Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
/*
 * Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

/*
 * Parameters for supported curves:
 *   - field modulus p
 *   - R^2 mod p (R = 2^(15k) for the smallest k such that R >= p)
 *   - b*R mod p (b is the second curve equation parameter)
 */

static const uint16_t P256_P[] = {
	0x0111,
	0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x003F, 0x0000,
	0x0000, 0x0000, 0x0000, 0x0000, 0x1000, 0x0000, 0x4000, 0x7FFF,
	0x7FFF, 0x0001
};

static const uint16_t P256_R2[] = {
	0x0111,
	0x0000, 0x6000, 0x0000, 0x0000, 0x0000, 0x0000, 0x7FFC, 0x7FFF,
	0x7FBF, 0x7FFF, 0x7FBF, 0x7FFF, 0x7FFF, 0x7FFF, 0x77FF, 0x7FFF,
	0x4FFF, 0x0000
};

static const uint16_t P256_B[] = {
	0x0111,
	0x770C, 0x5EEF, 0x29C4, 0x3EC4, 0x6273, 0x0486, 0x4543, 0x3993,
	0x3C01, 0x6B56, 0x212E, 0x57EE, 0x4882, 0x204B, 0x7483, 0x3C16,
	0x0187, 0x0000
};

static const uint16_t P384_P[] = {
	0x0199,
	0x7FFF, 0x7FFF, 0x0003, 0x0000, 0x0000, 0x0000, 0x7FC0, 0x7FFF,
	0x7EFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF,
	0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF,
	0x7FFF, 0x01FF
};

static const uint16_t P384_R2[] = {
	0x0199,
	0x1000, 0x0000, 0x0000, 0x7FFF, 0x7FFF, 0x0001, 0x0000, 0x0010,
	0x0000, 0x0000, 0x0000, 0x7F00, 0x7FFF, 0x01FF, 0x0000, 0x1000,
	0x0000, 0x2000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
	0x0000, 0x0000
};

static const uint16_t P384_B[] = {
	0x0199,
	0x7333, 0x2096, 0x70D1, 0x2310, 0x3020, 0x6197, 0x1464, 0x35BB,
	0x70CA, 0x0117, 0x1920, 0x4136, 0x5FC8, 0x5713, 0x4938, 0x7DD2,
	0x4DD2, 0x4A71, 0x0220, 0x683E, 0x2C87, 0x4DB1, 0x7BFF, 0x6C09,
	0x0452, 0x0084
};

static const uint16_t P521_P[] = {
	0x022B,
	0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF,
	0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF,
	0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF,
	0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF,
	0x7FFF, 0x7FFF, 0x07FF
};

static const uint16_t P521_R2[] = {
	0x022B,
	0x0100, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
	0x0000, 0x0000, 0x0000
};

static const uint16_t P521_B[] = {
	0x022B,
	0x7002, 0x6A07, 0x751A, 0x228F, 0x71EF, 0x5869, 0x20F4, 0x1EFC,
	0x7357, 0x37E0, 0x4EEC, 0x605E, 0x1652, 0x26F6, 0x31FA, 0x4A8F,
	0x6193, 0x3C2A, 0x3C42, 0x48C7, 0x3489, 0x6771, 0x4C57, 0x5CCD,
	0x2725, 0x545B, 0x503B, 0x5B42, 0x21A0, 0x2534, 0x687E, 0x70E4,
	0x1618, 0x27D7, 0x0465
};

typedef struct {
	const uint16_t *p;
	const uint16_t *b;
	const uint16_t *R2;
	uint16_t p0i;
	size_t point_len;
} curve_params;

static inline const curve_params *
id_to_curve(int curve)
{
	static const curve_params pp[] = {
		{ P256_P, P256_B, P256_R2, 0x0001,  65 },
		{ P384_P, P384_B, P384_R2, 0x0001,  97 },
		{ P521_P, P521_B, P521_R2, 0x0001, 133 }
	};

	return &pp[curve - BR_EC_secp256r1];
}

#define I15_LEN   ((BR_MAX_EC_SIZE + 29) / 15)

/*
 * Type for a point in Jacobian coordinates:
 * -- three values, x, y and z, in Montgomery representation
 * -- affine coordinates are X = x / z^2 and Y = y / z^3
 * -- for the point at infinity, z = 0
 */
typedef struct {
	uint16_t c[3][I15_LEN];
} jacobian;

/*
 * We use a custom interpreter that uses a dozen registers, and
 * only six operations:
 *    MSET(d, a)       copy a into d
 *    MADD(d, a)       d = d+a (modular)
 *    MSUB(d, a)       d = d-a (modular)
 *    MMUL(d, a, b)    d = a*b (Montgomery multiplication)
 *    MINV(d, a, b)    invert d modulo p; a and b are used as scratch registers
 *    MTZ(d)           clear return value if d = 0
 * Destination of MMUL (d) must be distinct from operands (a and b).
 * There is no such constraint for MSUB and MADD.
 *
 * Registers include the operand coordinates, and temporaries.
 */
#define MSET(d, a)      (0x0000 + ((d) << 8) + ((a) << 4))
#define MADD(d, a)      (0x1000 + ((d) << 8) + ((a) << 4))
#define MSUB(d, a)      (0x2000 + ((d) << 8) + ((a) << 4))
#define MMUL(d, a, b)   (0x3000 + ((d) << 8) + ((a) << 4) + (b))
#define MINV(d, a, b)   (0x4000 + ((d) << 8) + ((a) << 4) + (b))
#define MTZ(d)          (0x5000 + ((d) << 8))
#define ENDCODE         0

/*
 * Registers for the input operands.
 */
#define P1x    0
#define P1y    1
#define P1z    2
#define P2x    3
#define P2y    4
#define P2z    5

/*
 * Alternate names for the first input operand.
 */
#define Px     0
#define Py     1
#define Pz     2

/*
 * Temporaries.
 */
#define t1     6
#define t2     7
#define t3     8
#define t4     9
#define t5    10
#define t6    11
#define t7    12

/*
 * Extra scratch registers available when there is no second operand (e.g.
 * for "double" and "affine").
 */
#define t8     3
#define t9     4
#define t10    5

/*
 * Doubling formulas are:
 *
 *   s = 4*x*y^2
 *   m = 3*(x + z^2)*(x - z^2)
 *   x' = m^2 - 2*s
 *   y' = m*(s - x') - 8*y^4
 *   z' = 2*y*z
 *
 * If y = 0 (P has order 2) then this yields infinity (z' = 0), as it
 * should. This case should not happen anyway, because our curves have
 * prime order, and thus do not contain any point of order 2.
 *
 * If P is infinity (z = 0), then again the formulas yield infinity,
 * which is correct. Thus, this code works for all points.
 *
 * Cost: 8 multiplications
 */
static const uint16_t code_double[] = {
	/*
	 * Compute z^2 (in t1).
	 */
	MMUL(t1, Pz, Pz),

	/*
	 * Compute x-z^2 (in t2) and then x+z^2 (in t1).
	 */
	MSET(t2, Px),
	MSUB(t2, t1),
	MADD(t1, Px),

	/*
	 * Compute m = 3*(x+z^2)*(x-z^2) (in t1).
	 */
	MMUL(t3, t1, t2),
	MSET(t1, t3),
	MADD(t1, t3),
	MADD(t1, t3),

	/*
	 * Compute s = 4*x*y^2 (in t2) and 2*y^2 (in t3).
	 */
	MMUL(t3, Py, Py),
	MADD(t3, t3),
	MMUL(t2, Px, t3),
	MADD(t2, t2),

	/*
	 * Compute x' = m^2 - 2*s.
	 */
	MMUL(Px, t1, t1),
	MSUB(Px, t2),
	MSUB(Px, t2),

	/*
	 * Compute z' = 2*y*z.
	 */
	MMUL(t4, Py, Pz),
	MSET(Pz, t4),
	MADD(Pz, t4),

	/*
	 * Compute y' = m*(s - x') - 8*y^4. Note that we already have
	 * 2*y^2 in t3.
	 */
	MSUB(t2, Px),
	MMUL(Py, t1, t2),
	MMUL(t4, t3, t3),
	MSUB(Py, t4),
	MSUB(Py, t4),

	ENDCODE
};

/*
 * Addtions formulas are:
 *
 *   u1 = x1 * z2^2
 *   u2 = x2 * z1^2
 *   s1 = y1 * z2^3
 *   s2 = y2 * z1^3
 *   h = u2 - u1
 *   r = s2 - s1
 *   x3 = r^2 - h^3 - 2 * u1 * h^2
 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
 *   z3 = h * z1 * z2
 *
 * If both P1 and P2 are infinity, then z1 == 0 and z2 == 0, implying that
 * z3 == 0, so the result is correct.
 * If either of P1 or P2 is infinity, but not both, then z3 == 0, which is
 * not correct.
 * h == 0 only if u1 == u2; this happens in two cases:
 * -- if s1 == s2 then P1 and/or P2 is infinity, or P1 == P2
 * -- if s1 != s2 then P1 + P2 == infinity (but neither P1 or P2 is infinity)
 *
 * Thus, the following situations are not handled correctly:
 * -- P1 = 0 and P2 != 0
 * -- P1 != 0 and P2 = 0
 * -- P1 = P2
 * All other cases are properly computed. However, even in "incorrect"
 * situations, the three coordinates still are properly formed field
 * elements.
 *
 * The returned flag is cleared if r == 0. This happens in the following
 * cases:
 * -- Both points are on the same horizontal line (same Y coordinate).
 * -- Both points are infinity.
 * -- One point is infinity and the other is on line Y = 0.
 * The third case cannot happen with our curves (there is no valid point
 * on line Y = 0 since that would be a point of order 2). If the two
 * source points are non-infinity, then remains only the case where the
 * two points are on the same horizontal line.
 *
 * This allows us to detect the "P1 == P2" case, assuming that P1 != 0 and
 * P2 != 0:
 * -- If the returned value is not the point at infinity, then it was properly
 * computed.
 * -- Otherwise, if the returned flag is 1, then P1+P2 = 0, and the result
 * is indeed the point at infinity.
 * -- Otherwise (result is infinity, flag is 0), then P1 = P2 and we should
 * use the 'double' code.
 *
 * Cost: 16 multiplications
 */
static const uint16_t code_add[] = {
	/*
	 * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
	 */
	MMUL(t3, P2z, P2z),
	MMUL(t1, P1x, t3),
	MMUL(t4, P2z, t3),
	MMUL(t3, P1y, t4),

	/*
	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
	 */
	MMUL(t4, P1z, P1z),
	MMUL(t2, P2x, t4),
	MMUL(t5, P1z, t4),
	MMUL(t4, P2y, t5),

	/*
	 * Compute h = u2 - u1 (in t2) and r = s2 - s1 (in t4).
	 */
	MSUB(t2, t1),
	MSUB(t4, t3),

	/*
	 * Report cases where r = 0 through the returned flag.
	 */
	MTZ(t4),

	/*
	 * Compute u1*h^2 (in t6) and h^3 (in t5).
	 */
	MMUL(t7, t2, t2),
	MMUL(t6, t1, t7),
	MMUL(t5, t7, t2),

	/*
	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
	 * t1 and t7 can be used as scratch registers.
	 */
	MMUL(P1x, t4, t4),
	MSUB(P1x, t5),
	MSUB(P1x, t6),
	MSUB(P1x, t6),

	/*
	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
	 */
	MSUB(t6, P1x),
	MMUL(P1y, t4, t6),
	MMUL(t1, t5, t3),
	MSUB(P1y, t1),

	/*
	 * Compute z3 = h*z1*z2.
	 */
	MMUL(t1, P1z, P2z),
	MMUL(P1z, t1, t2),

	ENDCODE
};

/*
 * Check that the point is on the curve. This code snippet assumes the
 * following conventions:
 * -- Coordinates x and y have been freshly decoded in P1 (but not
 * converted to Montgomery coordinates yet).
 * -- P2x, P2y and P2z are set to, respectively, R^2, b*R and 1.
 */
static const uint16_t code_check[] = {

	/* Convert x and y to Montgomery representation. */
	MMUL(t1, P1x, P2x),
	MMUL(t2, P1y, P2x),
	MSET(P1x, t1),
	MSET(P1y, t2),

	/* Compute x^3 in t1. */
	MMUL(t2, P1x, P1x),
	MMUL(t1, P1x, t2),

	/* Subtract 3*x from t1. */
	MSUB(t1, P1x),
	MSUB(t1, P1x),
	MSUB(t1, P1x),

	/* Add b. */
	MADD(t1, P2y),

	/* Compute y^2 in t2. */
	MMUL(t2, P1y, P1y),

	/* Compare y^2 with x^3 - 3*x + b; they must match. */
	MSUB(t1, t2),
	MTZ(t1),

	/* Set z to 1 (in Montgomery representation). */
	MMUL(P1z, P2x, P2z),

	ENDCODE
};

/*
 * Conversion back to affine coordinates. This code snippet assumes that
 * the z coordinate of P2 is set to 1 (not in Montgomery representation).
 */
static const uint16_t code_affine[] = {

	/* Save z*R in t1. */
	MSET(t1, P1z),

	/* Compute z^3 in t2. */
	MMUL(t2, P1z, P1z),
	MMUL(t3, P1z, t2),
	MMUL(t2, t3, P2z),

	/* Invert to (1/z^3) in t2. */
	MINV(t2, t3, t4),

	/* Compute y. */
	MSET(t3, P1y),
	MMUL(P1y, t2, t3),

	/* Compute (1/z^2) in t3. */
	MMUL(t3, t2, t1),

	/* Compute x. */
	MSET(t2, P1x),
	MMUL(P1x, t2, t3),

	ENDCODE
};

static uint32_t
run_code(jacobian *P1, const jacobian *P2,
	const curve_params *cc, const uint16_t *code)
{
	uint32_t r;
	uint16_t t[13][I15_LEN];
	size_t u;

	r = 1;

	/*
	 * Copy the two operands in the dedicated registers.
	 */
	memcpy(t[P1x], P1->c, 3 * I15_LEN * sizeof(uint16_t));
	memcpy(t[P2x], P2->c, 3 * I15_LEN * sizeof(uint16_t));

	/*
	 * Run formulas.
	 */
	for (u = 0;; u ++) {
		unsigned op, d, a, b;

		op = code[u];
		if (op == 0) {
			break;
		}
		d = (op >> 8) & 0x0F;
		a = (op >> 4) & 0x0F;
		b = op & 0x0F;
		op >>= 12;
		switch (op) {
			uint32_t ctl;
			size_t plen;
			unsigned char tp[(BR_MAX_EC_SIZE + 7) >> 3];

		case 0:
			memcpy(t[d], t[a], I15_LEN * sizeof(uint16_t));
			break;
		case 1:
			ctl = br_i15_add(t[d], t[a], 1);
			ctl |= NOT(br_i15_sub(t[d], cc->p, 0));
			br_i15_sub(t[d], cc->p, ctl);
			break;
		case 2:
			br_i15_add(t[d], cc->p, br_i15_sub(t[d], t[a], 1));
			break;
		case 3:
			br_i15_montymul(t[d], t[a], t[b], cc->p, cc->p0i);
			break;
		case 4:
			plen = (cc->p[0] - (cc->p[0] >> 4) + 7) >> 3;
			br_i15_encode(tp, plen, cc->p);
			tp[plen - 1] -= 2;
			br_i15_modpow(t[d], tp, plen,
				cc->p, cc->p0i, t[a], t[b]);
			break;
		default:
			r &= ~br_i15_iszero(t[d]);
			break;
		}
	}

	/*
	 * Copy back result.
	 */
	memcpy(P1->c, t[P1x], 3 * I15_LEN * sizeof(uint16_t));
	return r;
}

static void
set_one(uint16_t *x, const uint16_t *p)
{
	size_t plen;

	plen = (p[0] + 31) >> 4;
	memset(x, 0, plen * sizeof *x);
	x[0] = p[0];
	x[1] = 0x0001;
}

static void
point_zero(jacobian *P, const curve_params *cc)
{
	memset(P, 0, sizeof *P);
	P->c[0][0] = P->c[1][0] = P->c[2][0] = cc->p[0];
}

static inline void
point_double(jacobian *P, const curve_params *cc)
{
	run_code(P, P, cc, code_double);
}

static inline uint32_t
point_add(jacobian *P1, const jacobian *P2, const curve_params *cc)
{
	return run_code(P1, P2, cc, code_add);
}

static void
point_mul(jacobian *P, const unsigned char *x, size_t xlen,
	const curve_params *cc)
{
	/*
	 * We do a simple double-and-add ladder with a 2-bit window
	 * to make only one add every two doublings. We thus first
	 * precompute 2P and 3P in some local buffers.
	 *
	 * We always perform two doublings and one addition; the
	 * addition is with P, 2P and 3P and is done in a temporary
	 * array.
	 *
	 * The addition code cannot handle cases where one of the
	 * operands is infinity, which is the case at the start of the
	 * ladder. We therefore need to maintain a flag that controls
	 * this situation.
	 */
	uint32_t qz;
	jacobian P2, P3, Q, T, U;

	memcpy(&P2, P, sizeof P2);
	point_double(&P2, cc);
	memcpy(&P3, P, sizeof P3);
	point_add(&P3, &P2, cc);

	point_zero(&Q, cc);
	qz = 1;
	while (xlen -- > 0) {
		int k;

		for (k = 6; k >= 0; k -= 2) {
			uint32_t bits;
			uint32_t bnz;

			point_double(&Q, cc);
			point_double(&Q, cc);
			memcpy(&T, P, sizeof T);
			memcpy(&U, &Q, sizeof U);
			bits = (*x >> k) & (uint32_t)3;
			bnz = NEQ(bits, 0);
			CCOPY(EQ(bits, 2), &T, &P2, sizeof T);
			CCOPY(EQ(bits, 3), &T, &P3, sizeof T);
			point_add(&U, &T, cc);
			CCOPY(bnz & qz, &Q, &T, sizeof Q);
			CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
			qz &= ~bnz;
		}
		x ++;
	}
	memcpy(P, &Q, sizeof Q);
}

/*
 * Decode point into Jacobian coordinates. This function does not support
 * the point at infinity. If the point is invalid then this returns 0, but
 * the coordinates are still set to properly formed field elements.
 */
static uint32_t
point_decode(jacobian *P, const void *src, size_t len, const curve_params *cc)
{
	/*
	 * Points must use uncompressed format:
	 * -- first byte is 0x04;
	 * -- coordinates X and Y use unsigned big-endian, with the same
	 *    length as the field modulus.
	 *
	 * We don't support hybrid format (uncompressed, but first byte
	 * has value 0x06 or 0x07, depending on the least significant bit
	 * of Y) because it is rather useless, and explicitly forbidden
	 * by PKIX (RFC 5480, section 2.2).
	 *
	 * We don't support compressed format either, because it is not
	 * much used in practice (there are or were patent-related
	 * concerns about point compression, which explains the lack of
	 * generalised support). Also, point compression support would
	 * need a bit more code.
	 */
	const unsigned char *buf;
	size_t plen, zlen;
	uint32_t r;
	jacobian Q;

	buf = src;
	point_zero(P, cc);
	plen = (cc->p[0] - (cc->p[0] >> 4) + 7) >> 3;
	if (len != 1 + (plen << 1)) {
		return 0;
	}
	r = br_i15_decode_mod(P->c[0], buf + 1, plen, cc->p);
	r &= br_i15_decode_mod(P->c[1], buf + 1 + plen, plen, cc->p);

	/*
	 * Check first byte.
	 */
	r &= EQ(buf[0], 0x04);
	/* obsolete
	r &= EQ(buf[0], 0x04) | (EQ(buf[0] & 0xFE, 0x06)
		& ~(uint32_t)(buf[0] ^ buf[plen << 1]));
	*/

	/*
	 * Convert coordinates and check that the point is valid.
	 */
	zlen = ((cc->p[0] + 31) >> 4) * sizeof(uint16_t);
	memcpy(Q.c[0], cc->R2, zlen);
	memcpy(Q.c[1], cc->b, zlen);
	set_one(Q.c[2], cc->p);
	r &= ~run_code(P, &Q, cc, code_check);
	return r;
}

/*
 * Encode a point. This method assumes that the point is correct and is
 * not the point at infinity. Encoded size is always 1+2*plen, where
 * plen is the field modulus length, in bytes.
 */
static void
point_encode(void *dst, const jacobian *P, const curve_params *cc)
{
	unsigned char *buf;
	size_t plen;
	jacobian Q, T;

	buf = dst;
	plen = (cc->p[0] - (cc->p[0] >> 4) + 7) >> 3;
	buf[0] = 0x04;
	memcpy(&Q, P, sizeof *P);
	set_one(T.c[2], cc->p);
	run_code(&Q, &T, cc, code_affine);
	br_i15_encode(buf + 1, plen, Q.c[0]);
	br_i15_encode(buf + 1 + plen, plen, Q.c[1]);
}

static const br_ec_curve_def *
id_to_curve_def(int curve)
{
	switch (curve) {
	case BR_EC_secp256r1:
		return &br_secp256r1;
	case BR_EC_secp384r1:
		return &br_secp384r1;
	case BR_EC_secp521r1:
		return &br_secp521r1;
	}
	return NULL;
}

static const unsigned char *
api_generator(int curve, size_t *len)
{
	const br_ec_curve_def *cd;

	cd = id_to_curve_def(curve);
	*len = cd->generator_len;
	return cd->generator;
}

static const unsigned char *
api_order(int curve, size_t *len)
{
	const br_ec_curve_def *cd;

	cd = id_to_curve_def(curve);
	*len = cd->order_len;
	return cd->order;
}

static size_t
api_xoff(int curve, size_t *len)
{
	api_generator(curve, len);
	*len >>= 1;
	return 1;
}

static uint32_t
api_mul(unsigned char *G, size_t Glen,
	const unsigned char *x, size_t xlen, int curve)
{
	uint32_t r;
	const curve_params *cc;
	jacobian P;

	cc = id_to_curve(curve);
	r = point_decode(&P, G, Glen, cc);
	point_mul(&P, x, xlen, cc);
	if (Glen == cc->point_len) {
		point_encode(G, &P, cc);
	}
	return r;
}

static size_t
api_mulgen(unsigned char *R,
	const unsigned char *x, size_t xlen, int curve)
{
	const unsigned char *G;
	size_t Glen;

	G = api_generator(curve, &Glen);
	memcpy(R, G, Glen);
	api_mul(R, Glen, x, xlen, curve);
	return Glen;
}

static uint32_t
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
	const unsigned char *x, size_t xlen,
	const unsigned char *y, size_t ylen, int curve)
{
	uint32_t r, t, z;
	const curve_params *cc;
	jacobian P, Q;

	/*
	 * TODO: see about merging the two ladders. Right now, we do
	 * two independent point multiplications, which is a bit
	 * wasteful of CPU resources (but yields short code).
	 */

	cc = id_to_curve(curve);
	r = point_decode(&P, A, len, cc);
	if (B == NULL) {
		size_t Glen;

		B = api_generator(curve, &Glen);
	}
	r &= point_decode(&Q, B, len, cc);
	point_mul(&P, x, xlen, cc);
	point_mul(&Q, y, ylen, cc);

	/*
	 * We want to compute P+Q. Since the base points A and B are distinct
	 * from infinity, and the multipliers are non-zero and lower than the
	 * curve order, then we know that P and Q are non-infinity. This
	 * leaves two special situations to test for:
	 * -- If P = Q then we must use point_double().
	 * -- If P+Q = 0 then we must report an error.
	 */
	t = point_add(&P, &Q, cc);
	point_double(&Q, cc);
	z = br_i15_iszero(P.c[2]);

	/*
	 * If z is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
	 * have the following:
	 *
	 *   z = 0, t = 0   return P (normal addition)
	 *   z = 0, t = 1   return P (normal addition)
	 *   z = 1, t = 0   return Q (a 'double' case)
	 *   z = 1, t = 1   report an error (P+Q = 0)
	 */
	CCOPY(z & ~t, &P, &Q, sizeof Q);
	point_encode(A, &P, cc);
	r &= ~(z & t);

	return r;
}

/* see bearssl_ec.h */
const br_ec_impl br_ec_prime_i15 = {
	(uint32_t)0x03800000,
	&api_generator,
	&api_order,
	&api_xoff,
	&api_mul,
	&api_mulgen,
	&api_muladd
};