Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
 * Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

#if BR_INT128 || BR_UMUL128

#if BR_INT128

/*
 * Compute x*y+v1+v2. Operands are 64-bit, and result is 128-bit, with
 * high word in "hi" and low word in "lo".
 */
#define FMA1(hi, lo, x, y, v1, v2)   do { \
		unsigned __int128 fmaz; \
		fmaz = (unsigned __int128)(x) * (unsigned __int128)(y) \
			+ (unsigned __int128)(v1) + (unsigned __int128)(v2); \
		(hi) = (uint64_t)(fmaz >> 64); \
		(lo) = (uint64_t)fmaz; \
	} while (0)

/*
 * Compute x1*y1+x2*y2+v1+v2. Operands are 64-bit, and result is 128-bit,
 * with high word in "hi" and low word in "lo".
 *
 * Callers should ensure that the two inner products, and the v1 and v2
 * operands, are multiple of 4 (this is not used by this specific definition
 * but may help other implementations).
 */
#define FMA2(hi, lo, x1, y1, x2, y2, v1, v2)   do { \
		unsigned __int128 fmaz; \
		fmaz = (unsigned __int128)(x1) * (unsigned __int128)(y1) \
			+ (unsigned __int128)(x2) * (unsigned __int128)(y2) \
			+ (unsigned __int128)(v1) + (unsigned __int128)(v2); \
		(hi) = (uint64_t)(fmaz >> 64); \
		(lo) = (uint64_t)fmaz; \
	} while (0)

#elif BR_UMUL128

#include <intrin.h>

#define FMA1(hi, lo, x, y, v1, v2)   do { \
		uint64_t fmahi, fmalo; \
		unsigned char fmacc; \
		fmalo = _umul128((x), (y), &fmahi); \
		fmacc = _addcarry_u64(0, fmalo, (v1), &fmalo); \
		_addcarry_u64(fmacc, fmahi, 0, &fmahi); \
		fmacc = _addcarry_u64(0, fmalo, (v2), &(lo)); \
		_addcarry_u64(fmacc, fmahi, 0, &(hi)); \
	} while (0)

/*
 * Normally we should use _addcarry_u64() for FMA2 too, but it makes
 * Visual Studio crash. Instead we use this version, which leverages
 * the fact that the vx operands, and the products, are multiple of 4.
 * This is unfortunately slower.
 */
#define FMA2(hi, lo, x1, y1, x2, y2, v1, v2)   do { \
		uint64_t fma1hi, fma1lo; \
		uint64_t fma2hi, fma2lo; \
		uint64_t fmatt; \
		fma1lo = _umul128((x1), (y1), &fma1hi); \
		fma2lo = _umul128((x2), (y2), &fma2hi); \
		fmatt = (fma1lo >> 2) + (fma2lo >> 2) \
			+ ((v1) >> 2) + ((v2) >> 2); \
		(lo) = fmatt << 2; \
		(hi) = fma1hi + fma2hi + (fmatt >> 62); \
	} while (0)

/*
 * The FMA2 macro definition we would prefer to use, but it triggers
 * an internal compiler error in Visual Studio 2015.
 *
#define FMA2(hi, lo, x1, y1, x2, y2, v1, v2)   do { \
		uint64_t fma1hi, fma1lo; \
		uint64_t fma2hi, fma2lo; \
		unsigned char fmacc; \
		fma1lo = _umul128((x1), (y1), &fma1hi); \
		fma2lo = _umul128((x2), (y2), &fma2hi); \
		fmacc = _addcarry_u64(0, fma1lo, (v1), &fma1lo); \
		_addcarry_u64(fmacc, fma1hi, 0, &fma1hi); \
		fmacc = _addcarry_u64(0, fma2lo, (v2), &fma2lo); \
		_addcarry_u64(fmacc, fma2hi, 0, &fma2hi); \
		fmacc = _addcarry_u64(0, fma1lo, fma2lo, &(lo)); \
		_addcarry_u64(fmacc, fma1hi, fma2hi, &(hi)); \
	} while (0)
 */

#endif

#define MASK62           ((uint64_t)0x3FFFFFFFFFFFFFFF)
#define MUL62_lo(x, y)   (((uint64_t)(x) * (uint64_t)(y)) & MASK62)

/*
 * Subtract b from a, and return the final carry. If 'ctl32' is 0, then
 * a[] is kept unmodified, but the final carry is still computed and
 * returned.
 */
static uint32_t
i62_sub(uint64_t *a, const uint64_t *b, size_t num, uint32_t ctl32)
{
	uint64_t cc, mask;
	size_t u;

	cc = 0;
	ctl32 = -ctl32;
	mask = (uint64_t)ctl32 | ((uint64_t)ctl32 << 32);
	for (u = 0; u < num; u ++) {
		uint64_t aw, bw, dw;

		aw = a[u];
		bw = b[u];
		dw = aw - bw - cc;
		cc = dw >> 63;
		dw &= MASK62;
		a[u] = aw ^ (mask & (dw ^ aw));
	}
	return (uint32_t)cc;
}

/*
 * Montgomery multiplication, over arrays of 62-bit values. The
 * destination array (d) must be distinct from the other operands
 * (x, y and m). All arrays are in little-endian format (least
 * significant word comes first) over 'num' words.
 */
static void
montymul(uint64_t *d, const uint64_t *x, const uint64_t *y,
	const uint64_t *m, size_t num, uint64_t m0i)
{
	uint64_t dh;
	size_t u, num4;

	num4 = 1 + ((num - 1) & ~(size_t)3);
	memset(d, 0, num * sizeof *d);
	dh = 0;
	for (u = 0; u < num; u ++) {
		size_t v;
		uint64_t f, xu;
		uint64_t r, zh;
		uint64_t hi, lo;

		xu = x[u] << 2;
		f = MUL62_lo(d[0] + MUL62_lo(x[u], y[0]), m0i) << 2;

		FMA2(hi, lo, xu, y[0], f, m[0], d[0] << 2, 0);
		r = hi;

		for (v = 1; v < num4; v += 4) {
			FMA2(hi, lo, xu, y[v + 0],
				f, m[v + 0], d[v + 0] << 2, r << 2);
			r = hi + (r >> 62);
			d[v - 1] = lo >> 2;
			FMA2(hi, lo, xu, y[v + 1],
				f, m[v + 1], d[v + 1] << 2, r << 2);
			r = hi + (r >> 62);
			d[v + 0] = lo >> 2;
			FMA2(hi, lo, xu, y[v + 2],
				f, m[v + 2], d[v + 2] << 2, r << 2);
			r = hi + (r >> 62);
			d[v + 1] = lo >> 2;
			FMA2(hi, lo, xu, y[v + 3],
				f, m[v + 3], d[v + 3] << 2, r << 2);
			r = hi + (r >> 62);
			d[v + 2] = lo >> 2;
		}
		for (; v < num; v ++) {
			FMA2(hi, lo, xu, y[v], f, m[v], d[v] << 2, r << 2);
			r = hi + (r >> 62);
			d[v - 1] = lo >> 2;
		}

		zh = dh + r;
		d[num - 1] = zh & MASK62;
		dh = zh >> 62;
	}
	i62_sub(d, m, num, (uint32_t)dh | NOT(i62_sub(d, m, num, 0)));
}

/*
 * Conversion back from Montgomery representation.
 */
static void
frommonty(uint64_t *x, const uint64_t *m, size_t num, uint64_t m0i)
{
	size_t u, v;

	for (u = 0; u < num; u ++) {
		uint64_t f, cc;

		f = MUL62_lo(x[0], m0i) << 2;
		cc = 0;
		for (v = 0; v < num; v ++) {
			uint64_t hi, lo;

			FMA1(hi, lo, f, m[v], x[v] << 2, cc);
			cc = hi << 2;
			if (v != 0) {
				x[v - 1] = lo >> 2;
			}
		}
		x[num - 1] = cc >> 2;
	}
	i62_sub(x, m, num, NOT(i62_sub(x, m, num, 0)));
}

/* see inner.h */
uint32_t
br_i62_modpow_opt(uint32_t *x31, const unsigned char *e, size_t elen,
	const uint32_t *m31, uint32_t m0i31, uint64_t *tmp, size_t twlen)
{
	size_t u, mw31num, mw62num;
	uint64_t *x, *m, *t1, *t2;
	uint64_t m0i;
	uint32_t acc;
	int win_len, acc_len;

	/*
	 * Get modulus size, in words.
	 */
	mw31num = (m31[0] + 31) >> 5;
	mw62num = (mw31num + 1) >> 1;

	/*
	 * In order to apply this function, we must have enough room to
	 * copy the operand and modulus into the temporary array, along
	 * with at least two temporaries. If there is not enough room,
	 * switch to br_i31_modpow(). We also use br_i31_modpow() if the
	 * modulus length is not at least four words (94 bits or more).
	 */
	if (mw31num < 4 || (mw62num << 2) > twlen) {
		/*
		 * We assume here that we can split an aligned uint64_t
		 * into two properly aligned uint32_t. Since both types
		 * are supposed to have an exact width with no padding,
		 * then this property must hold.
		 */
		size_t txlen;

		txlen = mw31num + 1;
		if (twlen < txlen) {
			return 0;
		}
		br_i31_modpow(x31, e, elen, m31, m0i31,
			(uint32_t *)tmp, (uint32_t *)tmp + txlen);
		return 1;
	}

	/*
	 * Convert x to Montgomery representation: this means that
	 * we replace x with x*2^z mod m, where z is the smallest multiple
	 * of the word size such that 2^z >= m. We want to reuse the 31-bit
	 * functions here (for constant-time operation), but we need z
	 * for a 62-bit word size.
	 */
	for (u = 0; u < mw62num; u ++) {
		br_i31_muladd_small(x31, 0, m31);
		br_i31_muladd_small(x31, 0, m31);
	}

	/*
	 * Assemble operands into arrays of 62-bit words. Note that
	 * all the arrays of 62-bit words that we will handle here
	 * are without any leading size word.
	 *
	 * We also adjust tmp and twlen to account for the words used
	 * for these extra arrays.
	 */
	m = tmp;
	x = tmp + mw62num;
	tmp += (mw62num << 1);
	twlen -= (mw62num << 1);
	for (u = 0; u < mw31num; u += 2) {
		size_t v;

		v = u >> 1;
		if ((u + 1) == mw31num) {
			m[v] = (uint64_t)m31[u + 1];
			x[v] = (uint64_t)x31[u + 1];
		} else {
			m[v] = (uint64_t)m31[u + 1]
				+ ((uint64_t)m31[u + 2] << 31);
			x[v] = (uint64_t)x31[u + 1]
				+ ((uint64_t)x31[u + 2] << 31);
		}
	}

	/*
	 * Compute window size. We support windows up to 5 bits; for a
	 * window of size k bits, we need 2^k+1 temporaries (for k = 1,
	 * we use special code that uses only 2 temporaries).
	 */
	for (win_len = 5; win_len > 1; win_len --) {
		if ((((uint32_t)1 << win_len) + 1) * mw62num <= twlen) {
			break;
		}
	}

	t1 = tmp;
	t2 = tmp + mw62num;

	/*
	 * Compute m0i, which is equal to -(1/m0) mod 2^62. We were
	 * provided with m0i31, which already fulfills this property
	 * modulo 2^31; the single expression below is then sufficient.
	 */
	m0i = (uint64_t)m0i31;
	m0i = MUL62_lo(m0i, (uint64_t)2 + MUL62_lo(m0i, m[0]));

	/*
	 * Compute window contents. If the window has size one bit only,
	 * then t2 is set to x; otherwise, t2[0] is left untouched, and
	 * t2[k] is set to x^k (for k >= 1).
	 */
	if (win_len == 1) {
		memcpy(t2, x, mw62num * sizeof *x);
	} else {
		uint64_t *base;

		memcpy(t2 + mw62num, x, mw62num * sizeof *x);
		base = t2 + mw62num;
		for (u = 2; u < ((unsigned)1 << win_len); u ++) {
			montymul(base + mw62num, base, x, m, mw62num, m0i);
			base += mw62num;
		}
	}

	/*
	 * Set x to 1, in Montgomery representation. We again use the
	 * 31-bit code.
	 */
	br_i31_zero(x31, m31[0]);
	x31[(m31[0] + 31) >> 5] = 1;
	br_i31_muladd_small(x31, 0, m31);
	if (mw31num & 1) {
		br_i31_muladd_small(x31, 0, m31);
	}
	for (u = 0; u < mw31num; u += 2) {
		size_t v;

		v = u >> 1;
		if ((u + 1) == mw31num) {
			x[v] = (uint64_t)x31[u + 1];
		} else {
			x[v] = (uint64_t)x31[u + 1]
				+ ((uint64_t)x31[u + 2] << 31);
		}
	}

	/*
	 * We process bits from most to least significant. At each
	 * loop iteration, we have acc_len bits in acc.
	 */
	acc = 0;
	acc_len = 0;
	while (acc_len > 0 || elen > 0) {
		int i, k;
		uint32_t bits;
		uint64_t mask1, mask2;

		/*
		 * Get the next bits.
		 */
		k = win_len;
		if (acc_len < win_len) {
			if (elen > 0) {
				acc = (acc << 8) | *e ++;
				elen --;
				acc_len += 8;
			} else {
				k = acc_len;
			}
		}
		bits = (acc >> (acc_len - k)) & (((uint32_t)1 << k) - 1);
		acc_len -= k;

		/*
		 * We could get exactly k bits. Compute k squarings.
		 */
		for (i = 0; i < k; i ++) {
			montymul(t1, x, x, m, mw62num, m0i);
			memcpy(x, t1, mw62num * sizeof *x);
		}

		/*
		 * Window lookup: we want to set t2 to the window
		 * lookup value, assuming the bits are non-zero. If
		 * the window length is 1 bit only, then t2 is
		 * already set; otherwise, we do a constant-time lookup.
		 */
		if (win_len > 1) {
			uint64_t *base;

			memset(t2, 0, mw62num * sizeof *t2);
			base = t2 + mw62num;
			for (u = 1; u < ((uint32_t)1 << k); u ++) {
				uint64_t mask;
				size_t v;

				mask = -(uint64_t)EQ(u, bits);
				for (v = 0; v < mw62num; v ++) {
					t2[v] |= mask & base[v];
				}
				base += mw62num;
			}
		}

		/*
		 * Multiply with the looked-up value. We keep the product
		 * only if the exponent bits are not all-zero.
		 */
		montymul(t1, x, t2, m, mw62num, m0i);
		mask1 = -(uint64_t)EQ(bits, 0);
		mask2 = ~mask1;
		for (u = 0; u < mw62num; u ++) {
			x[u] = (mask1 & x[u]) | (mask2 & t1[u]);
		}
	}

	/*
	 * Convert back from Montgomery representation.
	 */
	frommonty(x, m, mw62num, m0i);

	/*
	 * Convert result into 31-bit words.
	 */
	for (u = 0; u < mw31num; u += 2) {
		uint64_t zw;

		zw = x[u >> 1];
		x31[u + 1] = (uint32_t)zw & 0x7FFFFFFF;
		if ((u + 1) < mw31num) {
			x31[u + 2] = (uint32_t)(zw >> 31);
		}
	}
	return 1;
}

#else

/* see inner.h */
uint32_t
br_i62_modpow_opt(uint32_t *x31, const unsigned char *e, size_t elen,
	const uint32_t *m31, uint32_t m0i31, uint64_t *tmp, size_t twlen)
{
	size_t mwlen;

	mwlen = (m31[0] + 63) >> 5;
	if (twlen < mwlen) {
		return 0;
	}
	return br_i31_modpow_opt(x31, e, elen, m31, m0i31,
		(uint32_t *)tmp, twlen << 1);
}

#endif

/* see inner.h */
uint32_t
br_i62_modpow_opt_as_i31(uint32_t *x31, const unsigned char *e, size_t elen,
	const uint32_t *m31, uint32_t m0i31, uint32_t *tmp, size_t twlen)
{
	/*
	 * As documented, this function expects the 'tmp' argument to be
	 * 64-bit aligned. This is OK since this function is internal (it
	 * is not part of BearSSL's public API).
	 */
	return br_i62_modpow_opt(x31, e, elen, m31, m0i31,
		(uint64_t *)tmp, twlen >> 1);
}