Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#define JEMALLOC_PAGES_C_
#include "jemalloc/internal/jemalloc_preamble.h"

#include "jemalloc/internal/pages.h"

#include "jemalloc/internal/jemalloc_internal_includes.h"

#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/malloc_io.h"

#ifdef JEMALLOC_SYSCTL_VM_OVERCOMMIT
#include <sys/sysctl.h>
#ifdef __FreeBSD__
#include <vm/vm_param.h>
#endif
#endif

/******************************************************************************/
/* Data. */

/* Actual operating system page size, detected during bootstrap, <= PAGE. */
static size_t	os_page;

#ifndef _WIN32
#  define PAGES_PROT_COMMIT (PROT_READ | PROT_WRITE)
#  define PAGES_PROT_DECOMMIT (PROT_NONE)
static int	mmap_flags;
#endif
static bool	os_overcommits;

const char *thp_mode_names[] = {
	"default",
	"always",
	"never",
	"not supported"
};
thp_mode_t opt_thp = THP_MODE_DEFAULT;
thp_mode_t init_system_thp_mode;

/* Runtime support for lazy purge. Irrelevant when !pages_can_purge_lazy. */
static bool pages_can_purge_lazy_runtime = true;

/******************************************************************************/
/*
 * Function prototypes for static functions that are referenced prior to
 * definition.
 */

static void os_pages_unmap(void *addr, size_t size);

/******************************************************************************/

static void *
os_pages_map(void *addr, size_t size, size_t alignment, bool *commit) {
	assert(ALIGNMENT_ADDR2BASE(addr, os_page) == addr);
	assert(ALIGNMENT_CEILING(size, os_page) == size);
	assert(size != 0);

	if (os_overcommits) {
		*commit = true;
	}

	void *ret;
#ifdef _WIN32
	/*
	 * If VirtualAlloc can't allocate at the given address when one is
	 * given, it fails and returns NULL.
	 */
	ret = VirtualAlloc(addr, size, MEM_RESERVE | (*commit ? MEM_COMMIT : 0),
	    PAGE_READWRITE);
#else
	/*
	 * We don't use MAP_FIXED here, because it can cause the *replacement*
	 * of existing mappings, and we only want to create new mappings.
	 */
	{
		int prot = *commit ? PAGES_PROT_COMMIT : PAGES_PROT_DECOMMIT;

		ret = mmap(addr, size, prot, mmap_flags, -1, 0);
	}
	assert(ret != NULL);

	if (ret == MAP_FAILED) {
		ret = NULL;
	} else if (addr != NULL && ret != addr) {
		/*
		 * We succeeded in mapping memory, but not in the right place.
		 */
		os_pages_unmap(ret, size);
		ret = NULL;
	}
#endif
	assert(ret == NULL || (addr == NULL && ret != addr) || (addr != NULL &&
	    ret == addr));
	return ret;
}

static void *
os_pages_trim(void *addr, size_t alloc_size, size_t leadsize, size_t size,
    bool *commit) {
	void *ret = (void *)((uintptr_t)addr + leadsize);

	assert(alloc_size >= leadsize + size);
#ifdef _WIN32
	os_pages_unmap(addr, alloc_size);
	void *new_addr = os_pages_map(ret, size, PAGE, commit);
	if (new_addr == ret) {
		return ret;
	}
	if (new_addr != NULL) {
		os_pages_unmap(new_addr, size);
	}
	return NULL;
#else
	size_t trailsize = alloc_size - leadsize - size;

	if (leadsize != 0) {
		os_pages_unmap(addr, leadsize);
	}
	if (trailsize != 0) {
		os_pages_unmap((void *)((uintptr_t)ret + size), trailsize);
	}
	return ret;
#endif
}

static void
os_pages_unmap(void *addr, size_t size) {
	assert(ALIGNMENT_ADDR2BASE(addr, os_page) == addr);
	assert(ALIGNMENT_CEILING(size, os_page) == size);

#ifdef _WIN32
	if (VirtualFree(addr, 0, MEM_RELEASE) == 0)
#else
	if (munmap(addr, size) == -1)
#endif
	{
		char buf[BUFERROR_BUF];

		buferror(get_errno(), buf, sizeof(buf));
		malloc_printf("<jemalloc>: Error in "
#ifdef _WIN32
		    "VirtualFree"
#else
		    "munmap"
#endif
		    "(): %s\n", buf);
		if (opt_abort) {
			abort();
		}
	}
}

static void *
pages_map_slow(size_t size, size_t alignment, bool *commit) {
	size_t alloc_size = size + alignment - os_page;
	/* Beware size_t wrap-around. */
	if (alloc_size < size) {
		return NULL;
	}

	void *ret;
	do {
		void *pages = os_pages_map(NULL, alloc_size, alignment, commit);
		if (pages == NULL) {
			return NULL;
		}
		size_t leadsize = ALIGNMENT_CEILING((uintptr_t)pages, alignment)
		    - (uintptr_t)pages;
		ret = os_pages_trim(pages, alloc_size, leadsize, size, commit);
	} while (ret == NULL);

	assert(ret != NULL);
	assert(PAGE_ADDR2BASE(ret) == ret);
	return ret;
}

void *
pages_map(void *addr, size_t size, size_t alignment, bool *commit) {
	assert(alignment >= PAGE);
	assert(ALIGNMENT_ADDR2BASE(addr, alignment) == addr);

#if defined(__FreeBSD__) && defined(MAP_EXCL)
	/*
	 * FreeBSD has mechanisms both to mmap at specific address without
	 * touching existing mappings, and to mmap with specific alignment.
	 */
	{
		if (os_overcommits) {
			*commit = true;
		}

		int prot = *commit ? PAGES_PROT_COMMIT : PAGES_PROT_DECOMMIT;
		int flags = mmap_flags;

		if (addr != NULL) {
			flags |= MAP_FIXED | MAP_EXCL;
		} else {
			unsigned alignment_bits = ffs_zu(alignment);
			assert(alignment_bits > 1);
			flags |= MAP_ALIGNED(alignment_bits - 1);
		}

		void *ret = mmap(addr, size, prot, flags, -1, 0);
		if (ret == MAP_FAILED) {
			ret = NULL;
		}

		return ret;
	}
#endif
	/*
	 * Ideally, there would be a way to specify alignment to mmap() (like
	 * NetBSD has), but in the absence of such a feature, we have to work
	 * hard to efficiently create aligned mappings.  The reliable, but
	 * slow method is to create a mapping that is over-sized, then trim the
	 * excess.  However, that always results in one or two calls to
	 * os_pages_unmap(), and it can leave holes in the process's virtual
	 * memory map if memory grows downward.
	 *
	 * Optimistically try mapping precisely the right amount before falling
	 * back to the slow method, with the expectation that the optimistic
	 * approach works most of the time.
	 */

	void *ret = os_pages_map(addr, size, os_page, commit);
	if (ret == NULL || ret == addr) {
		return ret;
	}
	assert(addr == NULL);
	if (ALIGNMENT_ADDR2OFFSET(ret, alignment) != 0) {
		os_pages_unmap(ret, size);
		return pages_map_slow(size, alignment, commit);
	}

	assert(PAGE_ADDR2BASE(ret) == ret);
	return ret;
}

void
pages_unmap(void *addr, size_t size) {
	assert(PAGE_ADDR2BASE(addr) == addr);
	assert(PAGE_CEILING(size) == size);

	os_pages_unmap(addr, size);
}

static bool
pages_commit_impl(void *addr, size_t size, bool commit) {
	assert(PAGE_ADDR2BASE(addr) == addr);
	assert(PAGE_CEILING(size) == size);

	if (os_overcommits) {
		return true;
	}

#ifdef _WIN32
	return (commit ? (addr != VirtualAlloc(addr, size, MEM_COMMIT,
	    PAGE_READWRITE)) : (!VirtualFree(addr, size, MEM_DECOMMIT)));
#else
	{
		int prot = commit ? PAGES_PROT_COMMIT : PAGES_PROT_DECOMMIT;
		void *result = mmap(addr, size, prot, mmap_flags | MAP_FIXED,
		    -1, 0);
		if (result == MAP_FAILED) {
			return true;
		}
		if (result != addr) {
			/*
			 * We succeeded in mapping memory, but not in the right
			 * place.
			 */
			os_pages_unmap(result, size);
			return true;
		}
		return false;
	}
#endif
}

bool
pages_commit(void *addr, size_t size) {
	return pages_commit_impl(addr, size, true);
}

bool
pages_decommit(void *addr, size_t size) {
	return pages_commit_impl(addr, size, false);
}

bool
pages_purge_lazy(void *addr, size_t size) {
	assert(ALIGNMENT_ADDR2BASE(addr, os_page) == addr);
	assert(PAGE_CEILING(size) == size);

	if (!pages_can_purge_lazy) {
		return true;
	}
	if (!pages_can_purge_lazy_runtime) {
		/*
		 * Built with lazy purge enabled, but detected it was not
		 * supported on the current system.
		 */
		return true;
	}

#ifdef _WIN32
	VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE);
	return false;
#elif defined(JEMALLOC_PURGE_MADVISE_FREE)
	return (madvise(addr, size,
#  ifdef MADV_FREE
	    MADV_FREE
#  else
	    JEMALLOC_MADV_FREE
#  endif
	    ) != 0);
#elif defined(JEMALLOC_PURGE_MADVISE_DONTNEED) && \
    !defined(JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS)
	return (madvise(addr, size, MADV_DONTNEED) != 0);
#else
	not_reached();
#endif
}

bool
pages_purge_forced(void *addr, size_t size) {
	assert(PAGE_ADDR2BASE(addr) == addr);
	assert(PAGE_CEILING(size) == size);

	if (!pages_can_purge_forced) {
		return true;
	}

#if defined(JEMALLOC_PURGE_MADVISE_DONTNEED) && \
    defined(JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS)
	return (madvise(addr, size, MADV_DONTNEED) != 0);
#elif defined(JEMALLOC_MAPS_COALESCE)
	/* Try to overlay a new demand-zeroed mapping. */
	return pages_commit(addr, size);
#else
	not_reached();
#endif
}

static bool
pages_huge_impl(void *addr, size_t size, bool aligned) {
	if (aligned) {
		assert(HUGEPAGE_ADDR2BASE(addr) == addr);
		assert(HUGEPAGE_CEILING(size) == size);
	}
#ifdef JEMALLOC_HAVE_MADVISE_HUGE
	return (madvise(addr, size, MADV_HUGEPAGE) != 0);
#else
	return true;
#endif
}

bool
pages_huge(void *addr, size_t size) {
	return pages_huge_impl(addr, size, true);
}

static bool
pages_huge_unaligned(void *addr, size_t size) {
	return pages_huge_impl(addr, size, false);
}

static bool
pages_nohuge_impl(void *addr, size_t size, bool aligned) {
	if (aligned) {
		assert(HUGEPAGE_ADDR2BASE(addr) == addr);
		assert(HUGEPAGE_CEILING(size) == size);
	}

#ifdef JEMALLOC_HAVE_MADVISE_HUGE
	return (madvise(addr, size, MADV_NOHUGEPAGE) != 0);
#else
	return false;
#endif
}

bool
pages_nohuge(void *addr, size_t size) {
	return pages_nohuge_impl(addr, size, true);
}

static bool
pages_nohuge_unaligned(void *addr, size_t size) {
	return pages_nohuge_impl(addr, size, false);
}

bool
pages_dontdump(void *addr, size_t size) {
	assert(PAGE_ADDR2BASE(addr) == addr);
	assert(PAGE_CEILING(size) == size);
#ifdef JEMALLOC_MADVISE_DONTDUMP
	return madvise(addr, size, MADV_DONTDUMP) != 0;
#else
	return false;
#endif
}

bool
pages_dodump(void *addr, size_t size) {
	assert(PAGE_ADDR2BASE(addr) == addr);
	assert(PAGE_CEILING(size) == size);
#ifdef JEMALLOC_MADVISE_DONTDUMP
	return madvise(addr, size, MADV_DODUMP) != 0;
#else
	return false;
#endif
}


static size_t
os_page_detect(void) {
#ifdef _WIN32
	SYSTEM_INFO si;
	GetSystemInfo(&si);
	return si.dwPageSize;
#elif defined(__FreeBSD__)
	/*
	 * This returns the value obtained from
	 * the auxv vector, avoiding a syscall.
	 */
	return getpagesize();
#else
	long result = sysconf(_SC_PAGESIZE);
	if (result == -1) {
		return LG_PAGE;
	}
	return (size_t)result;
#endif
}

#ifdef JEMALLOC_SYSCTL_VM_OVERCOMMIT
static bool
os_overcommits_sysctl(void) {
	int vm_overcommit;
	size_t sz;

	sz = sizeof(vm_overcommit);
#if defined(__FreeBSD__) && defined(VM_OVERCOMMIT)
	int mib[2];

	mib[0] = CTL_VM;
	mib[1] = VM_OVERCOMMIT;
	if (sysctl(mib, 2, &vm_overcommit, &sz, NULL, 0) != 0) {
		return false; /* Error. */
	}
#else
	if (sysctlbyname("vm.overcommit", &vm_overcommit, &sz, NULL, 0) != 0) {
		return false; /* Error. */
	}
#endif

	return ((vm_overcommit & 0x3) == 0);
}
#endif

#ifdef JEMALLOC_PROC_SYS_VM_OVERCOMMIT_MEMORY
/*
 * Use syscall(2) rather than {open,read,close}(2) when possible to avoid
 * reentry during bootstrapping if another library has interposed system call
 * wrappers.
 */
static bool
os_overcommits_proc(void) {
	int fd;
	char buf[1];

#if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_open)
	#if defined(O_CLOEXEC)
		fd = (int)syscall(SYS_open, "/proc/sys/vm/overcommit_memory", O_RDONLY |
			O_CLOEXEC);
	#else
		fd = (int)syscall(SYS_open, "/proc/sys/vm/overcommit_memory", O_RDONLY);
		if (fd != -1) {
			fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
		}
	#endif
#elif defined(JEMALLOC_USE_SYSCALL) && defined(SYS_openat)
	#if defined(O_CLOEXEC)
		fd = (int)syscall(SYS_openat,
			AT_FDCWD, "/proc/sys/vm/overcommit_memory", O_RDONLY | O_CLOEXEC);
	#else
		fd = (int)syscall(SYS_openat,
			AT_FDCWD, "/proc/sys/vm/overcommit_memory", O_RDONLY);
		if (fd != -1) {
			fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
		}
	#endif
#else
	#if defined(O_CLOEXEC)
		fd = open("/proc/sys/vm/overcommit_memory", O_RDONLY | O_CLOEXEC);
	#else
		fd = open("/proc/sys/vm/overcommit_memory", O_RDONLY);
		if (fd != -1) {
			fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
		}
	#endif
#endif

	if (fd == -1) {
		return false; /* Error. */
	}

	ssize_t nread = malloc_read_fd(fd, &buf, sizeof(buf));
#if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_close)
	syscall(SYS_close, fd);
#else
	close(fd);
#endif

	if (nread < 1) {
		return false; /* Error. */
	}
	/*
	 * /proc/sys/vm/overcommit_memory meanings:
	 * 0: Heuristic overcommit.
	 * 1: Always overcommit.
	 * 2: Never overcommit.
	 */
	return (buf[0] == '0' || buf[0] == '1');
}
#endif

void
pages_set_thp_state (void *ptr, size_t size) {
	if (opt_thp == thp_mode_default || opt_thp == init_system_thp_mode) {
		return;
	}
	assert(opt_thp != thp_mode_not_supported &&
	    init_system_thp_mode != thp_mode_not_supported);

	if (opt_thp == thp_mode_always
	    && init_system_thp_mode != thp_mode_never) {
		assert(init_system_thp_mode == thp_mode_default);
		pages_huge_unaligned(ptr, size);
	} else if (opt_thp == thp_mode_never) {
		assert(init_system_thp_mode == thp_mode_default ||
		    init_system_thp_mode == thp_mode_always);
		pages_nohuge_unaligned(ptr, size);
	}
}

static void
init_thp_state(void) {
	if (!have_madvise_huge) {
		if (metadata_thp_enabled() && opt_abort) {
			malloc_write("<jemalloc>: no MADV_HUGEPAGE support\n");
			abort();
		}
		goto label_error;
	}

	static const char sys_state_madvise[] = "always [madvise] never\n";
	static const char sys_state_always[] = "[always] madvise never\n";
	static const char sys_state_never[] = "always madvise [never]\n";
	char buf[sizeof(sys_state_madvise)];

#if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_open)
	int fd = (int)syscall(SYS_open,
	    "/sys/kernel/mm/transparent_hugepage/enabled", O_RDONLY);
#else
	int fd = open("/sys/kernel/mm/transparent_hugepage/enabled", O_RDONLY);
#endif
	if (fd == -1) {
		goto label_error;
	}

	ssize_t nread = malloc_read_fd(fd, &buf, sizeof(buf));
#if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_close)
	syscall(SYS_close, fd);
#else
	close(fd);
#endif

        if (nread < 0) {
		goto label_error; 
        }

	if (strncmp(buf, sys_state_madvise, (size_t)nread) == 0) {
		init_system_thp_mode = thp_mode_default;
	} else if (strncmp(buf, sys_state_always, (size_t)nread) == 0) {
		init_system_thp_mode = thp_mode_always;
	} else if (strncmp(buf, sys_state_never, (size_t)nread) == 0) {
		init_system_thp_mode = thp_mode_never;
	} else {
		goto label_error;
	}
	return;
label_error:
	opt_thp = init_system_thp_mode = thp_mode_not_supported;
}

bool
pages_boot(void) {
	os_page = os_page_detect();
	if (os_page > PAGE) {
		malloc_write("<jemalloc>: Unsupported system page size\n");
		if (opt_abort) {
			abort();
		}
		return true;
	}

#ifndef _WIN32
	mmap_flags = MAP_PRIVATE | MAP_ANON;
#endif

#ifdef JEMALLOC_SYSCTL_VM_OVERCOMMIT
	os_overcommits = os_overcommits_sysctl();
#elif defined(JEMALLOC_PROC_SYS_VM_OVERCOMMIT_MEMORY)
	os_overcommits = os_overcommits_proc();
#  ifdef MAP_NORESERVE
	if (os_overcommits) {
		mmap_flags |= MAP_NORESERVE;
	}
#  endif
#else
	os_overcommits = false;
#endif

	init_thp_state();

#ifdef __FreeBSD__
	/*
	 * FreeBSD doesn't need the check; madvise(2) is known to work.
	 */
#else
	/* Detect lazy purge runtime support. */
	if (pages_can_purge_lazy) {
		bool committed = false;
		void *madv_free_page = os_pages_map(NULL, PAGE, PAGE, &committed);
		if (madv_free_page == NULL) {
			return true;
		}
		assert(pages_can_purge_lazy_runtime);
		if (pages_purge_lazy(madv_free_page, PAGE)) {
			pages_can_purge_lazy_runtime = false;
		}
		os_pages_unmap(madv_free_page, PAGE);
	}
#endif

	return false;
}