Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Chunks.h"
#include "Config.h"
#include "DebugTypes.h"
#include "Driver.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm-c/lto.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Target/TargetOptions.h"
#include <cstring>
#include <system_error>
#include <utility>

using namespace llvm;
using namespace llvm::COFF;
using namespace llvm::codeview;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::coff;

using llvm::Triple;
using llvm::support::ulittle32_t;

// Returns the last element of a path, which is supposed to be a filename.
static StringRef getBasename(StringRef path) {
  return sys::path::filename(path, sys::path::Style::windows);
}

// Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
std::string lld::toString(const coff::InputFile *file) {
  if (!file)
    return "<internal>";
  if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
    return std::string(file->getName());

  return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
          ")")
      .str();
}

std::vector<ObjFile *> ObjFile::instances;
std::map<std::string, PDBInputFile *> PDBInputFile::instances;
std::vector<ImportFile *> ImportFile::instances;
std::vector<BitcodeFile *> BitcodeFile::instances;

/// Checks that Source is compatible with being a weak alias to Target.
/// If Source is Undefined and has no weak alias set, makes it a weak
/// alias to Target.
static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f,
                                 Symbol *source, Symbol *target) {
  if (auto *u = dyn_cast<Undefined>(source)) {
    if (u->weakAlias && u->weakAlias != target) {
      // Weak aliases as produced by GCC are named in the form
      // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
      // of another symbol emitted near the weak symbol.
      // Just use the definition from the first object file that defined
      // this weak symbol.
      if (config->mingw)
        return;
      symtab->reportDuplicate(source, f);
    }
    u->weakAlias = target;
  }
}

static bool ignoredSymbolName(StringRef name) {
  return name == "@feat.00" || name == "@comp.id";
}

ArchiveFile::ArchiveFile(MemoryBufferRef m) : InputFile(ArchiveKind, m) {}

void ArchiveFile::parse() {
  // Parse a MemoryBufferRef as an archive file.
  file = CHECK(Archive::create(mb), this);

  // Read the symbol table to construct Lazy objects.
  for (const Archive::Symbol &sym : file->symbols())
    symtab->addLazyArchive(this, sym);
}

// Returns a buffer pointing to a member file containing a given symbol.
void ArchiveFile::addMember(const Archive::Symbol &sym) {
  const Archive::Child &c =
      CHECK(sym.getMember(),
            "could not get the member for symbol " + toCOFFString(sym));

  // Return an empty buffer if we have already returned the same buffer.
  if (!seen.insert(c.getChildOffset()).second)
    return;

  driver->enqueueArchiveMember(c, sym, getName());
}

std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
  std::vector<MemoryBufferRef> v;
  Error err = Error::success();
  for (const Archive::Child &c : file->children(err)) {
    MemoryBufferRef mbref =
        CHECK(c.getMemoryBufferRef(),
              file->getFileName() +
                  ": could not get the buffer for a child of the archive");
    v.push_back(mbref);
  }
  if (err)
    fatal(file->getFileName() +
          ": Archive::children failed: " + toString(std::move(err)));
  return v;
}

void LazyObjFile::fetch() {
  if (mb.getBuffer().empty())
    return;

  InputFile *file;
  if (isBitcode(mb))
    file = make<BitcodeFile>(mb, "", 0, std::move(symbols));
  else
    file = make<ObjFile>(mb, std::move(symbols));
  mb = {};
  symtab->addFile(file);
}

void LazyObjFile::parse() {
  if (isBitcode(this->mb)) {
    // Bitcode file.
    std::unique_ptr<lto::InputFile> obj =
        CHECK(lto::InputFile::create(this->mb), this);
    for (const lto::InputFile::Symbol &sym : obj->symbols()) {
      if (!sym.isUndefined())
        symtab->addLazyObject(this, sym.getName());
    }
    return;
  }

  // Native object file.
  std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
  COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
  uint32_t numSymbols = coffObj->getNumberOfSymbols();
  for (uint32_t i = 0; i < numSymbols; ++i) {
    COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
    if (coffSym.isUndefined() || !coffSym.isExternal() ||
        coffSym.isWeakExternal())
      continue;
    StringRef name = check(coffObj->getSymbolName(coffSym));
    if (coffSym.isAbsolute() && ignoredSymbolName(name))
      continue;
    symtab->addLazyObject(this, name);
    i += coffSym.getNumberOfAuxSymbols();
  }
}

void ObjFile::parse() {
  // Parse a memory buffer as a COFF file.
  std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);

  if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
    bin.release();
    coffObj.reset(obj);
  } else {
    fatal(toString(this) + " is not a COFF file");
  }

  // Read section and symbol tables.
  initializeChunks();
  initializeSymbols();
  initializeFlags();
  initializeDependencies();
}

const coff_section *ObjFile::getSection(uint32_t i) {
  auto sec = coffObj->getSection(i);
  if (!sec)
    fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
  return *sec;
}

// We set SectionChunk pointers in the SparseChunks vector to this value
// temporarily to mark comdat sections as having an unknown resolution. As we
// walk the object file's symbol table, once we visit either a leader symbol or
// an associative section definition together with the parent comdat's leader,
// we set the pointer to either nullptr (to mark the section as discarded) or a
// valid SectionChunk for that section.
static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);

void ObjFile::initializeChunks() {
  uint32_t numSections = coffObj->getNumberOfSections();
  sparseChunks.resize(numSections + 1);
  for (uint32_t i = 1; i < numSections + 1; ++i) {
    const coff_section *sec = getSection(i);
    if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
      sparseChunks[i] = pendingComdat;
    else
      sparseChunks[i] = readSection(i, nullptr, "");
  }
}

SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
                                   const coff_aux_section_definition *def,
                                   StringRef leaderName) {
  const coff_section *sec = getSection(sectionNumber);

  StringRef name;
  if (Expected<StringRef> e = coffObj->getSectionName(sec))
    name = *e;
  else
    fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
          toString(e.takeError()));

  if (name == ".drectve") {
    ArrayRef<uint8_t> data;
    cantFail(coffObj->getSectionContents(sec, data));
    directives = StringRef((const char *)data.data(), data.size());
    return nullptr;
  }

  if (name == ".llvm_addrsig") {
    addrsigSec = sec;
    return nullptr;
  }

  // Object files may have DWARF debug info or MS CodeView debug info
  // (or both).
  //
  // DWARF sections don't need any special handling from the perspective
  // of the linker; they are just a data section containing relocations.
  // We can just link them to complete debug info.
  //
  // CodeView needs linker support. We need to interpret debug info,
  // and then write it to a separate .pdb file.

  // Ignore DWARF debug info unless /debug is given.
  if (!config->debug && name.startswith(".debug_"))
    return nullptr;

  if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
    return nullptr;
  auto *c = make<SectionChunk>(this, sec);
  if (def)
    c->checksum = def->CheckSum;

  // CodeView sections are stored to a different vector because they are not
  // linked in the regular manner.
  if (c->isCodeView())
    debugChunks.push_back(c);
  else if (name == ".gfids$y")
    guardFidChunks.push_back(c);
  else if (name == ".gljmp$y")
    guardLJmpChunks.push_back(c);
  else if (name == ".sxdata")
    sxDataChunks.push_back(c);
  else if (config->tailMerge && sec->NumberOfRelocations == 0 &&
           name == ".rdata" && leaderName.startswith("??_C@"))
    // COFF sections that look like string literal sections (i.e. no
    // relocations, in .rdata, leader symbol name matches the MSVC name mangling
    // for string literals) are subject to string tail merging.
    MergeChunk::addSection(c);
  else if (name == ".rsrc" || name.startswith(".rsrc$"))
    resourceChunks.push_back(c);
  else
    chunks.push_back(c);

  return c;
}

void ObjFile::includeResourceChunks() {
  chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
}

void ObjFile::readAssociativeDefinition(
    COFFSymbolRef sym, const coff_aux_section_definition *def) {
  readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
}

void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
                                        const coff_aux_section_definition *def,
                                        uint32_t parentIndex) {
  SectionChunk *parent = sparseChunks[parentIndex];
  int32_t sectionNumber = sym.getSectionNumber();

  auto diag = [&]() {
    StringRef name = check(coffObj->getSymbolName(sym));

    StringRef parentName;
    const coff_section *parentSec = getSection(parentIndex);
    if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
      parentName = *e;
    error(toString(this) + ": associative comdat " + name + " (sec " +
          Twine(sectionNumber) + ") has invalid reference to section " +
          parentName + " (sec " + Twine(parentIndex) + ")");
  };

  if (parent == pendingComdat) {
    // This can happen if an associative comdat refers to another associative
    // comdat that appears after it (invalid per COFF spec) or to a section
    // without any symbols.
    diag();
    return;
  }

  // Check whether the parent is prevailing. If it is, so are we, and we read
  // the section; otherwise mark it as discarded.
  if (parent) {
    SectionChunk *c = readSection(sectionNumber, def, "");
    sparseChunks[sectionNumber] = c;
    if (c) {
      c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
      parent->addAssociative(c);
    }
  } else {
    sparseChunks[sectionNumber] = nullptr;
  }
}

void ObjFile::recordPrevailingSymbolForMingw(
    COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
  // For comdat symbols in executable sections, where this is the copy
  // of the section chunk we actually include instead of discarding it,
  // add the symbol to a map to allow using it for implicitly
  // associating .[px]data$<func> sections to it.
  // Use the suffix from the .text$<func> instead of the leader symbol
  // name, for cases where the names differ (i386 mangling/decorations,
  // cases where the leader is a weak symbol named .weak.func.default*).
  int32_t sectionNumber = sym.getSectionNumber();
  SectionChunk *sc = sparseChunks[sectionNumber];
  if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
    StringRef name = sc->getSectionName().split('$').second;
    prevailingSectionMap[name] = sectionNumber;
  }
}

void ObjFile::maybeAssociateSEHForMingw(
    COFFSymbolRef sym, const coff_aux_section_definition *def,
    const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
  StringRef name = check(coffObj->getSymbolName(sym));
  if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
      name.consume_front(".eh_frame$")) {
    // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
    // associative to the symbol <func>.
    auto parentSym = prevailingSectionMap.find(name);
    if (parentSym != prevailingSectionMap.end())
      readAssociativeDefinition(sym, def, parentSym->second);
  }
}

Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
  SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
  if (sym.isExternal()) {
    StringRef name = check(coffObj->getSymbolName(sym));
    if (sc)
      return symtab->addRegular(this, name, sym.getGeneric(), sc,
                                sym.getValue());
    // For MinGW symbols named .weak.* that point to a discarded section,
    // don't create an Undefined symbol. If nothing ever refers to the symbol,
    // everything should be fine. If something actually refers to the symbol
    // (e.g. the undefined weak alias), linking will fail due to undefined
    // references at the end.
    if (config->mingw && name.startswith(".weak."))
      return nullptr;
    return symtab->addUndefined(name, this, false);
  }
  if (sc)
    return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
                                /*IsExternal*/ false, sym.getGeneric(), sc);
  return nullptr;
}

void ObjFile::initializeSymbols() {
  uint32_t numSymbols = coffObj->getNumberOfSymbols();
  symbols.resize(numSymbols);

  SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
  std::vector<uint32_t> pendingIndexes;
  pendingIndexes.reserve(numSymbols);

  DenseMap<StringRef, uint32_t> prevailingSectionMap;
  std::vector<const coff_aux_section_definition *> comdatDefs(
      coffObj->getNumberOfSections() + 1);

  for (uint32_t i = 0; i < numSymbols; ++i) {
    COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
    bool prevailingComdat;
    if (coffSym.isUndefined()) {
      symbols[i] = createUndefined(coffSym);
    } else if (coffSym.isWeakExternal()) {
      symbols[i] = createUndefined(coffSym);
      uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
      weakAliases.emplace_back(symbols[i], tagIndex);
    } else if (Optional<Symbol *> optSym =
                   createDefined(coffSym, comdatDefs, prevailingComdat)) {
      symbols[i] = *optSym;
      if (config->mingw && prevailingComdat)
        recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
    } else {
      // createDefined() returns None if a symbol belongs to a section that
      // was pending at the point when the symbol was read. This can happen in
      // two cases:
      // 1) section definition symbol for a comdat leader;
      // 2) symbol belongs to a comdat section associated with another section.
      // In both of these cases, we can expect the section to be resolved by
      // the time we finish visiting the remaining symbols in the symbol
      // table. So we postpone the handling of this symbol until that time.
      pendingIndexes.push_back(i);
    }
    i += coffSym.getNumberOfAuxSymbols();
  }

  for (uint32_t i : pendingIndexes) {
    COFFSymbolRef sym = check(coffObj->getSymbol(i));
    if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
      if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
        readAssociativeDefinition(sym, def);
      else if (config->mingw)
        maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
    }
    if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
      StringRef name = check(coffObj->getSymbolName(sym));
      log("comdat section " + name +
          " without leader and unassociated, discarding");
      continue;
    }
    symbols[i] = createRegular(sym);
  }

  for (auto &kv : weakAliases) {
    Symbol *sym = kv.first;
    uint32_t idx = kv.second;
    checkAndSetWeakAlias(symtab, this, sym, symbols[idx]);
  }

  // Free the memory used by sparseChunks now that symbol loading is finished.
  decltype(sparseChunks)().swap(sparseChunks);
}

Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
  StringRef name = check(coffObj->getSymbolName(sym));
  return symtab->addUndefined(name, this, sym.isWeakExternal());
}

void ObjFile::handleComdatSelection(COFFSymbolRef sym, COMDATType &selection,
                                    bool &prevailing, DefinedRegular *leader) {
  if (prevailing)
    return;
  // There's already an existing comdat for this symbol: `Leader`.
  // Use the comdats's selection field to determine if the new
  // symbol in `Sym` should be discarded, produce a duplicate symbol
  // error, etc.

  SectionChunk *leaderChunk = nullptr;
  COMDATType leaderSelection = IMAGE_COMDAT_SELECT_ANY;

  if (leader->data) {
    leaderChunk = leader->getChunk();
    leaderSelection = leaderChunk->selection;
  } else {
    // FIXME: comdats from LTO files don't know their selection; treat them
    // as "any".
    selection = leaderSelection;
  }

  if ((selection == IMAGE_COMDAT_SELECT_ANY &&
       leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
      (selection == IMAGE_COMDAT_SELECT_LARGEST &&
       leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
    // cl.exe picks "any" for vftables when building with /GR- and
    // "largest" when building with /GR. To be able to link object files
    // compiled with each flag, "any" and "largest" are merged as "largest".
    leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
  }

  // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
  // Clang on the other hand picks "any". To be able to link two object files
  // with a __declspec(selectany) declaration, one compiled with gcc and the
  // other with clang, we merge them as proper "same size as"
  if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
                         leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
                        (selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
                         leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
    leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
  }

  // Other than that, comdat selections must match.  This is a bit more
  // strict than link.exe which allows merging "any" and "largest" if "any"
  // is the first symbol the linker sees, and it allows merging "largest"
  // with everything (!) if "largest" is the first symbol the linker sees.
  // Making this symmetric independent of which selection is seen first
  // seems better though.
  // (This behavior matches ModuleLinker::getComdatResult().)
  if (selection != leaderSelection) {
    log(("conflicting comdat type for " + toString(*leader) + ": " +
         Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
         " and " + Twine((int)selection) + " in " + toString(this))
            .str());
    symtab->reportDuplicate(leader, this);
    return;
  }

  switch (selection) {
  case IMAGE_COMDAT_SELECT_NODUPLICATES:
    symtab->reportDuplicate(leader, this);
    break;

  case IMAGE_COMDAT_SELECT_ANY:
    // Nothing to do.
    break;

  case IMAGE_COMDAT_SELECT_SAME_SIZE:
    if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData)
      symtab->reportDuplicate(leader, this);
    break;

  case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
    SectionChunk newChunk(this, getSection(sym));
    // link.exe only compares section contents here and doesn't complain
    // if the two comdat sections have e.g. different alignment.
    // Match that.
    if (leaderChunk->getContents() != newChunk.getContents())
      symtab->reportDuplicate(leader, this, &newChunk, sym.getValue());
    break;
  }

  case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
    // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
    // (This means lld-link doesn't produce duplicate symbol errors for
    // associative comdats while link.exe does, but associate comdats
    // are never extern in practice.)
    llvm_unreachable("createDefined not called for associative comdats");

  case IMAGE_COMDAT_SELECT_LARGEST:
    if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
      // Replace the existing comdat symbol with the new one.
      StringRef name = check(coffObj->getSymbolName(sym));
      // FIXME: This is incorrect: With /opt:noref, the previous sections
      // make it into the final executable as well. Correct handling would
      // be to undo reading of the whole old section that's being replaced,
      // or doing one pass that determines what the final largest comdat
      // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
      // only the largest one.
      replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
                                    /*IsExternal*/ true, sym.getGeneric(),
                                    nullptr);
      prevailing = true;
    }
    break;

  case IMAGE_COMDAT_SELECT_NEWEST:
    llvm_unreachable("should have been rejected earlier");
  }
}

Optional<Symbol *> ObjFile::createDefined(
    COFFSymbolRef sym,
    std::vector<const coff_aux_section_definition *> &comdatDefs,
    bool &prevailing) {
  prevailing = false;
  auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };

  if (sym.isCommon()) {
    auto *c = make<CommonChunk>(sym);
    chunks.push_back(c);
    return symtab->addCommon(this, getName(), sym.getValue(), sym.getGeneric(),
                             c);
  }

  if (sym.isAbsolute()) {
    StringRef name = getName();

    if (name == "@feat.00")
      feat00Flags = sym.getValue();
    // Skip special symbols.
    if (ignoredSymbolName(name))
      return nullptr;

    if (sym.isExternal())
      return symtab->addAbsolute(name, sym);
    return make<DefinedAbsolute>(name, sym);
  }

  int32_t sectionNumber = sym.getSectionNumber();
  if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
    return nullptr;

  if (llvm::COFF::isReservedSectionNumber(sectionNumber))
    fatal(toString(this) + ": " + getName() +
          " should not refer to special section " + Twine(sectionNumber));

  if ((uint32_t)sectionNumber >= sparseChunks.size())
    fatal(toString(this) + ": " + getName() +
          " should not refer to non-existent section " + Twine(sectionNumber));

  // Comdat handling.
  // A comdat symbol consists of two symbol table entries.
  // The first symbol entry has the name of the section (e.g. .text), fixed
  // values for the other fields, and one auxiliary record.
  // The second symbol entry has the name of the comdat symbol, called the
  // "comdat leader".
  // When this function is called for the first symbol entry of a comdat,
  // it sets comdatDefs and returns None, and when it's called for the second
  // symbol entry it reads comdatDefs and then sets it back to nullptr.

  // Handle comdat leader.
  if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
    comdatDefs[sectionNumber] = nullptr;
    DefinedRegular *leader;

    if (sym.isExternal()) {
      std::tie(leader, prevailing) =
          symtab->addComdat(this, getName(), sym.getGeneric());
    } else {
      leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
                                    /*IsExternal*/ false, sym.getGeneric());
      prevailing = true;
    }

    if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
        // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
        // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
        def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
      fatal("unknown comdat type " + std::to_string((int)def->Selection) +
            " for " + getName() + " in " + toString(this));
    }
    COMDATType selection = (COMDATType)def->Selection;

    if (leader->isCOMDAT)
      handleComdatSelection(sym, selection, prevailing, leader);

    if (prevailing) {
      SectionChunk *c = readSection(sectionNumber, def, getName());
      sparseChunks[sectionNumber] = c;
      c->sym = cast<DefinedRegular>(leader);
      c->selection = selection;
      cast<DefinedRegular>(leader)->data = &c->repl;
    } else {
      sparseChunks[sectionNumber] = nullptr;
    }
    return leader;
  }

  // Prepare to handle the comdat leader symbol by setting the section's
  // ComdatDefs pointer if we encounter a non-associative comdat.
  if (sparseChunks[sectionNumber] == pendingComdat) {
    if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
      if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
        comdatDefs[sectionNumber] = def;
    }
    return None;
  }

  return createRegular(sym);
}

MachineTypes ObjFile::getMachineType() {
  if (coffObj)
    return static_cast<MachineTypes>(coffObj->getMachine());
  return IMAGE_FILE_MACHINE_UNKNOWN;
}

ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
  if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
    return sec->consumeDebugMagic();
  return {};
}

// OBJ files systematically store critical information in a .debug$S stream,
// even if the TU was compiled with no debug info. At least two records are
// always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
// PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
// currently used to initialize the hotPatchable member.
void ObjFile::initializeFlags() {
  ArrayRef<uint8_t> data = getDebugSection(".debug$S");
  if (data.empty())
    return;

  DebugSubsectionArray subsections;

  BinaryStreamReader reader(data, support::little);
  ExitOnError exitOnErr;
  exitOnErr(reader.readArray(subsections, data.size()));

  for (const DebugSubsectionRecord &ss : subsections) {
    if (ss.kind() != DebugSubsectionKind::Symbols)
      continue;

    unsigned offset = 0;

    // Only parse the first two records. We are only looking for S_OBJNAME
    // and S_COMPILE3, and they usually appear at the beginning of the
    // stream.
    for (unsigned i = 0; i < 2; ++i) {
      Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
      if (!sym) {
        consumeError(sym.takeError());
        return;
      }
      if (sym->kind() == SymbolKind::S_COMPILE3) {
        auto cs =
            cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
        hotPatchable =
            (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
      }
      if (sym->kind() == SymbolKind::S_OBJNAME) {
        auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
            sym.get()));
        pchSignature = objName.Signature;
      }
      offset += sym->length();
    }
  }
}

// Depending on the compilation flags, OBJs can refer to external files,
// necessary to merge this OBJ into the final PDB. We currently support two
// types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
// And PDB type servers, when compiling with /Zi. This function extracts these
// dependencies and makes them available as a TpiSource interface (see
// DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
// output even with /Yc and /Yu and with /Zi.
void ObjFile::initializeDependencies() {
  if (!config->debug)
    return;

  bool isPCH = false;

  ArrayRef<uint8_t> data = getDebugSection(".debug$P");
  if (!data.empty())
    isPCH = true;
  else
    data = getDebugSection(".debug$T");

  if (data.empty())
    return;

  // Get the first type record. It will indicate if this object uses a type
  // server (/Zi) or a PCH file (/Yu).
  CVTypeArray types;
  BinaryStreamReader reader(data, support::little);
  cantFail(reader.readArray(types, reader.getLength()));
  CVTypeArray::Iterator firstType = types.begin();
  if (firstType == types.end())
    return;

  // Remember the .debug$T or .debug$P section.
  debugTypes = data;

  // This object file is a PCH file that others will depend on.
  if (isPCH) {
    debugTypesObj = makePrecompSource(this);
    return;
  }

  // This object file was compiled with /Zi. Enqueue the PDB dependency.
  if (firstType->kind() == LF_TYPESERVER2) {
    TypeServer2Record ts = cantFail(
        TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
    debugTypesObj = makeUseTypeServerSource(this, ts);
    PDBInputFile::enqueue(ts.getName(), this);
    return;
  }

  // This object was compiled with /Yu. It uses types from another object file
  // with a matching signature.
  if (firstType->kind() == LF_PRECOMP) {
    PrecompRecord precomp = cantFail(
        TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
    debugTypesObj = makeUsePrecompSource(this, precomp);
    return;
  }

  // This is a plain old object file.
  debugTypesObj = makeTpiSource(this);
}

// Make a PDB path assuming the PDB is in the same folder as the OBJ
static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) {
  StringRef localPath =
      !file->parentName.empty() ? file->parentName : file->getName();
  SmallString<128> path = sys::path::parent_path(localPath);

  // Currently, type server PDBs are only created by MSVC cl, which only runs
  // on Windows, so we can assume type server paths are Windows style.
  sys::path::append(path,
                    sys::path::filename(tSPath, sys::path::Style::windows));
  return std::string(path.str());
}

// The casing of the PDB path stamped in the OBJ can differ from the actual path
// on disk. With this, we ensure to always use lowercase as a key for the
// PDBInputFile::instances map, at least on Windows.
static std::string normalizePdbPath(StringRef path) {
#if defined(_WIN32)
  return path.lower();
#else // LINUX
  return std::string(path);
#endif
}

// If existing, return the actual PDB path on disk.
static Optional<std::string> findPdbPath(StringRef pdbPath,
                                         ObjFile *dependentFile) {
  // Ensure the file exists before anything else. In some cases, if the path
  // points to a removable device, Driver::enqueuePath() would fail with an
  // error (EAGAIN, "resource unavailable try again") which we want to skip
  // silently.
  if (llvm::sys::fs::exists(pdbPath))
    return normalizePdbPath(pdbPath);
  std::string ret = getPdbBaseName(dependentFile, pdbPath);
  if (llvm::sys::fs::exists(ret))
    return normalizePdbPath(ret);
  return None;
}

PDBInputFile::PDBInputFile(MemoryBufferRef m) : InputFile(PDBKind, m) {}

PDBInputFile::~PDBInputFile() = default;

PDBInputFile *PDBInputFile::findFromRecordPath(StringRef path,
                                               ObjFile *fromFile) {
  auto p = findPdbPath(path.str(), fromFile);
  if (!p)
    return nullptr;
  auto it = PDBInputFile::instances.find(*p);
  if (it != PDBInputFile::instances.end())
    return it->second;
  return nullptr;
}

void PDBInputFile::enqueue(StringRef path, ObjFile *fromFile) {
  auto p = findPdbPath(path.str(), fromFile);
  if (!p)
    return;
  auto it = PDBInputFile::instances.emplace(*p, nullptr);
  if (!it.second)
    return; // already scheduled for load
  driver->enqueuePDB(*p);
}

void PDBInputFile::parse() {
  PDBInputFile::instances[mb.getBufferIdentifier().str()] = this;

  std::unique_ptr<pdb::IPDBSession> thisSession;
  loadErr.emplace(pdb::NativeSession::createFromPdb(
      MemoryBuffer::getMemBuffer(mb, false), thisSession));
  if (*loadErr)
    return; // fail silently at this point - the error will be handled later,
            // when merging the debug type stream

  session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));

  pdb::PDBFile &pdbFile = session->getPDBFile();
  auto expectedInfo = pdbFile.getPDBInfoStream();
  // All PDB Files should have an Info stream.
  if (!expectedInfo) {
    loadErr.emplace(expectedInfo.takeError());
    return;
  }
  debugTypesObj = makeTypeServerSource(this);
}

// Used only for DWARF debug info, which is not common (except in MinGW
// environments). This returns an optional pair of file name and line
// number for where the variable was defined.
Optional<std::pair<StringRef, uint32_t>>
ObjFile::getVariableLocation(StringRef var) {
  if (!dwarf) {
    dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
    if (!dwarf)
      return None;
  }
  if (config->machine == I386)
    var.consume_front("_");
  Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var);
  if (!ret)
    return None;
  return std::make_pair(saver.save(ret->first), ret->second);
}

// Used only for DWARF debug info, which is not common (except in MinGW
// environments).
Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
                                            uint32_t sectionIndex) {
  if (!dwarf) {
    dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
    if (!dwarf)
      return None;
  }

  return dwarf->getDILineInfo(offset, sectionIndex);
}

static StringRef ltrim1(StringRef s, const char *chars) {
  if (!s.empty() && strchr(chars, s[0]))
    return s.substr(1);
  return s;
}

void ImportFile::parse() {
  const char *buf = mb.getBufferStart();
  const auto *hdr = reinterpret_cast<const coff_import_header *>(buf);

  // Check if the total size is valid.
  if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
    fatal("broken import library");

  // Read names and create an __imp_ symbol.
  StringRef name = saver.save(StringRef(buf + sizeof(*hdr)));
  StringRef impName = saver.save("__imp_" + name);
  const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1;
  dllName = std::string(StringRef(nameStart));
  StringRef extName;
  switch (hdr->getNameType()) {
  case IMPORT_ORDINAL:
    extName = "";
    break;
  case IMPORT_NAME:
    extName = name;
    break;
  case IMPORT_NAME_NOPREFIX:
    extName = ltrim1(name, "?@_");
    break;
  case IMPORT_NAME_UNDECORATE:
    extName = ltrim1(name, "?@_");
    extName = extName.substr(0, extName.find('@'));
    break;
  }

  this->hdr = hdr;
  externalName = extName;

  impSym = symtab->addImportData(impName, this);
  // If this was a duplicate, we logged an error but may continue;
  // in this case, impSym is nullptr.
  if (!impSym)
    return;

  if (hdr->getType() == llvm::COFF::IMPORT_CONST)
    static_cast<void>(symtab->addImportData(name, this));

  // If type is function, we need to create a thunk which jump to an
  // address pointed by the __imp_ symbol. (This allows you to call
  // DLL functions just like regular non-DLL functions.)
  if (hdr->getType() == llvm::COFF::IMPORT_CODE)
    thunkSym = symtab->addImportThunk(
        name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
}

BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
                         uint64_t offsetInArchive)
    : BitcodeFile(mb, archiveName, offsetInArchive, {}) {}

BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
                         uint64_t offsetInArchive,
                         std::vector<Symbol *> &&symbols)
    : InputFile(BitcodeKind, mb), symbols(std::move(symbols)) {
  std::string path = mb.getBufferIdentifier().str();
  if (config->thinLTOIndexOnly)
    path = replaceThinLTOSuffix(mb.getBufferIdentifier());

  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
  // name. If two archives define two members with the same name, this
  // causes a collision which result in only one of the objects being taken
  // into consideration at LTO time (which very likely causes undefined
  // symbols later in the link stage). So we append file offset to make
  // filename unique.
  MemoryBufferRef mbref(
      mb.getBuffer(),
      saver.save(archiveName.empty() ? path
                                     : archiveName + sys::path::filename(path) +
                                           utostr(offsetInArchive)));

  obj = check(lto::InputFile::create(mbref));
}

BitcodeFile::~BitcodeFile() = default;

void BitcodeFile::parse() {
  std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
  for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
    // FIXME: lto::InputFile doesn't keep enough data to do correct comdat
    // selection handling.
    comdat[i] = symtab->addComdat(this, saver.save(obj->getComdatTable()[i]));
  for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
    StringRef symName = saver.save(objSym.getName());
    int comdatIndex = objSym.getComdatIndex();
    Symbol *sym;
    if (objSym.isUndefined()) {
      sym = symtab->addUndefined(symName, this, false);
    } else if (objSym.isCommon()) {
      sym = symtab->addCommon(this, symName, objSym.getCommonSize());
    } else if (objSym.isWeak() && objSym.isIndirect()) {
      // Weak external.
      sym = symtab->addUndefined(symName, this, true);
      std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
      Symbol *alias = symtab->addUndefined(saver.save(fallback));
      checkAndSetWeakAlias(symtab, this, sym, alias);
    } else if (comdatIndex != -1) {
      if (symName == obj->getComdatTable()[comdatIndex])
        sym = comdat[comdatIndex].first;
      else if (comdat[comdatIndex].second)
        sym = symtab->addRegular(this, symName);
      else
        sym = symtab->addUndefined(symName, this, false);
    } else {
      sym = symtab->addRegular(this, symName);
    }
    symbols.push_back(sym);
    if (objSym.isUsed())
      config->gcroot.push_back(sym);
  }
  directives = obj->getCOFFLinkerOpts();
}

MachineTypes BitcodeFile::getMachineType() {
  switch (Triple(obj->getTargetTriple()).getArch()) {
  case Triple::x86_64:
    return AMD64;
  case Triple::x86:
    return I386;
  case Triple::arm:
    return ARMNT;
  case Triple::aarch64:
    return ARM64;
  default:
    return IMAGE_FILE_MACHINE_UNKNOWN;
  }
}

std::string lld::coff::replaceThinLTOSuffix(StringRef path) {
  StringRef suffix = config->thinLTOObjectSuffixReplace.first;
  StringRef repl = config->thinLTOObjectSuffixReplace.second;

  if (path.consume_back(suffix))
    return (path + repl).str();
  return std::string(path);
}