Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Resource allocation code... the code here is responsible for making
 * sure that nothing leaks.
 *
 * rst --- 4/95 --- 6/95
 */

#include "apr_private.h"

#include "apr_general.h"
#include "apr_pools.h"
#include "apr_tables.h"
#include "apr_strings.h"
#include "apr_lib.h"
#if APR_HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if APR_HAVE_STRING_H
#include <string.h>
#endif
#if APR_HAVE_STRINGS_H
#include <strings.h>
#endif

#if (APR_POOL_DEBUG || defined(MAKE_TABLE_PROFILE)) && APR_HAVE_STDIO_H
#include <stdio.h>
#endif

/*****************************************************************
 * This file contains array and apr_table_t functions only.
 */

/*****************************************************************
 *
 * The 'array' functions...
 */

static void make_array_core(apr_array_header_t *res, apr_pool_t *p,
			    int nelts, int elt_size, int clear)
{
    /*
     * Assure sanity if someone asks for
     * array of zero elts.
     */
    if (nelts < 1) {
        nelts = 1;
    }

    if (clear) {
        res->elts = apr_pcalloc(p, nelts * elt_size);
    }
    else {
        res->elts = apr_palloc(p, nelts * elt_size);
    }

    res->pool = p;
    res->elt_size = elt_size;
    res->nelts = 0;		/* No active elements yet... */
    res->nalloc = nelts;	/* ...but this many allocated */
}

APR_DECLARE(int) apr_is_empty_array(const apr_array_header_t *a)
{
    return ((a == NULL) || (a->nelts == 0));
}

APR_DECLARE(apr_array_header_t *) apr_array_make(apr_pool_t *p,
						int nelts, int elt_size)
{
    apr_array_header_t *res;

    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    make_array_core(res, p, nelts, elt_size, 1);
    return res;
}

APR_DECLARE(void) apr_array_clear(apr_array_header_t *arr)
{
    arr->nelts = 0;
}

APR_DECLARE(void *) apr_array_pop(apr_array_header_t *arr)
{
    if (apr_is_empty_array(arr)) {
        return NULL;
    }
   
    return arr->elts + (arr->elt_size * (--arr->nelts));
}

APR_DECLARE(void *) apr_array_push(apr_array_header_t *arr)
{
    if (arr->nelts == arr->nalloc) {
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
        char *new_data;

        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);

        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
        memset(new_data + arr->nalloc * arr->elt_size, 0,
               arr->elt_size * (new_size - arr->nalloc));
        arr->elts = new_data;
        arr->nalloc = new_size;
    }

    ++arr->nelts;
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
}

static void *apr_array_push_noclear(apr_array_header_t *arr)
{
    if (arr->nelts == arr->nalloc) {
        int new_size = (arr->nalloc <= 0) ? 1 : arr->nalloc * 2;
        char *new_data;

        new_data = apr_palloc(arr->pool, arr->elt_size * new_size);

        memcpy(new_data, arr->elts, arr->nalloc * arr->elt_size);
        arr->elts = new_data;
        arr->nalloc = new_size;
    }

    ++arr->nelts;
    return arr->elts + (arr->elt_size * (arr->nelts - 1));
}

APR_DECLARE(void) apr_array_cat(apr_array_header_t *dst,
			       const apr_array_header_t *src)
{
    int elt_size = dst->elt_size;

    if (dst->nelts + src->nelts > dst->nalloc) {
	int new_size = (dst->nalloc <= 0) ? 1 : dst->nalloc * 2;
	char *new_data;

	while (dst->nelts + src->nelts > new_size) {
	    new_size *= 2;
	}

	new_data = apr_pcalloc(dst->pool, elt_size * new_size);
	memcpy(new_data, dst->elts, dst->nalloc * elt_size);

	dst->elts = new_data;
	dst->nalloc = new_size;
    }

    memcpy(dst->elts + dst->nelts * elt_size, src->elts,
	   elt_size * src->nelts);
    dst->nelts += src->nelts;
}

APR_DECLARE(apr_array_header_t *) apr_array_copy(apr_pool_t *p,
						const apr_array_header_t *arr)
{
    apr_array_header_t *res =
        (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    make_array_core(res, p, arr->nalloc, arr->elt_size, 0);

    memcpy(res->elts, arr->elts, arr->elt_size * arr->nelts);
    res->nelts = arr->nelts;
    memset(res->elts + res->elt_size * res->nelts, 0,
           res->elt_size * (res->nalloc - res->nelts));
    return res;
}

/* This cute function copies the array header *only*, but arranges
 * for the data section to be copied on the first push or arraycat.
 * It's useful when the elements of the array being copied are
 * read only, but new stuff *might* get added on the end; we have the
 * overhead of the full copy only where it is really needed.
 */

static APR_INLINE void copy_array_hdr_core(apr_array_header_t *res,
					   const apr_array_header_t *arr)
{
    res->elts = arr->elts;
    res->elt_size = arr->elt_size;
    res->nelts = arr->nelts;
    res->nalloc = arr->nelts;	/* Force overflow on push */
}

APR_DECLARE(apr_array_header_t *)
    apr_array_copy_hdr(apr_pool_t *p,
		       const apr_array_header_t *arr)
{
    apr_array_header_t *res;

    res = (apr_array_header_t *) apr_palloc(p, sizeof(apr_array_header_t));
    res->pool = p;
    copy_array_hdr_core(res, arr);
    return res;
}

/* The above is used here to avoid consing multiple new array bodies... */

APR_DECLARE(apr_array_header_t *)
    apr_array_append(apr_pool_t *p,
		      const apr_array_header_t *first,
		      const apr_array_header_t *second)
{
    apr_array_header_t *res = apr_array_copy_hdr(p, first);

    apr_array_cat(res, second);
    return res;
}

/* apr_array_pstrcat generates a new string from the apr_pool_t containing
 * the concatenated sequence of substrings referenced as elements within
 * the array.  The string will be empty if all substrings are empty or null,
 * or if there are no elements in the array.
 * If sep is non-NUL, it will be inserted between elements as a separator.
 */
APR_DECLARE(char *) apr_array_pstrcat(apr_pool_t *p,
				     const apr_array_header_t *arr,
				     const char sep)
{
    char *cp, *res, **strpp;
    apr_size_t len;
    int i;

    if (arr->nelts <= 0 || arr->elts == NULL) {    /* Empty table? */
        return (char *) apr_pcalloc(p, 1);
    }

    /* Pass one --- find length of required string */

    len = 0;
    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
        if (strpp && *strpp != NULL) {
            len += strlen(*strpp);
        }
        if (++i >= arr->nelts) {
            break;
	}
        if (sep) {
            ++len;
	}
    }

    /* Allocate the required string */

    res = (char *) apr_palloc(p, len + 1);
    cp = res;

    /* Pass two --- copy the argument strings into the result space */

    for (i = 0, strpp = (char **) arr->elts; ; ++strpp) {
        if (strpp && *strpp != NULL) {
            len = strlen(*strpp);
            memcpy(cp, *strpp, len);
            cp += len;
        }
        if (++i >= arr->nelts) {
            break;
	}
        if (sep) {
            *cp++ = sep;
	}
    }

    *cp = '\0';

    /* Return the result string */

    return res;
}


/*****************************************************************
 *
 * The "table" functions.
 */

#if APR_CHARSET_EBCDIC
#define CASE_MASK 0xbfbfbfbf
#else
#define CASE_MASK 0xdfdfdfdf
#endif

#define TABLE_HASH_SIZE 32
#define TABLE_INDEX_MASK 0x1f
#define TABLE_HASH(key)  (TABLE_INDEX_MASK & *(unsigned char *)(key))
#define TABLE_INDEX_IS_INITIALIZED(t, i) ((t)->index_initialized & (1 << (i)))
#define TABLE_SET_INDEX_INITIALIZED(t, i) ((t)->index_initialized |= (1 << (i)))

/* Compute the "checksum" for a key, consisting of the first
 * 4 bytes, normalized for case-insensitivity and packed into
 * an int...this checksum allows us to do a single integer
 * comparison as a fast check to determine whether we can
 * skip a strcasecmp
 */
#define COMPUTE_KEY_CHECKSUM(key, checksum)    \
{                                              \
    const char *k = (key);                     \
    apr_uint32_t c = (apr_uint32_t)*k;         \
    (checksum) = c;                            \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    (checksum) <<= 8;                          \
    if (c) {                                   \
        c = (apr_uint32_t)*++k;                \
        checksum |= c;                         \
    }                                          \
    checksum &= CASE_MASK;                     \
}

/** The opaque string-content table type */
struct apr_table_t {
    /* This has to be first to promote backwards compatibility with
     * older modules which cast a apr_table_t * to an apr_array_header_t *...
     * they should use the apr_table_elts() function for most of the
     * cases they do this for.
     */
    /** The underlying array for the table */
    apr_array_header_t a;
#ifdef MAKE_TABLE_PROFILE
    /** Who created the array. */
    void *creator;
#endif
    /* An index to speed up table lookups.  The way this works is:
     *   - Hash the key into the index:
     *     - index_first[TABLE_HASH(key)] is the offset within
     *       the table of the first entry with that key
     *     - index_last[TABLE_HASH(key)] is the offset within
     *       the table of the last entry with that key
     *   - If (and only if) there is no entry in the table whose
     *     key hashes to index element i, then the i'th bit
     *     of index_initialized will be zero.  (Check this before
     *     trying to use index_first[i] or index_last[i]!)
     */
    apr_uint32_t index_initialized;
    int index_first[TABLE_HASH_SIZE];
    int index_last[TABLE_HASH_SIZE];
};

/* keep state for apr_table_getm() */
typedef struct
{
    apr_pool_t *p;
    const char *first;
    apr_array_header_t *merged;
} table_getm_t;

/*
 * NOTICE: if you tweak this you should look at is_empty_table() 
 * and table_elts() in alloc.h
 */
#ifdef MAKE_TABLE_PROFILE
static apr_table_entry_t *do_table_push(const char *func, apr_table_t *t)
{
    if (t->a.nelts == t->a.nalloc) {
        fprintf(stderr, "%s: table created by %p hit limit of %u\n",
                func ? func : "table_push", t->creator, t->a.nalloc);
    }
    return (apr_table_entry_t *) apr_array_push_noclear(&t->a);
}
#if defined(__GNUC__) && __GNUC__ >= 2
#define table_push(t) do_table_push(__FUNCTION__, t)
#else
#define table_push(t) do_table_push(NULL, t)
#endif
#else /* MAKE_TABLE_PROFILE */
#define table_push(t)	((apr_table_entry_t *) apr_array_push_noclear(&(t)->a))
#endif /* MAKE_TABLE_PROFILE */

APR_DECLARE(const apr_array_header_t *) apr_table_elts(const apr_table_t *t)
{
    return (const apr_array_header_t *)t;
}

APR_DECLARE(int) apr_is_empty_table(const apr_table_t *t)
{
    return ((t == NULL) || (t->a.nelts == 0));
}

APR_DECLARE(apr_table_t *) apr_table_make(apr_pool_t *p, int nelts)
{
    apr_table_t *t = apr_palloc(p, sizeof(apr_table_t));

    make_array_core(&t->a, p, nelts, sizeof(apr_table_entry_t), 0);
#ifdef MAKE_TABLE_PROFILE
    t->creator = __builtin_return_address(0);
#endif
    t->index_initialized = 0;
    return t;
}

APR_DECLARE(apr_table_t *) apr_table_copy(apr_pool_t *p, const apr_table_t *t)
{
    apr_table_t *new = apr_palloc(p, sizeof(apr_table_t));

#if APR_POOL_DEBUG
    /* we don't copy keys and values, so it's necessary that t->a.pool
     * have a life span at least as long as p
     */
    if (!apr_pool_is_ancestor(t->a.pool, p)) {
	fprintf(stderr, "apr_table_copy: t's pool is not an ancestor of p\n");
	abort();
    }
#endif
    make_array_core(&new->a, p, t->a.nalloc, sizeof(apr_table_entry_t), 0);
    memcpy(new->a.elts, t->a.elts, t->a.nelts * sizeof(apr_table_entry_t));
    new->a.nelts = t->a.nelts;
    memcpy(new->index_first, t->index_first, sizeof(int) * TABLE_HASH_SIZE);
    memcpy(new->index_last, t->index_last, sizeof(int) * TABLE_HASH_SIZE);
    new->index_initialized = t->index_initialized;
    return new;
}

APR_DECLARE(apr_table_t *) apr_table_clone(apr_pool_t *p, const apr_table_t *t)
{
    const apr_array_header_t *array = apr_table_elts(t);
    apr_table_entry_t *elts = (apr_table_entry_t *) array->elts;
    apr_table_t *new = apr_table_make(p, array->nelts);
    int i;

    for (i = 0; i < array->nelts; i++) {
        apr_table_add(new, elts[i].key, elts[i].val);
    }

    return new;
}

static void table_reindex(apr_table_t *t)
{
    int i;
    int hash;
    apr_table_entry_t *next_elt = (apr_table_entry_t *) t->a.elts;

    t->index_initialized = 0;
    for (i = 0; i < t->a.nelts; i++, next_elt++) {
        hash = TABLE_HASH(next_elt->key);
        t->index_last[hash] = i;
        if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
            t->index_first[hash] = i;
            TABLE_SET_INDEX_INITIALIZED(t, hash);
        }
    }
}

APR_DECLARE(void) apr_table_clear(apr_table_t *t)
{
    t->a.nelts = 0;
    t->index_initialized = 0;
}

APR_DECLARE(const char *) apr_table_get(const apr_table_t *t, const char *key)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

    if (key == NULL) {
	return NULL;
    }

    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        return NULL;
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {
	    return next_elt->val;
	}
    }

    return NULL;
}

APR_DECLARE(void) apr_table_set(apr_table_t *t, const char *key,
                                const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *table_end;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so overwrite it */

            int must_reindex = 0;
            apr_table_entry_t *dst_elt = NULL;

            next_elt->val = apr_pstrdup(t->a.pool, val);

            /* Remove any other instances of this key */
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                    if (!dst_elt) {
                        dst_elt = next_elt;
                    }
                }
                else if (dst_elt) {
                    *dst_elt++ = *next_elt;
                    must_reindex = 1;
                }
            }

            /* If we've removed anything, shift over the remainder
             * of the table (note that the previous loop didn't
             * run to the end of the table, just to the last match
             * for the index)
             */
            if (dst_elt) {
                for (; next_elt < table_end; next_elt++) {
                    *dst_elt++ = *next_elt;
                }
                must_reindex = 1;
            }
            if (must_reindex) {
                table_reindex(t);
            }
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = apr_pstrdup(t->a.pool, key);
    next_elt->val = apr_pstrdup(t->a.pool, val);
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_setn(apr_table_t *t, const char *key,
                                 const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *table_end;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    table_end =((apr_table_entry_t *) t->a.elts) + t->a.nelts;

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so overwrite it */

            int must_reindex = 0;
            apr_table_entry_t *dst_elt = NULL;

            next_elt->val = (char *)val;

            /* Remove any other instances of this key */
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                    if (!dst_elt) {
                        dst_elt = next_elt;
                    }
                }
                else if (dst_elt) {
                    *dst_elt++ = *next_elt;
                    must_reindex = 1;
                }
            }

            /* If we've removed anything, shift over the remainder
             * of the table (note that the previous loop didn't
             * run to the end of the table, just to the last match
             * for the index)
             */
            if (dst_elt) {
                for (; next_elt < table_end; next_elt++) {
                    *dst_elt++ = *next_elt;
                }
                must_reindex = 1;
            }
            if (must_reindex) {
                table_reindex(t);
            }
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = (char *)key;
    next_elt->val = (char *)val;
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_unset(apr_table_t *t, const char *key)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_table_entry_t *dst_elt;
    apr_uint32_t checksum;
    int hash;
    int must_reindex;

    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        return;
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];
    must_reindex = 0;
    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found a match: remove this entry, plus any additional
             * matches for the same key that might follow
             */
            apr_table_entry_t *table_end = ((apr_table_entry_t *) t->a.elts) +
                t->a.nelts;
            t->a.nelts--;
            dst_elt = next_elt;
            for (next_elt++; next_elt <= end_elt; next_elt++) {
                if ((checksum == next_elt->key_checksum) &&
                    !strcasecmp(next_elt->key, key)) {
                    t->a.nelts--;
                }
                else {
                    *dst_elt++ = *next_elt;
                }
            }

            /* Shift over the remainder of the table (note that
             * the previous loop didn't run to the end of the table,
             * just to the last match for the index)
             */
            for (; next_elt < table_end; next_elt++) {
                *dst_elt++ = *next_elt;
            }
            must_reindex = 1;
            break;
        }
    }
    if (must_reindex) {
        table_reindex(t);
    }
}

APR_DECLARE(void) apr_table_merge(apr_table_t *t, const char *key,
				 const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so merge with it */
	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
                                        val, NULL);
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = apr_pstrdup(t->a.pool, key);
    next_elt->val = apr_pstrdup(t->a.pool, val);
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_mergen(apr_table_t *t, const char *key,
				  const char *val)
{
    apr_table_entry_t *next_elt;
    apr_table_entry_t *end_elt;
    apr_uint32_t checksum;
    int hash;

#if APR_POOL_DEBUG
    {
	apr_pool_t *pool;
	pool = apr_pool_find(key);
	if ((pool != (apr_pool_t *)key)
            && (!apr_pool_is_ancestor(pool, t->a.pool))) {
	    fprintf(stderr, "apr_table_mergen: key not in ancestor pool of t\n");
	    abort();
	}
	pool = apr_pool_find(val);
	if ((pool != (apr_pool_t *)val)
            && (!apr_pool_is_ancestor(pool, t->a.pool))) {
	    fprintf(stderr, "apr_table_mergen: val not in ancestor pool of t\n");
	    abort();
	}
    }
#endif

    COMPUTE_KEY_CHECKSUM(key, checksum);
    hash = TABLE_HASH(key);
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
        goto add_new_elt;
    }
    next_elt = ((apr_table_entry_t *) t->a.elts) + t->index_first[hash];;
    end_elt = ((apr_table_entry_t *) t->a.elts) + t->index_last[hash];

    for (; next_elt <= end_elt; next_elt++) {
	if ((checksum == next_elt->key_checksum) &&
            !strcasecmp(next_elt->key, key)) {

            /* Found an existing entry with the same key, so merge with it */
	    next_elt->val = apr_pstrcat(t->a.pool, next_elt->val, ", ",
                                        val, NULL);
            return;
        }
    }

add_new_elt:
    t->index_last[hash] = t->a.nelts;
    next_elt = (apr_table_entry_t *) table_push(t);
    next_elt->key = (char *)key;
    next_elt->val = (char *)val;
    next_elt->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_add(apr_table_t *t, const char *key,
			       const char *val)
{
    apr_table_entry_t *elts;
    apr_uint32_t checksum;
    int hash;

    hash = TABLE_HASH(key);
    t->index_last[hash] = t->a.nelts;
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    elts = (apr_table_entry_t *) table_push(t);
    elts->key = apr_pstrdup(t->a.pool, key);
    elts->val = apr_pstrdup(t->a.pool, val);
    elts->key_checksum = checksum;
}

APR_DECLARE(void) apr_table_addn(apr_table_t *t, const char *key,
				const char *val)
{
    apr_table_entry_t *elts;
    apr_uint32_t checksum;
    int hash;

#if APR_POOL_DEBUG
    {
	if (!apr_pool_is_ancestor(apr_pool_find(key), t->a.pool)) {
	    fprintf(stderr, "apr_table_addn: key not in ancestor pool of t\n");
	    abort();
	}
	if (!apr_pool_is_ancestor(apr_pool_find(val), t->a.pool)) {
	    fprintf(stderr, "apr_table_addn: val not in ancestor pool of t\n");
	    abort();
	}
    }
#endif

    hash = TABLE_HASH(key);
    t->index_last[hash] = t->a.nelts;
    if (!TABLE_INDEX_IS_INITIALIZED(t, hash)) {
        t->index_first[hash] = t->a.nelts;
        TABLE_SET_INDEX_INITIALIZED(t, hash);
    }
    COMPUTE_KEY_CHECKSUM(key, checksum);
    elts = (apr_table_entry_t *) table_push(t);
    elts->key = (char *)key;
    elts->val = (char *)val;
    elts->key_checksum = checksum;
}

APR_DECLARE(apr_table_t *) apr_table_overlay(apr_pool_t *p,
					     const apr_table_t *overlay,
					     const apr_table_t *base)
{
    apr_table_t *res;

#if APR_POOL_DEBUG
    /* we don't copy keys and values, so it's necessary that
     * overlay->a.pool and base->a.pool have a life span at least
     * as long as p
     */
    if (!apr_pool_is_ancestor(overlay->a.pool, p)) {
	fprintf(stderr,
		"apr_table_overlay: overlay's pool is not an ancestor of p\n");
	abort();
    }
    if (!apr_pool_is_ancestor(base->a.pool, p)) {
	fprintf(stderr,
		"apr_table_overlay: base's pool is not an ancestor of p\n");
	abort();
    }
#endif

    res = apr_palloc(p, sizeof(apr_table_t));
    /* behave like append_arrays */
    res->a.pool = p;
    copy_array_hdr_core(&res->a, &overlay->a);
    apr_array_cat(&res->a, &base->a);
    table_reindex(res);
    return res;
}

/* And now for something completely abstract ...

 * For each key value given as a vararg:
 *   run the function pointed to as
 *     int comp(void *r, char *key, char *value);
 *   on each valid key-value pair in the apr_table_t t that matches the vararg key,
 *   or once for every valid key-value pair if the vararg list is empty,
 *   until the function returns false (0) or we finish the table.
 *
 * Note that we restart the traversal for each vararg, which means that
 * duplicate varargs will result in multiple executions of the function
 * for each matching key.  Note also that if the vararg list is empty,
 * only one traversal will be made and will cut short if comp returns 0.
 *
 * Note that the table_get and table_merge functions assume that each key in
 * the apr_table_t is unique (i.e., no multiple entries with the same key).  This
 * function does not make that assumption, since it (unfortunately) isn't
 * true for some of Apache's tables.
 *
 * Note that rec is simply passed-on to the comp function, so that the
 * caller can pass additional info for the task.
 *
 * ADDENDUM for apr_table_vdo():
 * 
 * The caching api will allow a user to walk the header values:
 *
 * apr_status_t apr_cache_el_header_walk(apr_cache_el *el, 
 *    int (*comp)(void *, const char *, const char *), void *rec, ...);
 *
 * So it can be ..., however from there I use a  callback that use a va_list:
 *
 * apr_status_t (*cache_el_header_walk)(apr_cache_el *el, 
 *    int (*comp)(void *, const char *, const char *), void *rec, va_list);
 *
 * To pass those ...'s on down to the actual module that will handle walking
 * their headers, in the file case this is actually just an apr_table - and
 * rather than reimplementing apr_table_do (which IMHO would be bad) I just
 * called it with the va_list. For mod_shmem_cache I don't need it since I
 * can't use apr_table's, but mod_file_cache should (though a good hash would
 * be better, but that's a different issue :). 
 *
 * So to make mod_file_cache easier to maintain, it's a good thing
 */
APR_DECLARE_NONSTD(int) apr_table_do(apr_table_do_callback_fn_t *comp,
                                     void *rec, const apr_table_t *t, ...)
{
    int rv;

    va_list vp;
    va_start(vp, t);
    rv = apr_table_vdo(comp, rec, t, vp);
    va_end(vp);

    return rv;
} 

/* XXX: do the semantics of this routine make any sense?  Right now,
 * if the caller passed in a non-empty va_list of keys to search for,
 * the "early termination" facility only terminates on *that* key; other
 * keys will continue to process.  Note that this only has any effect
 * at all if there are multiple entries in the table with the same key,
 * otherwise the called function can never effectively early-terminate
 * this function, as the zero return value is effectively ignored.
 *
 * Note also that this behavior is at odds with the behavior seen if an
 * empty va_list is passed in -- in that case, a zero return value terminates
 * the entire apr_table_vdo (which is what I think should happen in
 * both cases).
 *
 * If nobody objects soon, I'm going to change the order of the nested
 * loops in this function so that any zero return value from the (*comp)
 * function will cause a full termination of apr_table_vdo.  I'm hesitant
 * at the moment because these (funky) semantics have been around for a
 * very long time, and although Apache doesn't seem to use them at all,
 * some third-party vendor might.  I can only think of one possible reason
 * the existing semantics would make any sense, and it's very Apache-centric,
 * which is this: if (*comp) is looking for matches of a particular
 * substring in request headers (let's say it's looking for a particular
 * cookie name in the Set-Cookie headers), then maybe it wants to be
 * able to stop searching early as soon as it finds that one and move
 * on to the next key.  That's only an optimization of course, but changing
 * the behavior of this function would mean that any code that tried
 * to do that would stop working right.
 *
 * Sigh.  --JCW, 06/28/02
 */
APR_DECLARE(int) apr_table_vdo(apr_table_do_callback_fn_t *comp,
                               void *rec, const apr_table_t *t, va_list vp)
{
    char *argp;
    apr_table_entry_t *elts = (apr_table_entry_t *) t->a.elts;
    int vdorv = 1;

    argp = va_arg(vp, char *);
    do {
        int rv = 1, i;
        if (argp) {
            /* Scan for entries that match the next key */
            int hash = TABLE_HASH(argp);
            if (TABLE_INDEX_IS_INITIALIZED(t, hash)) {
                apr_uint32_t checksum;
                COMPUTE_KEY_CHECKSUM(argp, checksum);
                for (i = t->index_first[hash];
                     rv && (i <= t->index_last[hash]); ++i) {
                    if (elts[i].key && (checksum == elts[i].key_checksum) &&
                                        !strcasecmp(elts[i].key, argp)) {
                        rv = (*comp) (rec, elts[i].key, elts[i].val);
                    }
                }
            }
        }
        else {
            /* Scan the entire table */
            for (i = 0; rv && (i < t->a.nelts); ++i) {
                if (elts[i].key) {
                    rv = (*comp) (rec, elts[i].key, elts[i].val);
                }
            }
        }
        if (rv == 0) {
            vdorv = 0;
        }
    } while (argp && ((argp = va_arg(vp, char *)) != NULL));

    return vdorv;
}

static apr_table_entry_t **table_mergesort(apr_pool_t *pool,
                                           apr_table_entry_t **values, 
                                           apr_size_t n)
{
    /* Bottom-up mergesort, based on design in Sedgewick's "Algorithms
     * in C," chapter 8
     */
    apr_table_entry_t **values_tmp =
        (apr_table_entry_t **)apr_palloc(pool, n * sizeof(apr_table_entry_t*));
    apr_size_t i;
    apr_size_t blocksize;

    /* First pass: sort pairs of elements (blocksize=1) */
    for (i = 0; i + 1 < n; i += 2) {
        if (strcasecmp(values[i]->key, values[i + 1]->key) > 0) {
            apr_table_entry_t *swap = values[i];
            values[i] = values[i + 1];
            values[i + 1] = swap;
        }
    }

    /* Merge successively larger blocks */
    blocksize = 2;
    while (blocksize < n) {
        apr_table_entry_t **dst = values_tmp;
        apr_size_t next_start;
        apr_table_entry_t **swap;

        /* Merge consecutive pairs blocks of the next blocksize.
         * Within a block, elements are in sorted order due to
         * the previous iteration.
         */
        for (next_start = 0; next_start + blocksize < n;
             next_start += (blocksize + blocksize)) {

            apr_size_t block1_start = next_start;
            apr_size_t block2_start = block1_start + blocksize;
            apr_size_t block1_end = block2_start;
            apr_size_t block2_end = block2_start + blocksize;
            if (block2_end > n) {
                /* The last block may be smaller than blocksize */
                block2_end = n;
            }
            for (;;) {

                /* Merge the next two blocks:
                 * Pick the smaller of the next element from
                 * block 1 and the next element from block 2.
                 * Once either of the blocks is emptied, copy
                 * over all the remaining elements from the
                 * other block
                 */
                if (block1_start == block1_end) {
                    for (; block2_start < block2_end; block2_start++) {
                        *dst++ = values[block2_start];
                    }
                    break;
                }
                else if (block2_start == block2_end) {
                    for (; block1_start < block1_end; block1_start++) {
                        *dst++ = values[block1_start];
                    }
                    break;
                }
                if (strcasecmp(values[block1_start]->key,
                               values[block2_start]->key) > 0) {
                    *dst++ = values[block2_start++];
                }
                else {
                    *dst++ = values[block1_start++];
                }
            }
        }

        /* If n is not a multiple of 2*blocksize, some elements
         * will be left over at the end of the array.
         */
        for (i = dst - values_tmp; i < n; i++) {
            values_tmp[i] = values[i];
        }

        /* The output array of this pass becomes the input
         * array of the next pass, and vice versa
         */
        swap = values_tmp;
        values_tmp = values;
        values = swap;

        blocksize += blocksize;
    }

    return values;
}

APR_DECLARE(void) apr_table_compress(apr_table_t *t, unsigned flags)
{
    apr_table_entry_t **sort_array;
    apr_table_entry_t **sort_next;
    apr_table_entry_t **sort_end;
    apr_table_entry_t *table_next;
    apr_table_entry_t **last;
    int i;
    int dups_found;

    if (flags == APR_OVERLAP_TABLES_ADD) {
        return;
    }

    if (t->a.nelts <= 1) {
        return;
    }

    /* Copy pointers to all the table elements into an
     * array and sort to allow for easy detection of
     * duplicate keys
     */
    sort_array = (apr_table_entry_t **)
        apr_palloc(t->a.pool, t->a.nelts * sizeof(apr_table_entry_t*));
    sort_next = sort_array;
    table_next = (apr_table_entry_t *)t->a.elts;
    i = t->a.nelts;
    do {
        *sort_next++ = table_next++;
    } while (--i);

    /* Note: the merge is done with mergesort instead of quicksort
     * because mergesort is a stable sort and runs in n*log(n)
     * time regardless of its inputs (quicksort is quadratic in
     * the worst case)
     */
    sort_array = table_mergesort(t->a.pool, sort_array, t->a.nelts);

    /* Process any duplicate keys */
    dups_found = 0;
    sort_next = sort_array;
    sort_end = sort_array + t->a.nelts;
    last = sort_next++;
    while (sort_next < sort_end) {
        if (((*sort_next)->key_checksum == (*last)->key_checksum) &&
            !strcasecmp((*sort_next)->key, (*last)->key)) {
            apr_table_entry_t **dup_last = sort_next + 1;
            dups_found = 1;
            while ((dup_last < sort_end) &&
                   ((*dup_last)->key_checksum == (*last)->key_checksum) &&
                   !strcasecmp((*dup_last)->key, (*last)->key)) {
                dup_last++;
            }
            dup_last--; /* Elements from last through dup_last, inclusive,
                         * all have the same key
                         */
            if (flags == APR_OVERLAP_TABLES_MERGE) {
                apr_size_t len = 0;
                apr_table_entry_t **next = last;
                char *new_val;
                char *val_dst;
                do {
                    len += strlen((*next)->val);
                    len += 2; /* for ", " or trailing null */
                } while (++next <= dup_last);
                new_val = (char *)apr_palloc(t->a.pool, len);
                val_dst = new_val;
                next = last;
                for (;;) {
                    strcpy(val_dst, (*next)->val);
                    val_dst += strlen((*next)->val);
                    next++;
                    if (next > dup_last) {
                        *val_dst = 0;
                        break;
                    }
                    else {
                        *val_dst++ = ',';
                        *val_dst++ = ' ';
                    }
                }
                (*last)->val = new_val;
            }
            else { /* overwrite */
                (*last)->val = (*dup_last)->val;
            }
            do {
                (*sort_next)->key = NULL;
            } while (++sort_next <= dup_last);
        }
        else {
            last = sort_next++;
        }
    }

    /* Shift elements to the left to fill holes left by removing duplicates */
    if (dups_found) {
        apr_table_entry_t *src = (apr_table_entry_t *)t->a.elts;
        apr_table_entry_t *dst = (apr_table_entry_t *)t->a.elts;
        apr_table_entry_t *last_elt = src + t->a.nelts;
        do {
            if (src->key) {
                *dst++ = *src;
            }
        } while (++src < last_elt);
        t->a.nelts -= (int)(last_elt - dst);
    }

    table_reindex(t);
}

static void apr_table_cat(apr_table_t *t, const apr_table_t *s)
{
    const int n = t->a.nelts;
    register int idx;

    apr_array_cat(&t->a,&s->a);

    if (n == 0) {
        memcpy(t->index_first,s->index_first,sizeof(int) * TABLE_HASH_SIZE);
        memcpy(t->index_last, s->index_last, sizeof(int) * TABLE_HASH_SIZE);
        t->index_initialized = s->index_initialized;
        return;
    }

    for (idx = 0; idx < TABLE_HASH_SIZE; ++idx) {
        if (TABLE_INDEX_IS_INITIALIZED(s, idx)) {
            t->index_last[idx] = s->index_last[idx] + n;
            if (!TABLE_INDEX_IS_INITIALIZED(t, idx)) {
                t->index_first[idx] = s->index_first[idx] + n;
            }
        }
    }

    t->index_initialized |= s->index_initialized;
}

APR_DECLARE(void) apr_table_overlap(apr_table_t *a, const apr_table_t *b,
				    unsigned flags)
{
    if (a->a.nelts + b->a.nelts == 0) {
        return;
    }

#if APR_POOL_DEBUG
    /* Since the keys and values are not copied, it's required that
     * b->a.pool has a lifetime at least as long as a->a.pool. */
    if (!apr_pool_is_ancestor(b->a.pool, a->a.pool)) {
        fprintf(stderr, "apr_table_overlap: b's pool is not an ancestor of a's\n");
        abort();
    }
#endif

    apr_table_cat(a, b);

    apr_table_compress(a, flags);
}

static int table_getm_do(void *v, const char *key, const char *val)
{
    table_getm_t *state = (table_getm_t *) v;

    if (!state->first) {
        /**
         * The most common case is a single header, and this is covered by
         * a fast path that doesn't allocate any memory. On the second and
         * subsequent header, an array is created and the array concatenated
         * together to form the final value.
         */
        state->first = val;
    }
    else {
        const char **elt;
        if (!state->merged) {
            state->merged = apr_array_make(state->p, 10, sizeof(const char *));
            elt = apr_array_push(state->merged);
            *elt = state->first;
        }
        elt = apr_array_push(state->merged);
        *elt = val;
    }
    return 1;
}

APR_DECLARE(const char *) apr_table_getm(apr_pool_t *p, const apr_table_t *t,
        const char *key)
{
    table_getm_t state;

    state.p = p;
    state.first = NULL;
    state.merged = NULL;

    apr_table_do(table_getm_do, &state, t, key, NULL);

    if (!state.first) {
        return NULL;
    }
    else if (!state.merged) {
        return state.first;
    }
    else {
        return apr_array_pstrcat(p, state.merged, ',');
    }
}