_UNLOCK(sb);
/*
* If another thread is queueing a buffer for DDP, let it
* drain any work and return.
*/
if (toep->ddp.queueing != NULL)
return;
/* Take the next job to prep it for DDP. */
toep->ddp.waiting_count--;
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
if (!aio_clear_cancel_function(job))
goto restart;
toep->ddp.queueing = job;
/* NB: This drops DDP_LOCK while it holds the backing VM pages. */
error = hold_aio(toep, job, &ps);
if (error != 0) {
ddp_complete_one(job, error);
toep->ddp.queueing = NULL;
goto restart;
}
SOCKBUF_LOCK(sb);
if (so->so_error && sbavail(sb) == 0) {
copied = job->aio_received;
if (copied != 0) {
SOCKBUF_UNLOCK(sb);
recycle_pageset(toep, ps);
aio_complete(job, copied, 0);
toep->ddp.queueing = NULL;
goto restart;
}
error = so->so_error;
so->so_error = 0;
SOCKBUF_UNLOCK(sb);
recycle_pageset(toep, ps);
aio_complete(job, -1, error);
toep->ddp.queueing = NULL;
goto restart;
}
if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
SOCKBUF_UNLOCK(sb);
recycle_pageset(toep, ps);
if (toep->ddp.active_count != 0) {
/*
* The door is closed, but there are still pending
* DDP buffers. Requeue. These jobs will all be
* completed once those buffers drain.
*/
aio_ddp_requeue_one(toep, job);
toep->ddp.queueing = NULL;
return;
}
ddp_complete_one(job, 0);
ddp_complete_all(toep, 0);
toep->ddp.queueing = NULL;
return;
}
sbcopy:
/*
* If the toep is dead, there shouldn't be any data in the socket
* buffer, so the above case should have handled this.
*/
MPASS(!(toep->ddp.flags & DDP_DEAD));
/*
* If there is pending data in the socket buffer (either
* from before the requests were queued or a DDP indicate),
* copy those mbufs out directly.
*/
copied = 0;
offset = ps->offset + job->aio_received;
MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
resid = job->uaiocb.aio_nbytes - job->aio_received;
m = sb->sb_mb;
KASSERT(m == NULL || toep->ddp.active_count == 0,
("%s: sockbuf data with active DDP", __func__));
while (m != NULL && resid > 0) {
struct iovec iov[1];
struct uio uio;
int error;
iov[0].iov_base = mtod(m, void *);
iov[0].iov_len = m->m_len;
if (iov[0].iov_len > resid)
iov[0].iov_len = resid;
uio.uio_iov = iov;
uio.uio_iovcnt = 1;
uio.uio_offset = 0;
uio.uio_resid = iov[0].iov_len;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_rw = UIO_WRITE;
error = uiomove_fromphys(ps->pages, offset + copied,
uio.uio_resid, &uio);
MPASS(error == 0 && uio.uio_resid == 0);
copied += uio.uio_offset;
resid -= uio.uio_offset;
m = m->m_next;
}
if (copied != 0) {
sbdrop_locked(sb, copied);
job->aio_received += copied;
job->msgrcv = 1;
copied = job->aio_received;
inp = sotoinpcb(so);
if (!INP_TRY_WLOCK(inp)) {
/*
* The reference on the socket file descriptor in
* the AIO job should keep 'sb' and 'inp' stable.
* Our caller has a reference on the 'toep' that
* keeps it stable.
*/
SOCKBUF_UNLOCK(sb);
DDP_UNLOCK(toep);
INP_WLOCK(inp);
DDP_LOCK(toep);
SOCKBUF_LOCK(sb);
/*
* If the socket has been closed, we should detect
* that and complete this request if needed on
* the next trip around the loop.
*/
}
t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
INP_WUNLOCK(inp);
if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
/*
* We filled the entire buffer with socket
* data, DDP is not being used, or the socket
* is being shut down, so complete the
* request.
*/
SOCKBUF_UNLOCK(sb);
recycle_pageset(toep, ps);
aio_complete(job, copied, 0);
toep->ddp.queueing = NULL;
goto restart;
}
/*
* If DDP is not enabled, requeue this request and restart.
* This will either enable DDP or wait for more data to
* arrive on the socket buffer.
*/
if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
SOCKBUF_UNLOCK(sb);
recycle_pageset(toep, ps);
aio_ddp_requeue_one(toep, job);
toep->ddp.queueing = NULL;
goto restart;
}
/*
* An indicate might have arrived and been added to
* the socket buffer while it was unlocked after the
* copy to lock the INP. If so, restart the copy.
*/
if (sbavail(sb) != 0)
goto sbcopy;
}
SOCKBUF_UNLOCK(sb);
if (prep_pageset(sc, toep, ps) == 0) {
recycle_pageset(toep, ps);
aio_ddp_requeue_one(toep, job);
toep->ddp.queueing = NULL;
/*
* XXX: Need to retry this later. Mostly need a trigger
* when page pods are freed up.
*/
printf("%s: prep_pageset failed\n", __func__);
return;
}
/* Determine which DDP buffer to use. */
if (toep->ddp.db[0].job == NULL) {
db_idx = 0;
} else {
MPASS(toep->ddp.db[1].job == NULL);
db_idx = 1;
}
ddp_flags = 0;
ddp_flags_mask = 0;
if (db_idx == 0) {
ddp_flags |= V_TF_DDP_BUF0_VALID(1);
if (so->so_state & SS_NBIO)
ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
buf_flag = DDP_BUF0_ACTIVE;
} else {
ddp_flags |= V_TF_DDP_BUF1_VALID(1);
if (so->so_state & SS_NBIO)
ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
buf_flag = DDP_BUF1_ACTIVE;
}
MPASS((toep->ddp.flags & buf_flag) == 0);
if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
MPASS(db_idx == 0);
MPASS(toep->ddp.active_id == -1);
MPASS(toep->ddp.active_count == 0);
ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
}
/*
* The TID for this connection should still be valid. If DDP_DEAD
* is set, SBS_CANTRCVMORE should be set, so we shouldn't be
* this far anyway. Even if the socket is closing on the other
* end, the AIO job holds a reference on this end of the socket
* which will keep it open and keep the TCP PCB attached until
* after the job is completed.
*/
wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
ddp_flags, ddp_flags_mask);
if (wr == NULL) {
recycle_pageset(toep, ps);
aio_ddp_requeue_one(toep, job);
toep->ddp.queueing = NULL;
/*
* XXX: Need a way to kick a retry here.
*
* XXX: We know the fixed size needed and could
* preallocate this using a blocking request at the
* start of the task to avoid having to handle this
* edge case.
*/
printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
return;
}
if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
free_wrqe(wr);
recycle_pageset(toep, ps);
aio_ddp_cancel_one(job);
toep->ddp.queueing = NULL;
goto restart;
}
#ifdef VERBOSE_TRACES
CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)",
__func__, job, db_idx, ddp_flags, ddp_flags_mask);
#endif
/* Give the chip the go-ahead. */
t4_wrq_tx(sc, wr);
db = &toep->ddp.db[db_idx];
db->cancel_pending = 0;
db->job = job;
db->ps = ps;
toep->ddp.queueing = NULL;
toep->ddp.flags |= buf_flag;
toep->ddp.active_count++;
if (toep->ddp.active_count == 1) {
MPASS(toep->ddp.active_id == -1);
toep->ddp.active_id = db_idx;
CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
toep->ddp.active_id);
}
goto restart;
}
void
ddp_queue_toep(struct toepcb *toep)
{
DDP_ASSERT_LOCKED(toep);
if (toep->ddp.flags & DDP_TASK_ACTIVE)
return;
toep->ddp.flags |= DDP_TASK_ACTIVE;
hold_toepcb(toep);
soaio_enqueue(&toep->ddp.requeue_task);
}
static void
aio_ddp_requeue_task(void *context, int pending)
{
struct toepcb *toep = context;
DDP_LOCK(toep);
aio_ddp_requeue(toep);
toep->ddp.flags &= ~DDP_TASK_ACTIVE;
DDP_UNLOCK(toep);
free_toepcb(toep);
}
static void
t4_aio_cancel_active(struct kaiocb *job)
{
struct socket *so = job->fd_file->f_data;
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
struct adapter *sc = td_adapter(toep->td);
uint64_t valid_flag;
int i;
DDP_LOCK(toep);
if (aio_cancel_cleared(job)) {
DDP_UNLOCK(toep);
aio_ddp_cancel_one(job);
return;
}
for (i = 0; i < nitems(toep->ddp.db); i++) {
if (toep->ddp.db[i].job == job) {
/* Should only ever get one cancel request for a job. */
MPASS(toep->ddp.db[i].cancel_pending == 0);
/*
* Invalidate this buffer. It will be
* cancelled or partially completed once the
* card ACKs the invalidate.
*/
valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
V_TF_DDP_BUF1_VALID(1);
t4_set_tcb_field(sc, toep->ctrlq, toep,
W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
i + DDP_BUF0_INVALIDATED);
toep->ddp.db[i].cancel_pending = 1;
CTR2(KTR_CXGBE, "%s: request %p marked pending",
__func__, job);
break;
}
}
DDP_UNLOCK(toep);
}
static void
t4_aio_cancel_queued(struct kaiocb *job)
{
struct socket *so = job->fd_file->f_data;
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
DDP_LOCK(toep);
if (!aio_cancel_cleared(job)) {
TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
toep->ddp.waiting_count--;
if (toep->ddp.waiting_count == 0)
ddp_queue_toep(toep);
}
CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
DDP_UNLOCK(toep);
aio_ddp_cancel_one(job);
}
int
t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
{
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
/* Ignore writes. */
if (job->uaiocb.aio_lio_opcode != LIO_READ)
return (EOPNOTSUPP);
DDP_LOCK(toep);
/*
* XXX: Think about possibly returning errors for ENOTCONN,
* etc. Perhaps the caller would only queue the request
* if it failed with EOPNOTSUPP?
*/
#ifdef VERBOSE_TRACES
CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job);
#endif
if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
panic("new job was cancelled");
TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
toep->ddp.waiting_count++;
toep->ddp.flags |= DDP_OK;
/*
* Try to handle this request synchronously. If this has
* to block because the task is running, it will just bail
* and let the task handle it instead.
*/
aio_ddp_requeue(toep);
DDP_UNLOCK(toep);
return (0);
}
void
t4_ddp_mod_load(void)
{
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
CPL_COOKIE_DDP0);
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
CPL_COOKIE_DDP1);
t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
TAILQ_INIT(&ddp_orphan_pagesets);
mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
}
void
t4_ddp_mod_unload(void)
{
taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
mtx_destroy(&ddp_orphan_pagesets_lock);
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
}
#endif