/*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "inner.h"
#define I31_LEN ((BR_MAX_EC_SIZE + 61) / 31)
#define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
#define ORDER_LEN ((BR_MAX_EC_SIZE + 7) >> 3)
/* see bearssl_ec.h */
size_t
br_ecdsa_i31_sign_raw(const br_ec_impl *impl,
const br_hash_class *hf, const void *hash_value,
const br_ec_private_key *sk, void *sig)
{
/*
* IMPORTANT: this code is fit only for curves with a prime
* order. This is needed so that modular reduction of the X
* coordinate of a point can be done with a simple subtraction.
* We also rely on the last byte of the curve order to be distinct
* from 0 and 1.
*/
const br_ec_curve_def *cd;
uint32_t n[I31_LEN], r[I31_LEN], s[I31_LEN], x[I31_LEN];
uint32_t m[I31_LEN], k[I31_LEN], t1[I31_LEN], t2[I31_LEN];
unsigned char tt[ORDER_LEN << 1];
unsigned char eU[POINT_LEN];
size_t hash_len, nlen, ulen;
uint32_t n0i, ctl;
br_hmac_drbg_context drbg;
/*
* If the curve is not supported, then exit with an error.
*/
if (((impl->supported_curves >> sk->curve) & 1) == 0) {
return 0;
}
/*
* Get the curve parameters (generator and order).
*/
switch (sk->curve) {
case BR_EC_secp256r1:
cd = &br_secp256r1;
break;
case BR_EC_secp384r1:
cd = &br_secp384r1;
break;
case BR_EC_secp521r1:
cd = &br_secp521r1;
break;
default:
return 0;
}
/*
* Get modulus.
*/
nlen = cd->order_len;
br_i31_decode(n, cd->order, nlen);
n0i = br_i31_ninv31(n[1]);
/*
* Get private key as an i31 integer. This also checks that the
* private key is well-defined (not zero, and less than the
* curve order).
*/
if (!br_i31_decode_mod(x, sk->x, sk->xlen, n)) {
return 0;
}
if (br_i31_iszero(x)) {
return 0;
}
/*
* Get hash length.
*/
hash_len = (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
/*
* Truncate and reduce the hash value modulo the curve order.
*/
br_ecdsa_i31_bits2int(m, hash_value, hash_len, n[0]);
br_i31_sub(m, n, br_i31_sub(m, n, 0) ^ 1);
/*
* RFC 6979 generation of the "k" value.
*
* The process uses HMAC_DRBG (with the hash function used to
* process the message that is to be signed). The seed is the
* concatenation of the encodings of the private key and
* the hash value (after truncation and modular reduction).
*/
br_i31_encode(tt, nlen, x);
br_i31_encode(tt + nlen, nlen, m);
br_hmac_drbg_init(&drbg, hf, tt, nlen << 1);
for (;;) {
br_hmac_drbg_generate(&drbg, tt, nlen);
br_ecdsa_i31_bits2int(k, tt, nlen, n[0]);
if (br_i31_iszero(k)) {
continue;
}
if (br_i31_sub(k, n, 0)) {
break;
}
}
/*
* Compute k*G and extract the X coordinate, then reduce it
* modulo the curve order. Since we support only curves with
* prime order, that reduction is only a matter of computing
* a subtraction.
*/
br_i31_encode(tt, nlen, k);
ulen = impl->mulgen(eU, tt, nlen, sk->curve);
br_i31_zero(r, n[0]);
br_i31_decode(r, &eU[1], ulen >> 1);
r[0] = n[0];
br_i31_sub(r, n, br_i31_sub(r, n, 0) ^ 1);
/*
* Compute 1/k in double-Montgomery representation. We do so by
* first converting _from_ Montgomery representation (twice),
* then using a modular exponentiation.
*/
br_i31_from_monty(k, n, n0i);
br_i31_from_monty(k, n, n0i);
memcpy(tt, cd->order, nlen);
tt[nlen - 1] -= 2;
br_i31_modpow(k, tt, nlen, n, n0i, t1, t2);
/*
* Compute s = (m+xr)/k (mod n).
* The k[] array contains R^2/k (double-Montgomery representation);
* we thus can use direct Montgomery multiplications and conversions
* from Montgomery, avoiding any call to br_i31_to_monty() (which
* is slower).
*/
br_i31_from_monty(m, n, n0i);
br_i31_montymul(t1, x, r, n, n0i);
ctl = br_i31_add(t1, m, 1);
ctl |= br_i31_sub(t1, n, 0) ^ 1;
br_i31_sub(t1, n, ctl);
br_i31_montymul(s, t1, k, n, n0i);
/*
* Encode r and s in the signature.
*/
br_i31_encode(sig, nlen, r);
br_i31_encode((unsigned char *)sig + nlen, nlen, s);
return nlen << 1;
}