Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
//===--- ARM.cpp - Implement ARM target feature support -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements ARM TargetInfo objects.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"

using namespace clang;
using namespace clang::targets;

void ARMTargetInfo::setABIAAPCS() {
  IsAAPCS = true;

  DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
  BFloat16Width = BFloat16Align = 16;
  BFloat16Format = &llvm::APFloat::BFloat();

  const llvm::Triple &T = getTriple();

  bool IsNetBSD = T.isOSNetBSD();
  bool IsOpenBSD = T.isOSOpenBSD();
  if (!T.isOSWindows() && !IsNetBSD && !IsOpenBSD)
    WCharType = UnsignedInt;

  UseBitFieldTypeAlignment = true;

  ZeroLengthBitfieldBoundary = 0;

  // Thumb1 add sp, #imm requires the immediate value be multiple of 4,
  // so set preferred for small types to 32.
  if (T.isOSBinFormatMachO()) {
    resetDataLayout(BigEndian
                        ? "E-m:o-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
                        : "e-m:o-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
  } else if (T.isOSWindows()) {
    assert(!BigEndian && "Windows on ARM does not support big endian");
    resetDataLayout("e"
                    "-m:w"
                    "-p:32:32"
                    "-Fi8"
                    "-i64:64"
                    "-v128:64:128"
                    "-a:0:32"
                    "-n32"
                    "-S64");
  } else if (T.isOSNaCl()) {
    assert(!BigEndian && "NaCl on ARM does not support big endian");
    resetDataLayout("e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S128");
  } else {
    resetDataLayout(BigEndian
                        ? "E-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
                        : "e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
  }

  // FIXME: Enumerated types are variable width in straight AAPCS.
}

void ARMTargetInfo::setABIAPCS(bool IsAAPCS16) {
  const llvm::Triple &T = getTriple();

  IsAAPCS = false;

  if (IsAAPCS16)
    DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
  else
    DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 32;
  BFloat16Width = BFloat16Align = 16;
  BFloat16Format = &llvm::APFloat::BFloat();

  WCharType = SignedInt;

  // Do not respect the alignment of bit-field types when laying out
  // structures. This corresponds to PCC_BITFIELD_TYPE_MATTERS in gcc.
  UseBitFieldTypeAlignment = false;

  /// gcc forces the alignment to 4 bytes, regardless of the type of the
  /// zero length bitfield.  This corresponds to EMPTY_FIELD_BOUNDARY in
  /// gcc.
  ZeroLengthBitfieldBoundary = 32;

  if (T.isOSBinFormatMachO() && IsAAPCS16) {
    assert(!BigEndian && "AAPCS16 does not support big-endian");
    resetDataLayout("e-m:o-p:32:32-Fi8-i64:64-a:0:32-n32-S128");
  } else if (T.isOSBinFormatMachO())
    resetDataLayout(
        BigEndian
            ? "E-m:o-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
            : "e-m:o-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");
  else
    resetDataLayout(
        BigEndian
            ? "E-m:e-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
            : "e-m:e-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");

  // FIXME: Override "preferred align" for double and long long.
}

void ARMTargetInfo::setArchInfo() {
  StringRef ArchName = getTriple().getArchName();

  ArchISA = llvm::ARM::parseArchISA(ArchName);
  CPU = std::string(llvm::ARM::getDefaultCPU(ArchName));
  llvm::ARM::ArchKind AK = llvm::ARM::parseArch(ArchName);
  if (AK != llvm::ARM::ArchKind::INVALID)
    ArchKind = AK;
  setArchInfo(ArchKind);
}

void ARMTargetInfo::setArchInfo(llvm::ARM::ArchKind Kind) {
  StringRef SubArch;

  // cache TargetParser info
  ArchKind = Kind;
  SubArch = llvm::ARM::getSubArch(ArchKind);
  ArchProfile = llvm::ARM::parseArchProfile(SubArch);
  ArchVersion = llvm::ARM::parseArchVersion(SubArch);

  // cache CPU related strings
  CPUAttr = getCPUAttr();
  CPUProfile = getCPUProfile();
}

void ARMTargetInfo::setAtomic() {
  // when triple does not specify a sub arch,
  // then we are not using inline atomics
  bool ShouldUseInlineAtomic =
      (ArchISA == llvm::ARM::ISAKind::ARM && ArchVersion >= 6) ||
      (ArchISA == llvm::ARM::ISAKind::THUMB && ArchVersion >= 7);
  // Cortex M does not support 8 byte atomics, while general Thumb2 does.
  if (ArchProfile == llvm::ARM::ProfileKind::M) {
    MaxAtomicPromoteWidth = 32;
    if (ShouldUseInlineAtomic)
      MaxAtomicInlineWidth = 32;
  } else {
    MaxAtomicPromoteWidth = 64;
    if (ShouldUseInlineAtomic)
      MaxAtomicInlineWidth = 64;
  }
}

bool ARMTargetInfo::hasMVE() const {
  return ArchKind == llvm::ARM::ArchKind::ARMV8_1MMainline && MVE != 0;
}

bool ARMTargetInfo::hasMVEFloat() const {
  return hasMVE() && (MVE & MVE_FP);
}

bool ARMTargetInfo::hasCDE() const { return getARMCDECoprocMask() != 0; }

bool ARMTargetInfo::isThumb() const {
  return ArchISA == llvm::ARM::ISAKind::THUMB;
}

bool ARMTargetInfo::supportsThumb() const {
  return CPUAttr.count('T') || ArchVersion >= 6;
}

bool ARMTargetInfo::supportsThumb2() const {
  return CPUAttr.equals("6T2") ||
         (ArchVersion >= 7 && !CPUAttr.equals("8M_BASE"));
}

StringRef ARMTargetInfo::getCPUAttr() const {
  // For most sub-arches, the build attribute CPU name is enough.
  // For Cortex variants, it's slightly different.
  switch (ArchKind) {
  default:
    return llvm::ARM::getCPUAttr(ArchKind);
  case llvm::ARM::ArchKind::ARMV6M:
    return "6M";
  case llvm::ARM::ArchKind::ARMV7S:
    return "7S";
  case llvm::ARM::ArchKind::ARMV7A:
    return "7A";
  case llvm::ARM::ArchKind::ARMV7R:
    return "7R";
  case llvm::ARM::ArchKind::ARMV7M:
    return "7M";
  case llvm::ARM::ArchKind::ARMV7EM:
    return "7EM";
  case llvm::ARM::ArchKind::ARMV7VE:
    return "7VE";
  case llvm::ARM::ArchKind::ARMV8A:
    return "8A";
  case llvm::ARM::ArchKind::ARMV8_1A:
    return "8_1A";
  case llvm::ARM::ArchKind::ARMV8_2A:
    return "8_2A";
  case llvm::ARM::ArchKind::ARMV8_3A:
    return "8_3A";
  case llvm::ARM::ArchKind::ARMV8_4A:
    return "8_4A";
  case llvm::ARM::ArchKind::ARMV8_5A:
    return "8_5A";
  case llvm::ARM::ArchKind::ARMV8_6A:
    return "8_6A";
  case llvm::ARM::ArchKind::ARMV8MBaseline:
    return "8M_BASE";
  case llvm::ARM::ArchKind::ARMV8MMainline:
    return "8M_MAIN";
  case llvm::ARM::ArchKind::ARMV8R:
    return "8R";
  case llvm::ARM::ArchKind::ARMV8_1MMainline:
    return "8_1M_MAIN";
  }
}

StringRef ARMTargetInfo::getCPUProfile() const {
  switch (ArchProfile) {
  case llvm::ARM::ProfileKind::A:
    return "A";
  case llvm::ARM::ProfileKind::R:
    return "R";
  case llvm::ARM::ProfileKind::M:
    return "M";
  default:
    return "";
  }
}

ARMTargetInfo::ARMTargetInfo(const llvm::Triple &Triple,
                             const TargetOptions &Opts)
    : TargetInfo(Triple), FPMath(FP_Default), IsAAPCS(true), LDREX(0),
      HW_FP(0) {
  bool IsOpenBSD = Triple.isOSOpenBSD();
  bool IsNetBSD = Triple.isOSNetBSD();

  // FIXME: the isOSBinFormatMachO is a workaround for identifying a Darwin-like
  // environment where size_t is `unsigned long` rather than `unsigned int`

  PtrDiffType = IntPtrType =
      (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
       IsNetBSD)
          ? SignedLong
          : SignedInt;

  SizeType = (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
              IsNetBSD)
                 ? UnsignedLong
                 : UnsignedInt;

  // ptrdiff_t is inconsistent on Darwin
  if ((Triple.isOSDarwin() || Triple.isOSBinFormatMachO()) &&
      !Triple.isWatchABI())
    PtrDiffType = SignedInt;

  // Cache arch related info.
  setArchInfo();

  // {} in inline assembly are neon specifiers, not assembly variant
  // specifiers.
  NoAsmVariants = true;

  // FIXME: This duplicates code from the driver that sets the -target-abi
  // option - this code is used if -target-abi isn't passed and should
  // be unified in some way.
  if (Triple.isOSBinFormatMachO()) {
    // The backend is hardwired to assume AAPCS for M-class processors, ensure
    // the frontend matches that.
    if (Triple.getEnvironment() == llvm::Triple::EABI ||
        Triple.getOS() == llvm::Triple::UnknownOS ||
        ArchProfile == llvm::ARM::ProfileKind::M) {
      setABI("aapcs");
    } else if (Triple.isWatchABI()) {
      setABI("aapcs16");
    } else {
      setABI("apcs-gnu");
    }
  } else if (Triple.isOSWindows()) {
    // FIXME: this is invalid for WindowsCE
    setABI("aapcs");
  } else {
    // Select the default based on the platform.
    switch (Triple.getEnvironment()) {
    case llvm::Triple::Android:
    case llvm::Triple::GNUEABI:
    case llvm::Triple::GNUEABIHF:
    case llvm::Triple::MuslEABI:
    case llvm::Triple::MuslEABIHF:
      setABI("aapcs-linux");
      break;
    case llvm::Triple::EABIHF:
    case llvm::Triple::EABI:
      setABI("aapcs");
      break;
    case llvm::Triple::GNU:
      setABI("apcs-gnu");
      break;
    default:
      if (IsNetBSD)
        setABI("apcs-gnu");
      else if (IsOpenBSD)
        setABI("aapcs-linux");
      else
        setABI("aapcs");
      break;
    }
  }

  // ARM targets default to using the ARM C++ ABI.
  TheCXXABI.set(TargetCXXABI::GenericARM);

  // ARM has atomics up to 8 bytes
  setAtomic();

  // Maximum alignment for ARM NEON data types should be 64-bits (AAPCS)
  // as well the default alignment
  if (IsAAPCS && !Triple.isAndroid())
    DefaultAlignForAttributeAligned = MaxVectorAlign = 64;

  // Do force alignment of members that follow zero length bitfields.  If
  // the alignment of the zero-length bitfield is greater than the member
  // that follows it, `bar', `bar' will be aligned as the  type of the
  // zero length bitfield.
  UseZeroLengthBitfieldAlignment = true;

  if (Triple.getOS() == llvm::Triple::Linux ||
      Triple.getOS() == llvm::Triple::UnknownOS)
    this->MCountName = Opts.EABIVersion == llvm::EABI::GNU
                           ? "llvm.arm.gnu.eabi.mcount"
                           : "\01mcount";

  SoftFloatABI = llvm::is_contained(Opts.FeaturesAsWritten, "+soft-float-abi");
}

StringRef ARMTargetInfo::getABI() const { return ABI; }

bool ARMTargetInfo::setABI(const std::string &Name) {
  ABI = Name;

  // The defaults (above) are for AAPCS, check if we need to change them.
  //
  // FIXME: We need support for -meabi... we could just mangle it into the
  // name.
  if (Name == "apcs-gnu" || Name == "aapcs16") {
    setABIAPCS(Name == "aapcs16");
    return true;
  }
  if (Name == "aapcs" || Name == "aapcs-vfp" || Name == "aapcs-linux") {
    setABIAAPCS();
    return true;
  }
  return false;
}

// FIXME: This should be based on Arch attributes, not CPU names.
bool ARMTargetInfo::initFeatureMap(
    llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
    const std::vector<std::string> &FeaturesVec) const {

  std::string ArchFeature;
  std::vector<StringRef> TargetFeatures;
  llvm::ARM::ArchKind Arch = llvm::ARM::parseArch(getTriple().getArchName());

  // Map the base architecture to an appropriate target feature, so we don't
  // rely on the target triple.
  llvm::ARM::ArchKind CPUArch = llvm::ARM::parseCPUArch(CPU);
  if (CPUArch == llvm::ARM::ArchKind::INVALID)
    CPUArch = Arch;
  if (CPUArch != llvm::ARM::ArchKind::INVALID) {
    ArchFeature = ("+" + llvm::ARM::getArchName(CPUArch)).str();
    TargetFeatures.push_back(ArchFeature);
  }

  // get default FPU features
  unsigned FPUKind = llvm::ARM::getDefaultFPU(CPU, Arch);
  llvm::ARM::getFPUFeatures(FPUKind, TargetFeatures);

  // get default Extension features
  uint64_t Extensions = llvm::ARM::getDefaultExtensions(CPU, Arch);
  llvm::ARM::getExtensionFeatures(Extensions, TargetFeatures);

  for (auto Feature : TargetFeatures)
    if (Feature[0] == '+')
      Features[Feature.drop_front(1)] = true;

  // Enable or disable thumb-mode explicitly per function to enable mixed
  // ARM and Thumb code generation.
  if (isThumb())
    Features["thumb-mode"] = true;
  else
    Features["thumb-mode"] = false;

  // Convert user-provided arm and thumb GNU target attributes to
  // [-|+]thumb-mode target features respectively.
  std::vector<std::string> UpdatedFeaturesVec;
  for (const auto &Feature : FeaturesVec) {
    // Skip soft-float-abi; it's something we only use to initialize a bit of
    // class state, and is otherwise unrecognized.
    if (Feature == "+soft-float-abi")
      continue;

    StringRef FixedFeature;
    if (Feature == "+arm")
      FixedFeature = "-thumb-mode";
    else if (Feature == "+thumb")
      FixedFeature = "+thumb-mode";
    else
      FixedFeature = Feature;
    UpdatedFeaturesVec.push_back(FixedFeature.str());
  }

  return TargetInfo::initFeatureMap(Features, Diags, CPU, UpdatedFeaturesVec);
}


bool ARMTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
                                         DiagnosticsEngine &Diags) {
  FPU = 0;
  MVE = 0;
  CRC = 0;
  Crypto = 0;
  DSP = 0;
  Unaligned = 1;
  SoftFloat = false;
  // Note that SoftFloatABI is initialized in our constructor.
  HWDiv = 0;
  DotProd = 0;
  HasMatMul = 0;
  HasFloat16 = true;
  ARMCDECoprocMask = 0;
  HasBFloat16 = false;

  // This does not diagnose illegal cases like having both
  // "+vfpv2" and "+vfpv3" or having "+neon" and "-fp64".
  for (const auto &Feature : Features) {
    if (Feature == "+soft-float") {
      SoftFloat = true;
    } else if (Feature == "+vfp2sp" || Feature == "+vfp2") {
      FPU |= VFP2FPU;
      HW_FP |= HW_FP_SP;
      if (Feature == "+vfp2")
          HW_FP |= HW_FP_DP;
    } else if (Feature == "+vfp3sp" || Feature == "+vfp3d16sp" ||
               Feature == "+vfp3" || Feature == "+vfp3d16") {
      FPU |= VFP3FPU;
      HW_FP |= HW_FP_SP;
      if (Feature == "+vfp3" || Feature == "+vfp3d16")
          HW_FP |= HW_FP_DP;
    } else if (Feature == "+vfp4sp" || Feature == "+vfp4d16sp" ||
               Feature == "+vfp4" || Feature == "+vfp4d16") {
      FPU |= VFP4FPU;
      HW_FP |= HW_FP_SP | HW_FP_HP;
      if (Feature == "+vfp4" || Feature == "+vfp4d16")
          HW_FP |= HW_FP_DP;
    } else if (Feature == "+fp-armv8sp" || Feature == "+fp-armv8d16sp" ||
               Feature == "+fp-armv8" || Feature == "+fp-armv8d16") {
      FPU |= FPARMV8;
      HW_FP |= HW_FP_SP | HW_FP_HP;
      if (Feature == "+fp-armv8" || Feature == "+fp-armv8d16")
          HW_FP |= HW_FP_DP;
    } else if (Feature == "+neon") {
      FPU |= NeonFPU;
      HW_FP |= HW_FP_SP;
    } else if (Feature == "+hwdiv") {
      HWDiv |= HWDivThumb;
    } else if (Feature == "+hwdiv-arm") {
      HWDiv |= HWDivARM;
    } else if (Feature == "+crc") {
      CRC = 1;
    } else if (Feature == "+crypto") {
      Crypto = 1;
    } else if (Feature == "+dsp") {
      DSP = 1;
    } else if (Feature == "+fp64") {
      HW_FP |= HW_FP_DP;
    } else if (Feature == "+8msecext") {
      if (CPUProfile != "M" || ArchVersion != 8) {
        Diags.Report(diag::err_target_unsupported_mcmse) << CPU;
        return false;
      }
    } else if (Feature == "+strict-align") {
      Unaligned = 0;
    } else if (Feature == "+fp16") {
      HW_FP |= HW_FP_HP;
    } else if (Feature == "+fullfp16") {
      HasLegalHalfType = true;
    } else if (Feature == "+dotprod") {
      DotProd = true;
    } else if (Feature == "+mve") {
      MVE |= MVE_INT;
    } else if (Feature == "+mve.fp") {
      HasLegalHalfType = true;
      FPU |= FPARMV8;
      MVE |= MVE_INT | MVE_FP;
      HW_FP |= HW_FP_SP | HW_FP_HP;
    } else if (Feature == "+i8mm") {
      HasMatMul = 1;
    } else if (Feature.size() == strlen("+cdecp0") && Feature >= "+cdecp0" &&
               Feature <= "+cdecp7") {
      unsigned Coproc = Feature.back() - '0';
      ARMCDECoprocMask |= (1U << Coproc);
    } else if (Feature == "+bf16") {
      HasBFloat16 = true;
    }
  }

  switch (ArchVersion) {
  case 6:
    if (ArchProfile == llvm::ARM::ProfileKind::M)
      LDREX = 0;
    else if (ArchKind == llvm::ARM::ArchKind::ARMV6K)
      LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
    else
      LDREX = LDREX_W;
    break;
  case 7:
    if (ArchProfile == llvm::ARM::ProfileKind::M)
      LDREX = LDREX_W | LDREX_H | LDREX_B;
    else
      LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
    break;
  case 8:
    LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
  }

  if (!(FPU & NeonFPU) && FPMath == FP_Neon) {
    Diags.Report(diag::err_target_unsupported_fpmath) << "neon";
    return false;
  }

  if (FPMath == FP_Neon)
    Features.push_back("+neonfp");
  else if (FPMath == FP_VFP)
    Features.push_back("-neonfp");

  return true;
}

bool ARMTargetInfo::hasFeature(StringRef Feature) const {
  return llvm::StringSwitch<bool>(Feature)
      .Case("arm", true)
      .Case("aarch32", true)
      .Case("softfloat", SoftFloat)
      .Case("thumb", isThumb())
      .Case("neon", (FPU & NeonFPU) && !SoftFloat)
      .Case("vfp", FPU && !SoftFloat)
      .Case("hwdiv", HWDiv & HWDivThumb)
      .Case("hwdiv-arm", HWDiv & HWDivARM)
      .Case("mve", hasMVE())
      .Default(false);
}

bool ARMTargetInfo::hasBFloat16Type() const {
  return HasBFloat16 && !SoftFloat;
}

bool ARMTargetInfo::isValidCPUName(StringRef Name) const {
  return Name == "generic" ||
         llvm::ARM::parseCPUArch(Name) != llvm::ARM::ArchKind::INVALID;
}

void ARMTargetInfo::fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {
  llvm::ARM::fillValidCPUArchList(Values);
}

bool ARMTargetInfo::setCPU(const std::string &Name) {
  if (Name != "generic")
    setArchInfo(llvm::ARM::parseCPUArch(Name));

  if (ArchKind == llvm::ARM::ArchKind::INVALID)
    return false;
  setAtomic();
  CPU = Name;
  return true;
}

bool ARMTargetInfo::setFPMath(StringRef Name) {
  if (Name == "neon") {
    FPMath = FP_Neon;
    return true;
  } else if (Name == "vfp" || Name == "vfp2" || Name == "vfp3" ||
             Name == "vfp4") {
    FPMath = FP_VFP;
    return true;
  }
  return false;
}

void ARMTargetInfo::getTargetDefinesARMV81A(const LangOptions &Opts,
                                            MacroBuilder &Builder) const {
  Builder.defineMacro("__ARM_FEATURE_QRDMX", "1");
}

void ARMTargetInfo::getTargetDefinesARMV82A(const LangOptions &Opts,
                                            MacroBuilder &Builder) const {
  // Also include the ARMv8.1-A defines
  getTargetDefinesARMV81A(Opts, Builder);
}

void ARMTargetInfo::getTargetDefinesARMV83A(const LangOptions &Opts,
                                            MacroBuilder &Builder) const {
  // Also include the ARMv8.2-A defines
  Builder.defineMacro("__ARM_FEATURE_COMPLEX", "1");
  getTargetDefinesARMV82A(Opts, Builder);
}

void ARMTargetInfo::getTargetDefines(const LangOptions &Opts,
                                     MacroBuilder &Builder) const {
  // Target identification.
  Builder.defineMacro("__arm");
  Builder.defineMacro("__arm__");
  // For bare-metal none-eabi.
  if (getTriple().getOS() == llvm::Triple::UnknownOS &&
      (getTriple().getEnvironment() == llvm::Triple::EABI ||
       getTriple().getEnvironment() == llvm::Triple::EABIHF))
    Builder.defineMacro("__ELF__");

  // Target properties.
  Builder.defineMacro("__REGISTER_PREFIX__", "");

  // Unfortunately, __ARM_ARCH_7K__ is now more of an ABI descriptor. The CPU
  // happens to be Cortex-A7 though, so it should still get __ARM_ARCH_7A__.
  if (getTriple().isWatchABI())
    Builder.defineMacro("__ARM_ARCH_7K__", "2");

  if (!CPUAttr.empty())
    Builder.defineMacro("__ARM_ARCH_" + CPUAttr + "__");

  // ACLE 6.4.1 ARM/Thumb instruction set architecture
  // __ARM_ARCH is defined as an integer value indicating the current ARM ISA
  Builder.defineMacro("__ARM_ARCH", Twine(ArchVersion));

  if (ArchVersion >= 8) {
    // ACLE 6.5.7 Crypto Extension
    if (Crypto)
      Builder.defineMacro("__ARM_FEATURE_CRYPTO", "1");
    // ACLE 6.5.8 CRC32 Extension
    if (CRC)
      Builder.defineMacro("__ARM_FEATURE_CRC32", "1");
    // ACLE 6.5.10 Numeric Maximum and Minimum
    Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN", "1");
    // ACLE 6.5.9 Directed Rounding
    Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING", "1");
  }

  // __ARM_ARCH_ISA_ARM is defined to 1 if the core supports the ARM ISA.  It
  // is not defined for the M-profile.
  // NOTE that the default profile is assumed to be 'A'
  if (CPUProfile.empty() || ArchProfile != llvm::ARM::ProfileKind::M)
    Builder.defineMacro("__ARM_ARCH_ISA_ARM", "1");

  // __ARM_ARCH_ISA_THUMB is defined to 1 if the core supports the original
  // Thumb ISA (including v6-M and v8-M Baseline).  It is set to 2 if the
  // core supports the Thumb-2 ISA as found in the v6T2 architecture and all
  // v7 and v8 architectures excluding v8-M Baseline.
  if (supportsThumb2())
    Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "2");
  else if (supportsThumb())
    Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "1");

  // __ARM_32BIT_STATE is defined to 1 if code is being generated for a 32-bit
  // instruction set such as ARM or Thumb.
  Builder.defineMacro("__ARM_32BIT_STATE", "1");

  // ACLE 6.4.2 Architectural Profile (A, R, M or pre-Cortex)

  // __ARM_ARCH_PROFILE is defined as 'A', 'R', 'M' or 'S', or unset.
  if (!CPUProfile.empty())
    Builder.defineMacro("__ARM_ARCH_PROFILE", "'" + CPUProfile + "'");

  // ACLE 6.4.3 Unaligned access supported in hardware
  if (Unaligned)
    Builder.defineMacro("__ARM_FEATURE_UNALIGNED", "1");

  // ACLE 6.4.4 LDREX/STREX
  if (LDREX)
    Builder.defineMacro("__ARM_FEATURE_LDREX", "0x" + Twine::utohexstr(LDREX));

  // ACLE 6.4.5 CLZ
  if (ArchVersion == 5 || (ArchVersion == 6 && CPUProfile != "M") ||
      ArchVersion > 6)
    Builder.defineMacro("__ARM_FEATURE_CLZ", "1");

  // ACLE 6.5.1 Hardware Floating Point
  if (HW_FP)
    Builder.defineMacro("__ARM_FP", "0x" + Twine::utohexstr(HW_FP));

  // ACLE predefines.
  Builder.defineMacro("__ARM_ACLE", "200");

  // FP16 support (we currently only support IEEE format).
  Builder.defineMacro("__ARM_FP16_FORMAT_IEEE", "1");
  Builder.defineMacro("__ARM_FP16_ARGS", "1");

  // ACLE 6.5.3 Fused multiply-accumulate (FMA)
  if (ArchVersion >= 7 && (FPU & VFP4FPU))
    Builder.defineMacro("__ARM_FEATURE_FMA", "1");

  // Subtarget options.

  // FIXME: It's more complicated than this and we don't really support
  // interworking.
  // Windows on ARM does not "support" interworking
  if (5 <= ArchVersion && ArchVersion <= 8 && !getTriple().isOSWindows())
    Builder.defineMacro("__THUMB_INTERWORK__");

  if (ABI == "aapcs" || ABI == "aapcs-linux" || ABI == "aapcs-vfp") {
    // Embedded targets on Darwin follow AAPCS, but not EABI.
    // Windows on ARM follows AAPCS VFP, but does not conform to EABI.
    if (!getTriple().isOSBinFormatMachO() && !getTriple().isOSWindows())
      Builder.defineMacro("__ARM_EABI__");
    Builder.defineMacro("__ARM_PCS", "1");
  }

  if ((!SoftFloat && !SoftFloatABI) || ABI == "aapcs-vfp" || ABI == "aapcs16")
    Builder.defineMacro("__ARM_PCS_VFP", "1");

  if (SoftFloat)
    Builder.defineMacro("__SOFTFP__");

  // ACLE position independent code macros.
  if (Opts.ROPI)
    Builder.defineMacro("__ARM_ROPI", "1");
  if (Opts.RWPI)
    Builder.defineMacro("__ARM_RWPI", "1");

  if (ArchKind == llvm::ARM::ArchKind::XSCALE)
    Builder.defineMacro("__XSCALE__");

  if (isThumb()) {
    Builder.defineMacro("__THUMBEL__");
    Builder.defineMacro("__thumb__");
    if (supportsThumb2())
      Builder.defineMacro("__thumb2__");
  }

  // ACLE 6.4.9 32-bit SIMD instructions
  if ((CPUProfile != "M" && ArchVersion >= 6) || (CPUProfile == "M" && DSP))
    Builder.defineMacro("__ARM_FEATURE_SIMD32", "1");

  // ACLE 6.4.10 Hardware Integer Divide
  if (((HWDiv & HWDivThumb) && isThumb()) ||
      ((HWDiv & HWDivARM) && !isThumb())) {
    Builder.defineMacro("__ARM_FEATURE_IDIV", "1");
    Builder.defineMacro("__ARM_ARCH_EXT_IDIV__", "1");
  }

  // Note, this is always on in gcc, even though it doesn't make sense.
  Builder.defineMacro("__APCS_32__");

  if (FPUModeIsVFP((FPUMode)FPU)) {
    Builder.defineMacro("__VFP_FP__");
    if (FPU & VFP2FPU)
      Builder.defineMacro("__ARM_VFPV2__");
    if (FPU & VFP3FPU)
      Builder.defineMacro("__ARM_VFPV3__");
    if (FPU & VFP4FPU)
      Builder.defineMacro("__ARM_VFPV4__");
    if (FPU & FPARMV8)
      Builder.defineMacro("__ARM_FPV5__");
  }

  // This only gets set when Neon instructions are actually available, unlike
  // the VFP define, hence the soft float and arch check. This is subtly
  // different from gcc, we follow the intent which was that it should be set
  // when Neon instructions are actually available.
  if ((FPU & NeonFPU) && !SoftFloat && ArchVersion >= 7) {
    Builder.defineMacro("__ARM_NEON", "1");
    Builder.defineMacro("__ARM_NEON__");
    // current AArch32 NEON implementations do not support double-precision
    // floating-point even when it is present in VFP.
    Builder.defineMacro("__ARM_NEON_FP",
                        "0x" + Twine::utohexstr(HW_FP & ~HW_FP_DP));
  }

  if (hasMVE()) {
    Builder.defineMacro("__ARM_FEATURE_MVE", hasMVEFloat() ? "3" : "1");
  }

  if (hasCDE()) {
    Builder.defineMacro("__ARM_FEATURE_CDE", "1");
    Builder.defineMacro("__ARM_FEATURE_CDE_COPROC",
                        "0x" + Twine::utohexstr(getARMCDECoprocMask()));
  }

  Builder.defineMacro("__ARM_SIZEOF_WCHAR_T",
                      Twine(Opts.WCharSize ? Opts.WCharSize : 4));

  Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM", Opts.ShortEnums ? "1" : "4");

  // CMSE
  if (ArchVersion == 8 && ArchProfile == llvm::ARM::ProfileKind::M)
    Builder.defineMacro("__ARM_FEATURE_CMSE", Opts.Cmse ? "3" : "1");

  if (ArchVersion >= 6 && CPUAttr != "6M" && CPUAttr != "8M_BASE") {
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
  }

  // ACLE 6.4.7 DSP instructions
  if (DSP) {
    Builder.defineMacro("__ARM_FEATURE_DSP", "1");
  }

  // ACLE 6.4.8 Saturation instructions
  bool SAT = false;
  if ((ArchVersion == 6 && CPUProfile != "M") || ArchVersion > 6) {
    Builder.defineMacro("__ARM_FEATURE_SAT", "1");
    SAT = true;
  }

  // ACLE 6.4.6 Q (saturation) flag
  if (DSP || SAT)
    Builder.defineMacro("__ARM_FEATURE_QBIT", "1");

  if (Opts.UnsafeFPMath)
    Builder.defineMacro("__ARM_FP_FAST", "1");

  // Armv8.2-A FP16 vector intrinsic
  if ((FPU & NeonFPU) && HasLegalHalfType)
    Builder.defineMacro("__ARM_FEATURE_FP16_VECTOR_ARITHMETIC", "1");

  // Armv8.2-A FP16 scalar intrinsics
  if (HasLegalHalfType)
    Builder.defineMacro("__ARM_FEATURE_FP16_SCALAR_ARITHMETIC", "1");

  // Armv8.2-A dot product intrinsics
  if (DotProd)
    Builder.defineMacro("__ARM_FEATURE_DOTPROD", "1");

  if (HasMatMul)
    Builder.defineMacro("__ARM_FEATURE_MATMUL_INT8", "1");

  if (HasBFloat16) {
    Builder.defineMacro("__ARM_FEATURE_BF16", "1");
    Builder.defineMacro("__ARM_FEATURE_BF16_VECTOR_ARITHMETIC", "1");
    Builder.defineMacro("__ARM_BF16_FORMAT_ALTERNATIVE", "1");
  }

  switch (ArchKind) {
  default:
    break;
  case llvm::ARM::ArchKind::ARMV8_1A:
    getTargetDefinesARMV81A(Opts, Builder);
    break;
  case llvm::ARM::ArchKind::ARMV8_2A:
    getTargetDefinesARMV82A(Opts, Builder);
    break;
  case llvm::ARM::ArchKind::ARMV8_3A:
  case llvm::ARM::ArchKind::ARMV8_4A:
  case llvm::ARM::ArchKind::ARMV8_5A:
  case llvm::ARM::ArchKind::ARMV8_6A:
    getTargetDefinesARMV83A(Opts, Builder);
    break;
  }
}

const Builtin::Info ARMTargetInfo::BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS)                                               \
  {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER)                                    \
  {#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
#include "clang/Basic/BuiltinsNEON.def"

#define BUILTIN(ID, TYPE, ATTRS)                                               \
  {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define LANGBUILTIN(ID, TYPE, ATTRS, LANG)                                     \
  {#ID, TYPE, ATTRS, nullptr, LANG, nullptr},
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER)                                    \
  {#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
#define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE)         \
  {#ID, TYPE, ATTRS, HEADER, LANGS, FEATURE},
#include "clang/Basic/BuiltinsARM.def"
};

ArrayRef<Builtin::Info> ARMTargetInfo::getTargetBuiltins() const {
  return llvm::makeArrayRef(BuiltinInfo, clang::ARM::LastTSBuiltin -
                                             Builtin::FirstTSBuiltin);
}

bool ARMTargetInfo::isCLZForZeroUndef() const { return false; }
TargetInfo::BuiltinVaListKind ARMTargetInfo::getBuiltinVaListKind() const {
  return IsAAPCS
             ? AAPCSABIBuiltinVaList
             : (getTriple().isWatchABI() ? TargetInfo::CharPtrBuiltinVaList
                                         : TargetInfo::VoidPtrBuiltinVaList);
}

const char *const ARMTargetInfo::GCCRegNames[] = {
    // Integer registers
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
    "r12", "sp", "lr", "pc",

    // Float registers
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11",
    "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22",
    "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",

    // Double registers
    "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
    "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
    "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",

    // Quad registers
    "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11",
    "q12", "q13", "q14", "q15"};

ArrayRef<const char *> ARMTargetInfo::getGCCRegNames() const {
  return llvm::makeArrayRef(GCCRegNames);
}

const TargetInfo::GCCRegAlias ARMTargetInfo::GCCRegAliases[] = {
    {{"a1"}, "r0"},  {{"a2"}, "r1"},        {{"a3"}, "r2"},  {{"a4"}, "r3"},
    {{"v1"}, "r4"},  {{"v2"}, "r5"},        {{"v3"}, "r6"},  {{"v4"}, "r7"},
    {{"v5"}, "r8"},  {{"v6", "rfp"}, "r9"}, {{"sl"}, "r10"}, {{"fp"}, "r11"},
    {{"ip"}, "r12"}, {{"r13"}, "sp"},       {{"r14"}, "lr"}, {{"r15"}, "pc"},
    // The S, D and Q registers overlap, but aren't really aliases; we
    // don't want to substitute one of these for a different-sized one.
};

ArrayRef<TargetInfo::GCCRegAlias> ARMTargetInfo::getGCCRegAliases() const {
  return llvm::makeArrayRef(GCCRegAliases);
}

bool ARMTargetInfo::validateAsmConstraint(
    const char *&Name, TargetInfo::ConstraintInfo &Info) const {
  switch (*Name) {
  default:
    break;
  case 'l': // r0-r7 if thumb, r0-r15 if ARM
    Info.setAllowsRegister();
    return true;
  case 'h': // r8-r15, thumb only
    if (isThumb()) {
      Info.setAllowsRegister();
      return true;
    }
    break;
  case 's': // An integer constant, but allowing only relocatable values.
    return true;
  case 't': // s0-s31, d0-d31, or q0-q15
  case 'w': // s0-s15, d0-d7, or q0-q3
  case 'x': // s0-s31, d0-d15, or q0-q7
    Info.setAllowsRegister();
    return true;
  case 'j': // An immediate integer between 0 and 65535 (valid for MOVW)
    // only available in ARMv6T2 and above
    if (CPUAttr.equals("6T2") || ArchVersion >= 7) {
      Info.setRequiresImmediate(0, 65535);
      return true;
    }
    break;
  case 'I':
    if (isThumb()) {
      if (!supportsThumb2())
        Info.setRequiresImmediate(0, 255);
      else
        // FIXME: should check if immediate value would be valid for a Thumb2
        // data-processing instruction
        Info.setRequiresImmediate();
    } else
      // FIXME: should check if immediate value would be valid for an ARM
      // data-processing instruction
      Info.setRequiresImmediate();
    return true;
  case 'J':
    if (isThumb() && !supportsThumb2())
      Info.setRequiresImmediate(-255, -1);
    else
      Info.setRequiresImmediate(-4095, 4095);
    return true;
  case 'K':
    if (isThumb()) {
      if (!supportsThumb2())
        // FIXME: should check if immediate value can be obtained from shifting
        // a value between 0 and 255 left by any amount
        Info.setRequiresImmediate();
      else
        // FIXME: should check if immediate value would be valid for a Thumb2
        // data-processing instruction when inverted
        Info.setRequiresImmediate();
    } else
      // FIXME: should check if immediate value would be valid for an ARM
      // data-processing instruction when inverted
      Info.setRequiresImmediate();
    return true;
  case 'L':
    if (isThumb()) {
      if (!supportsThumb2())
        Info.setRequiresImmediate(-7, 7);
      else
        // FIXME: should check if immediate value would be valid for a Thumb2
        // data-processing instruction when negated
        Info.setRequiresImmediate();
    } else
      // FIXME: should check if immediate value  would be valid for an ARM
      // data-processing instruction when negated
      Info.setRequiresImmediate();
    return true;
  case 'M':
    if (isThumb() && !supportsThumb2())
      // FIXME: should check if immediate value is a multiple of 4 between 0 and
      // 1020
      Info.setRequiresImmediate();
    else
      // FIXME: should check if immediate value is a power of two or a integer
      // between 0 and 32
      Info.setRequiresImmediate();
    return true;
  case 'N':
    // Thumb1 only
    if (isThumb() && !supportsThumb2()) {
      Info.setRequiresImmediate(0, 31);
      return true;
    }
    break;
  case 'O':
    // Thumb1 only
    if (isThumb() && !supportsThumb2()) {
      // FIXME: should check if immediate value is a multiple of 4 between -508
      // and 508
      Info.setRequiresImmediate();
      return true;
    }
    break;
  case 'Q': // A memory address that is a single base register.
    Info.setAllowsMemory();
    return true;
  case 'T':
    switch (Name[1]) {
    default:
      break;
    case 'e': // Even general-purpose register
    case 'o': // Odd general-purpose register
      Info.setAllowsRegister();
      Name++;
      return true;
    }
    break;
  case 'U': // a memory reference...
    switch (Name[1]) {
    case 'q': // ...ARMV4 ldrsb
    case 'v': // ...VFP load/store (reg+constant offset)
    case 'y': // ...iWMMXt load/store
    case 't': // address valid for load/store opaque types wider
              // than 128-bits
    case 'n': // valid address for Neon doubleword vector load/store
    case 'm': // valid address for Neon element and structure load/store
    case 's': // valid address for non-offset loads/stores of quad-word
              // values in four ARM registers
      Info.setAllowsMemory();
      Name++;
      return true;
    }
    break;
  }
  return false;
}

std::string ARMTargetInfo::convertConstraint(const char *&Constraint) const {
  std::string R;
  switch (*Constraint) {
  case 'U': // Two-character constraint; add "^" hint for later parsing.
  case 'T':
    R = std::string("^") + std::string(Constraint, 2);
    Constraint++;
    break;
  case 'p': // 'p' should be translated to 'r' by default.
    R = std::string("r");
    break;
  default:
    return std::string(1, *Constraint);
  }
  return R;
}

bool ARMTargetInfo::validateConstraintModifier(
    StringRef Constraint, char Modifier, unsigned Size,
    std::string &SuggestedModifier) const {
  bool isOutput = (Constraint[0] == '=');
  bool isInOut = (Constraint[0] == '+');

  // Strip off constraint modifiers.
  while (Constraint[0] == '=' || Constraint[0] == '+' || Constraint[0] == '&')
    Constraint = Constraint.substr(1);

  switch (Constraint[0]) {
  default:
    break;
  case 'r': {
    switch (Modifier) {
    default:
      return (isInOut || isOutput || Size <= 64);
    case 'q':
      // A register of size 32 cannot fit a vector type.
      return false;
    }
  }
  }

  return true;
}
const char *ARMTargetInfo::getClobbers() const {
  // FIXME: Is this really right?
  return "";
}

TargetInfo::CallingConvCheckResult
ARMTargetInfo::checkCallingConvention(CallingConv CC) const {
  switch (CC) {
  case CC_AAPCS:
  case CC_AAPCS_VFP:
  case CC_Swift:
  case CC_OpenCLKernel:
    return CCCR_OK;
  default:
    return CCCR_Warning;
  }
}

int ARMTargetInfo::getEHDataRegisterNumber(unsigned RegNo) const {
  if (RegNo == 0)
    return 0;
  if (RegNo == 1)
    return 1;
  return -1;
}

bool ARMTargetInfo::hasSjLjLowering() const { return true; }

ARMleTargetInfo::ARMleTargetInfo(const llvm::Triple &Triple,
                                 const TargetOptions &Opts)
    : ARMTargetInfo(Triple, Opts) {}

void ARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
                                       MacroBuilder &Builder) const {
  Builder.defineMacro("__ARMEL__");
  ARMTargetInfo::getTargetDefines(Opts, Builder);
}

ARMbeTargetInfo::ARMbeTargetInfo(const llvm::Triple &Triple,
                                 const TargetOptions &Opts)
    : ARMTargetInfo(Triple, Opts) {}

void ARMbeTargetInfo::getTargetDefines(const LangOptions &Opts,
                                       MacroBuilder &Builder) const {
  Builder.defineMacro("__ARMEB__");
  Builder.defineMacro("__ARM_BIG_ENDIAN");
  ARMTargetInfo::getTargetDefines(Opts, Builder);
}

WindowsARMTargetInfo::WindowsARMTargetInfo(const llvm::Triple &Triple,
                                           const TargetOptions &Opts)
    : WindowsTargetInfo<ARMleTargetInfo>(Triple, Opts), Triple(Triple) {
}

void WindowsARMTargetInfo::getVisualStudioDefines(const LangOptions &Opts,
                                                  MacroBuilder &Builder) const {
  // FIXME: this is invalid for WindowsCE
  Builder.defineMacro("_M_ARM_NT", "1");
  Builder.defineMacro("_M_ARMT", "_M_ARM");
  Builder.defineMacro("_M_THUMB", "_M_ARM");

  assert((Triple.getArch() == llvm::Triple::arm ||
          Triple.getArch() == llvm::Triple::thumb) &&
         "invalid architecture for Windows ARM target info");
  unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
  Builder.defineMacro("_M_ARM", Triple.getArchName().substr(Offset));

  // TODO map the complete set of values
  // 31: VFPv3 40: VFPv4
  Builder.defineMacro("_M_ARM_FP", "31");
}

TargetInfo::BuiltinVaListKind
WindowsARMTargetInfo::getBuiltinVaListKind() const {
  return TargetInfo::CharPtrBuiltinVaList;
}

TargetInfo::CallingConvCheckResult
WindowsARMTargetInfo::checkCallingConvention(CallingConv CC) const {
  switch (CC) {
  case CC_X86StdCall:
  case CC_X86ThisCall:
  case CC_X86FastCall:
  case CC_X86VectorCall:
    return CCCR_Ignore;
  case CC_C:
  case CC_OpenCLKernel:
  case CC_PreserveMost:
  case CC_PreserveAll:
  case CC_Swift:
    return CCCR_OK;
  default:
    return CCCR_Warning;
  }
}

// Windows ARM + Itanium C++ ABI Target
ItaniumWindowsARMleTargetInfo::ItaniumWindowsARMleTargetInfo(
    const llvm::Triple &Triple, const TargetOptions &Opts)
    : WindowsARMTargetInfo(Triple, Opts) {
  TheCXXABI.set(TargetCXXABI::GenericARM);
}

void ItaniumWindowsARMleTargetInfo::getTargetDefines(
    const LangOptions &Opts, MacroBuilder &Builder) const {
  WindowsARMTargetInfo::getTargetDefines(Opts, Builder);

  if (Opts.MSVCCompat)
    WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
}

// Windows ARM, MS (C++) ABI
MicrosoftARMleTargetInfo::MicrosoftARMleTargetInfo(const llvm::Triple &Triple,
                                                   const TargetOptions &Opts)
    : WindowsARMTargetInfo(Triple, Opts) {
  TheCXXABI.set(TargetCXXABI::Microsoft);
}

void MicrosoftARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
                                                MacroBuilder &Builder) const {
  WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
  WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
}

MinGWARMTargetInfo::MinGWARMTargetInfo(const llvm::Triple &Triple,
                                       const TargetOptions &Opts)
    : WindowsARMTargetInfo(Triple, Opts) {
  TheCXXABI.set(TargetCXXABI::GenericARM);
}

void MinGWARMTargetInfo::getTargetDefines(const LangOptions &Opts,
                                          MacroBuilder &Builder) const {
  WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
  Builder.defineMacro("_ARM_");
}

CygwinARMTargetInfo::CygwinARMTargetInfo(const llvm::Triple &Triple,
                                         const TargetOptions &Opts)
    : ARMleTargetInfo(Triple, Opts) {
  this->WCharType = TargetInfo::UnsignedShort;
  TLSSupported = false;
  DoubleAlign = LongLongAlign = 64;
  resetDataLayout("e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
}

void CygwinARMTargetInfo::getTargetDefines(const LangOptions &Opts,
                                           MacroBuilder &Builder) const {
  ARMleTargetInfo::getTargetDefines(Opts, Builder);
  Builder.defineMacro("_ARM_");
  Builder.defineMacro("__CYGWIN__");
  Builder.defineMacro("__CYGWIN32__");
  DefineStd(Builder, "unix", Opts);
  if (Opts.CPlusPlus)
    Builder.defineMacro("_GNU_SOURCE");
}

DarwinARMTargetInfo::DarwinARMTargetInfo(const llvm::Triple &Triple,
                                         const TargetOptions &Opts)
    : DarwinTargetInfo<ARMleTargetInfo>(Triple, Opts) {
  HasAlignMac68kSupport = true;
  // iOS always has 64-bit atomic instructions.
  // FIXME: This should be based off of the target features in
  // ARMleTargetInfo.
  MaxAtomicInlineWidth = 64;

  if (Triple.isWatchABI()) {
    // Darwin on iOS uses a variant of the ARM C++ ABI.
    TheCXXABI.set(TargetCXXABI::WatchOS);

    // BOOL should be a real boolean on the new ABI
    UseSignedCharForObjCBool = false;
  } else
    TheCXXABI.set(TargetCXXABI::iOS);
}

void DarwinARMTargetInfo::getOSDefines(const LangOptions &Opts,
                                       const llvm::Triple &Triple,
                                       MacroBuilder &Builder) const {
  getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
}

RenderScript32TargetInfo::RenderScript32TargetInfo(const llvm::Triple &Triple,
                                                   const TargetOptions &Opts)
    : ARMleTargetInfo(llvm::Triple("armv7", Triple.getVendorName(),
                                   Triple.getOSName(),
                                   Triple.getEnvironmentName()),
                      Opts) {
  IsRenderScriptTarget = true;
  LongWidth = LongAlign = 64;
}

void RenderScript32TargetInfo::getTargetDefines(const LangOptions &Opts,
                                                MacroBuilder &Builder) const {
  Builder.defineMacro("__RENDERSCRIPT__");
  ARMleTargetInfo::getTargetDefines(Opts, Builder);
}