Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
//===-- EvergreenInstructions.td - EG Instruction defs  ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// TableGen definitions for instructions which are:
// - Available to Evergreen and newer VLIW4/VLIW5 GPUs
// - Available only on Evergreen family GPUs.
//
//===----------------------------------------------------------------------===//

def isEG : Predicate<
  "Subtarget->getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
  "!Subtarget->hasCaymanISA()"
>;

def isEGorCayman : Predicate<
  "Subtarget->getGeneration() == AMDGPUSubtarget::EVERGREEN ||"
  "Subtarget->getGeneration() == AMDGPUSubtarget::NORTHERN_ISLANDS"
>;

class EGPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
  let SubtargetPredicate = isEG;
}

class EGOrCaymanPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
  let SubtargetPredicate = isEGorCayman;
}

//===----------------------------------------------------------------------===//
// Evergreen / Cayman store instructions
//===----------------------------------------------------------------------===//

let SubtargetPredicate = isEGorCayman in {

class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
                           string name, list<dag> pattern>
    : EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
                 "MEM_RAT_CACHELESS "#name, pattern>;

class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
                  dag outs, string name, list<dag> pattern>
    : EG_CF_RAT <0x56, rat_inst, rat_id, mask, outs, ins,
                 "MEM_RAT "#name, pattern>;

class CF_MEM_RAT_STORE_TYPED<bits<1> has_eop>
    : CF_MEM_RAT <0x1, ?, 0xf, (ins R600_Reg128:$rw_gpr, R600_Reg128:$index_gpr,
                           i32imm:$rat_id, InstFlag:$eop), (outs),
                  "STORE_TYPED RAT($rat_id) $rw_gpr, $index_gpr"
                               #!if(has_eop, ", $eop", ""),
                  [(int_r600_rat_store_typed R600_Reg128:$rw_gpr,
                                             R600_Reg128:$index_gpr,
                                             (i32 imm:$rat_id))]>;

def RAT_MSKOR : CF_MEM_RAT <0x11, 0, 0xf,
  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr), (outs),
  "MSKOR $rw_gpr.XW, $index_gpr",
  [(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
> {
  let eop = 0;
}


multiclass RAT_ATOMIC<bits<6> op_ret, bits<6> op_noret, string name> {
  let Constraints = "$rw_gpr = $out_gpr", eop = 0, mayStore = 1 in {
  def  _RTN: CF_MEM_RAT <op_ret, 0, 0xf,
             (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
             (outs R600_Reg128:$out_gpr),
             name # "_RTN" # " $rw_gpr, $index_gpr", [] >;
  def _NORET: CF_MEM_RAT <op_noret, 0, 0xf,
              (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
              (outs R600_Reg128:$out_gpr),
              name # " $rw_gpr, $index_gpr", [] >;
  }
}

// Swap no-ret is just store. Raw store to cached target
// can only store on dword, which exactly matches swap_no_ret.
defm RAT_ATOMIC_XCHG_INT : RAT_ATOMIC<1, 34, "ATOMIC_XCHG_INT">;
defm RAT_ATOMIC_CMPXCHG_INT : RAT_ATOMIC<4, 36, "ATOMIC_CMPXCHG_INT">;
defm RAT_ATOMIC_ADD : RAT_ATOMIC<7, 39, "ATOMIC_ADD">;
defm RAT_ATOMIC_SUB : RAT_ATOMIC<8, 40, "ATOMIC_SUB">;
defm RAT_ATOMIC_RSUB : RAT_ATOMIC<9, 41, "ATOMIC_RSUB">;
defm RAT_ATOMIC_MIN_INT : RAT_ATOMIC<10, 42, "ATOMIC_MIN_INT">;
defm RAT_ATOMIC_MIN_UINT : RAT_ATOMIC<11, 43, "ATOMIC_MIN_UINT">;
defm RAT_ATOMIC_MAX_INT : RAT_ATOMIC<12, 44, "ATOMIC_MAX_INT">;
defm RAT_ATOMIC_MAX_UINT : RAT_ATOMIC<13, 45, "ATOMIC_MAX_UINT">;
defm RAT_ATOMIC_AND : RAT_ATOMIC<14, 46, "ATOMIC_AND">;
defm RAT_ATOMIC_OR : RAT_ATOMIC<15, 47, "ATOMIC_OR">;
defm RAT_ATOMIC_XOR : RAT_ATOMIC<16, 48, "ATOMIC_XOR">;
defm RAT_ATOMIC_INC_UINT : RAT_ATOMIC<18, 50, "ATOMIC_INC_UINT">;
defm RAT_ATOMIC_DEC_UINT : RAT_ATOMIC<19, 51, "ATOMIC_DEC_UINT">;

} // End SubtargetPredicate = isEGorCayman

//===----------------------------------------------------------------------===//
// Evergreen Only instructions
//===----------------------------------------------------------------------===//

let SubtargetPredicate = isEG in {

def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;

def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
def MULHI_INT_eg : MULHI_INT_Common<0x90>;
def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
def MULHI_UINT24_eg : MULHI_UINT24_Common<0xb2>;

def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
def : RsqPat<RECIPSQRT_IEEE_eg, f32>;
def : SqrtPat<RECIPSQRT_IEEE_eg, RECIP_IEEE_eg>;

def SIN_eg : SIN_Common<0x8D>;
def COS_eg : COS_Common<0x8E>;

def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
} // End SubtargetPredicate = isEG

//===----------------------------------------------------------------------===//
// Memory read/write instructions
//===----------------------------------------------------------------------===//

let usesCustomInserter = 1 in {

// 32-bit store
def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
  "STORE_RAW $rw_gpr, $index_gpr, $eop",
  [(store_global i32:$rw_gpr, i32:$index_gpr)]
>;

// 64-bit store
def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
  (ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
  "STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
  [(store_global v2i32:$rw_gpr, i32:$index_gpr)]
>;

//128-bit store
def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
  "STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
  [(store_global v4i32:$rw_gpr, i32:$index_gpr)]
>;

def RAT_STORE_TYPED_eg: CF_MEM_RAT_STORE_TYPED<1>;

} // End usesCustomInserter = 1

class VTX_READ_eg <string name, dag outs>
    : VTX_WORD0_eg, VTX_READ<name, outs, []> {

  // Static fields
  let VC_INST = 0;
  let FETCH_TYPE = 2;
  let FETCH_WHOLE_QUAD = 0;
  let SRC_REL = 0;
  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
  // to store vertex addresses in any channel, not just X.
  let SRC_SEL_X = 0;

  let Inst{31-0} = Word0;
}

def VTX_READ_8_eg
    : VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr",
                   (outs R600_TReg32_X:$dst_gpr)> {

  let MEGA_FETCH_COUNT = 1;
  let DST_SEL_X = 0;
  let DST_SEL_Y = 7;   // Masked
  let DST_SEL_Z = 7;   // Masked
  let DST_SEL_W = 7;   // Masked
  let DATA_FORMAT = 1; // FMT_8
}

def VTX_READ_16_eg
    : VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr",
                   (outs R600_TReg32_X:$dst_gpr)> {
  let MEGA_FETCH_COUNT = 2;
  let DST_SEL_X = 0;
  let DST_SEL_Y = 7;   // Masked
  let DST_SEL_Z = 7;   // Masked
  let DST_SEL_W = 7;   // Masked
  let DATA_FORMAT = 5; // FMT_16

}

def VTX_READ_32_eg
    : VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr",
                   (outs R600_TReg32_X:$dst_gpr)> {

  let MEGA_FETCH_COUNT = 4;
  let DST_SEL_X        = 0;
  let DST_SEL_Y        = 7;   // Masked
  let DST_SEL_Z        = 7;   // Masked
  let DST_SEL_W        = 7;   // Masked
  let DATA_FORMAT      = 0xD; // COLOR_32

  // This is not really necessary, but there were some GPU hangs that appeared
  // to be caused by ALU instructions in the next instruction group that wrote
  // to the $src_gpr registers of the VTX_READ.
  // e.g.
  // %t3_x = VTX_READ_PARAM_32_eg killed %t2_x, 24
  // %t2_x = MOV %zero
  //Adding this constraint prevents this from happening.
  let Constraints = "$src_gpr.ptr = $dst_gpr";
}

def VTX_READ_64_eg
    : VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr",
                   (outs R600_Reg64:$dst_gpr)> {

  let MEGA_FETCH_COUNT = 8;
  let DST_SEL_X        = 0;
  let DST_SEL_Y        = 1;
  let DST_SEL_Z        = 7;
  let DST_SEL_W        = 7;
  let DATA_FORMAT      = 0x1D; // COLOR_32_32
}

def VTX_READ_128_eg
    : VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr",
                   (outs R600_Reg128:$dst_gpr)> {

  let MEGA_FETCH_COUNT = 16;
  let DST_SEL_X        =  0;
  let DST_SEL_Y        =  1;
  let DST_SEL_Z        =  2;
  let DST_SEL_W        =  3;
  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32

  // XXX: Need to force VTX_READ_128 instructions to write to the same register
  // that holds its buffer address to avoid potential hangs.  We can't use
  // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
  // registers are different sizes.
}

//===----------------------------------------------------------------------===//
// VTX Read from parameter memory space
//===----------------------------------------------------------------------===//
def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi8 ADDRVTX_READ:$src_gpr)),
          (VTX_READ_8_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi16 ADDRVTX_READ:$src_gpr)),
          (VTX_READ_16_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_32_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(v2i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_64_eg MEMxi:$src_gpr, 3)>;
def : EGPat<(v4i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_128_eg MEMxi:$src_gpr, 3)>;

//===----------------------------------------------------------------------===//
// VTX Read from constant memory space
//===----------------------------------------------------------------------===//
def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi8 ADDRVTX_READ:$src_gpr)),
          (VTX_READ_8_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi16 ADDRVTX_READ:$src_gpr)),
          (VTX_READ_16_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_32_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(v2i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_64_eg MEMxi:$src_gpr, 2)>;
def : EGPat<(v4i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_128_eg MEMxi:$src_gpr, 2)>;

//===----------------------------------------------------------------------===//
// VTX Read from global memory space
//===----------------------------------------------------------------------===//
def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi8 ADDRVTX_READ:$src_gpr)),
          (VTX_READ_8_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi16 ADDRVTX_READ:$src_gpr)),
          (VTX_READ_16_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_32_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(v2i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_64_eg MEMxi:$src_gpr, 1)>;
def : EGPat<(v4i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
          (VTX_READ_128_eg MEMxi:$src_gpr, 1)>;

//===----------------------------------------------------------------------===//
// Evergreen / Cayman Instructions
//===----------------------------------------------------------------------===//

let SubtargetPredicate = isEGorCayman in {

multiclass AtomicPat<Instruction inst_ret, Instruction inst_noret,
                     SDPatternOperator node_ret, SDPatternOperator node_noret> {
  // FIXME: Add _RTN version. We need per WI scratch location to store the old value
  // EXTRACT_SUBREG here is dummy, we know the node has no uses
  def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, i32:$data)),
            (EXTRACT_SUBREG (inst_noret
              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $data, sub0), $ptr), sub1)>;
}
multiclass AtomicIncDecPat<Instruction inst_ret, Instruction inst_noret,
                     SDPatternOperator node_ret, SDPatternOperator node_noret, int C> {
  // FIXME: Add _RTN version. We need per WI scratch location to store the old value
  // EXTRACT_SUBREG here is dummy, we know the node has no uses
  def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, C)),
            (EXTRACT_SUBREG (inst_noret
              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (MOV_IMM_I32 -1), sub0), $ptr), sub1)>;
}

// CMPSWAP is pattern is special
// EXTRACT_SUBREG here is dummy, we know the node has no uses
// FIXME: Add _RTN version. We need per WI scratch location to store the old value
def : EGOrCaymanPat<(i32 (atomic_cmp_swap_global_noret i32:$ptr, i32:$cmp, i32:$data)),
          (EXTRACT_SUBREG (RAT_ATOMIC_CMPXCHG_INT_NORET
            (INSERT_SUBREG
              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $cmp, sub3),
            $data, sub0),
          $ptr), sub1)>;

defm AtomicSwapPat : AtomicPat <RAT_ATOMIC_XCHG_INT_RTN,
                                RAT_ATOMIC_XCHG_INT_NORET,
                                atomic_swap_global_ret_32,
                                atomic_swap_global_noret_32>;
defm AtomicAddPat : AtomicPat <RAT_ATOMIC_ADD_RTN, RAT_ATOMIC_ADD_NORET,
                               atomic_load_add_global_ret_32, atomic_load_add_global_noret_32>;
defm AtomicSubPat : AtomicPat <RAT_ATOMIC_SUB_RTN, RAT_ATOMIC_SUB_NORET,
                               atomic_load_sub_global_ret_32, atomic_load_sub_global_noret_32>;
defm AtomicMinPat : AtomicPat <RAT_ATOMIC_MIN_INT_RTN,
                               RAT_ATOMIC_MIN_INT_NORET,
                               atomic_load_min_global_ret_32, atomic_load_min_global_noret_32>;
defm AtomicUMinPat : AtomicPat <RAT_ATOMIC_MIN_UINT_RTN,
                                RAT_ATOMIC_MIN_UINT_NORET,
                                atomic_load_umin_global_ret_32, atomic_load_umin_global_noret_32>;
defm AtomicMaxPat : AtomicPat <RAT_ATOMIC_MAX_INT_RTN,
                               RAT_ATOMIC_MAX_INT_NORET,
                               atomic_load_max_global_ret_32, atomic_load_max_global_noret_32>;
defm AtomicUMaxPat : AtomicPat <RAT_ATOMIC_MAX_UINT_RTN,
                                RAT_ATOMIC_MAX_UINT_NORET,
                                atomic_load_umax_global_ret_32, atomic_load_umax_global_noret_32>;
defm AtomicAndPat : AtomicPat <RAT_ATOMIC_AND_RTN, RAT_ATOMIC_AND_NORET,
                               atomic_load_and_global_ret_32, atomic_load_and_global_noret_32>;
defm AtomicOrPat : AtomicPat <RAT_ATOMIC_OR_RTN, RAT_ATOMIC_OR_NORET,
                              atomic_load_or_global_ret_32, atomic_load_or_global_noret_32>;
defm AtomicXorPat : AtomicPat <RAT_ATOMIC_XOR_RTN, RAT_ATOMIC_XOR_NORET,
                               atomic_load_xor_global_ret_32, atomic_load_xor_global_noret_32>;
defm AtomicIncAddPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_RTN,
                                        RAT_ATOMIC_INC_UINT_NORET,
                                        atomic_load_add_global_ret_32,
                                        atomic_load_add_global_noret_32, 1>;
defm AtomicIncSubPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_RTN,
                                        RAT_ATOMIC_INC_UINT_NORET,
                                        atomic_load_sub_global_ret_32,
                                        atomic_load_sub_global_noret_32, -1>;
defm AtomicDecAddPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_RTN,
                                        RAT_ATOMIC_DEC_UINT_NORET,
                                        atomic_load_add_global_ret_32,
                                        atomic_load_add_global_noret_32, -1>;
defm AtomicDecSubPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_RTN,
                                        RAT_ATOMIC_DEC_UINT_NORET,
                                        atomic_load_sub_global_ret_32,
                                        atomic_load_sub_global_noret_32, 1>;

// Should be predicated on FeatureFP64
// def FMA_64 : R600_3OP <
//   0xA, "FMA_64",
//   [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))]
// >;

// BFE_UINT - bit_extract, an optimization for mask and shift
// Src0 = Input
// Src1 = Offset
// Src2 = Width
//
// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
//
// Example Usage:
// (Offset, Width)
//
// (0, 8)  = (Input << 24) >> 24 = (Input &  0xff)       >> 0
// (8, 8)  = (Input << 16) >> 24 = (Input &  0xffff)     >> 8
// (16, 8) = (Input <<  8) >> 24 = (Input &  0xffffff)   >> 16
// (24, 8) = (Input <<  0) >> 24 = (Input &  0xffffffff) >> 24
def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
  [(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))],
  VecALU
>;

def BFE_INT_eg : R600_3OP <0x5, "BFE_INT",
  [(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))],
  VecALU
>;

defm : BFEPattern <BFE_UINT_eg, BFE_INT_eg, MOV_IMM_I32>;

def BFI_INT_eg : R600_3OP <0x06, "BFI_INT",
  [(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))],
  VecALU
>;

def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i1)),
  (BFE_INT_eg i32:$src, (i32 ZERO), (i32 ONE_INT))>;
def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i8)),
  (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 8))>;
def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i16)),
  (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>;

defm : BFIPatterns <BFI_INT_eg, MOV_IMM_I32, R600_Reg64>;

def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT",
  [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))],
  VecALU
>;

def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
  [(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))], VecALU
>;

def : UMad24Pat<MULADD_UINT24_eg>;

def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
def : FSHRPattern <BIT_ALIGN_INT_eg>;
def : ROTRPattern <BIT_ALIGN_INT_eg>;
def MULADD_eg : MULADD_Common<0x14>;
def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
def FMA_eg : FMA_Common<0x7>;
def ASHR_eg : ASHR_Common<0x15>;
def LSHR_eg : LSHR_Common<0x16>;
def LSHL_eg : LSHL_Common<0x17>;
def CNDE_eg : CNDE_Common<0x19>;
def CNDGT_eg : CNDGT_Common<0x1A>;
def CNDGE_eg : CNDGE_Common<0x1B>;
def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
  [(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))], VecALU
>;
def DOT4_eg : DOT4_Common<0xBE>;
defm CUBE_eg : CUBE_Common<0xC0>;


def ADDC_UINT : R600_2OP_Helper <0x52, "ADDC_UINT", AMDGPUcarry>;
def SUBB_UINT : R600_2OP_Helper <0x53, "SUBB_UINT", AMDGPUborrow>;

def FLT32_TO_FLT16 : R600_1OP_Helper <0xA2, "FLT32_TO_FLT16", AMDGPUfp_to_f16, VecALU>;
def FLT16_TO_FLT32 : R600_1OP_Helper <0xA3, "FLT16_TO_FLT32", f16_to_fp, VecALU>;
def BCNT_INT : R600_1OP_Helper <0xAA, "BCNT_INT", ctpop, VecALU>;
def FFBH_UINT : R600_1OP_Helper <0xAB, "FFBH_UINT", AMDGPUffbh_u32, VecALU>;
def FFBL_INT : R600_1OP_Helper <0xAC, "FFBL_INT", AMDGPUffbl_b32, VecALU>;

let hasSideEffects = 1 in {
  def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", [], VecALU>;
}

def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
  let Pattern = [];
  let Itinerary = AnyALU;
}

def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;

def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
  let Pattern = [];
}

def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;

def GROUP_BARRIER : InstR600 <
    (outs), (ins), "  GROUP_BARRIER", [(int_r600_group_barrier)], AnyALU>,
    R600ALU_Word0,
    R600ALU_Word1_OP2 <0x54> {

  let dst = 0;
  let dst_rel = 0;
  let src0 = 0;
  let src0_rel = 0;
  let src0_neg = 0;
  let src0_abs = 0;
  let src1 = 0;
  let src1_rel = 0;
  let src1_neg = 0;
  let src1_abs = 0;
  let write = 0;
  let omod = 0;
  let clamp = 0;
  let last = 1;
  let bank_swizzle = 0;
  let pred_sel = 0;
  let update_exec_mask = 0;
  let update_pred = 0;

  let Inst{31-0}  = Word0;
  let Inst{63-32} = Word1;

  let ALUInst = 1;
}

//===----------------------------------------------------------------------===//
// LDS Instructions
//===----------------------------------------------------------------------===//
class R600_LDS  <bits<6> op, dag outs, dag ins, string asm,
                 list<dag> pattern = []> :

    InstR600 <outs, ins, asm, pattern, XALU>,
    R600_ALU_LDS_Word0,
    R600LDS_Word1 {

  bits<6>  offset = 0;
  let lds_op = op;

  let Word1{27} = offset{0};
  let Word1{12} = offset{1};
  let Word1{28} = offset{2};
  let Word1{31} = offset{3};
  let Word0{12} = offset{4};
  let Word0{25} = offset{5};


  let Inst{31-0}  = Word0;
  let Inst{63-32} = Word1;

  let ALUInst = 1;
  let HasNativeOperands = 1;
  let UseNamedOperandTable = 1;
}

class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
  lds_op,
  (outs R600_Reg32:$dst),
  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
       LAST:$last, R600_Pred:$pred_sel,
       BANK_SWIZZLE:$bank_swizzle),
  "  "#name#" $last OQAP, $src0$src0_rel $pred_sel",
  pattern
  > {

  let src1 = 0;
  let src1_rel = 0;
  let src2 = 0;
  let src2_rel = 0;

  let usesCustomInserter = 1;
  let LDS_1A = 1;
  let DisableEncoding = "$dst";
}

class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
                     string dst =""> :
    R600_LDS <
  lds_op, outs,
  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
       LAST:$last, R600_Pred:$pred_sel,
       BANK_SWIZZLE:$bank_swizzle),
  "  "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
  pattern
  > {

  field string BaseOp;

  let src2 = 0;
  let src2_rel = 0;
  let LDS_1A1D = 1;
}

class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
    R600_LDS_1A1D <lds_op, (outs), name, pattern> {
  let BaseOp = name;
}

class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
    R600_LDS_1A1D <lds_op,  (outs R600_Reg32:$dst), name#"_RET", pattern, "OQAP, "> {

  let BaseOp = name;
  let usesCustomInserter = 1;
  let DisableEncoding = "$dst";
}

class R600_LDS_1A2D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
                     string dst =""> :
    R600_LDS <
  lds_op, outs,
  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
       R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
       LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
  "  "#name# "$last "#dst#"$src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
  pattern> {

  field string BaseOp;

  let LDS_1A1D = 0;
  let LDS_1A2D = 1;
}

class R600_LDS_1A2D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
    R600_LDS_1A2D <lds_op, (outs), name, pattern> {
  let BaseOp = name;
}

class R600_LDS_1A2D_RET <bits<6> lds_op, string name, list<dag> pattern> :
    R600_LDS_1A2D <lds_op, (outs R600_Reg32:$dst), name, pattern> {

  let BaseOp = name;
  let usesCustomInserter = 1;
  let DisableEncoding = "$dst";
}

def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
def LDS_AND : R600_LDS_1A1D_NORET <0x9, "LDS_AND", [] >;
def LDS_OR : R600_LDS_1A1D_NORET <0xa, "LDS_OR", [] >;
def LDS_XOR : R600_LDS_1A1D_NORET <0xb, "LDS_XOR", [] >;
def LDS_WRXCHG: R600_LDS_1A1D_NORET <0xd, "LDS_WRXCHG", [] >;
def LDS_CMPST: R600_LDS_1A2D_NORET <0x10, "LDS_CMPST", [] >;
def LDS_MIN_INT : R600_LDS_1A1D_NORET <0x5, "LDS_MIN_INT", [] >;
def LDS_MAX_INT : R600_LDS_1A1D_NORET <0x6, "LDS_MAX_INT", [] >;
def LDS_MIN_UINT : R600_LDS_1A1D_NORET <0x7, "LDS_MIN_UINT", [] >;
def LDS_MAX_UINT : R600_LDS_1A1D_NORET <0x8, "LDS_MAX_UINT", [] >;
def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
  [(store_local (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
>;
def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
  [(truncstorei8_local i32:$src1, i32:$src0)]
>;
def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
  [(truncstorei16_local i32:$src1, i32:$src0)]
>;
def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
  [(set i32:$dst, (atomic_load_add_local_32 i32:$src0, i32:$src1))]
>;
def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
  [(set i32:$dst, (atomic_load_sub_local_32 i32:$src0, i32:$src1))]
>;
def LDS_AND_RET : R600_LDS_1A1D_RET <0x29, "LDS_AND",
  [(set i32:$dst, (atomic_load_and_local_32 i32:$src0, i32:$src1))]
>;
def LDS_OR_RET : R600_LDS_1A1D_RET <0x2a, "LDS_OR",
  [(set i32:$dst, (atomic_load_or_local_32 i32:$src0, i32:$src1))]
>;
def LDS_XOR_RET : R600_LDS_1A1D_RET <0x2b, "LDS_XOR",
  [(set i32:$dst, (atomic_load_xor_local_32 i32:$src0, i32:$src1))]
>;
def LDS_MIN_INT_RET : R600_LDS_1A1D_RET <0x25, "LDS_MIN_INT",
  [(set i32:$dst, (atomic_load_min_local_32 i32:$src0, i32:$src1))]
>;
def LDS_MAX_INT_RET : R600_LDS_1A1D_RET <0x26, "LDS_MAX_INT",
  [(set i32:$dst, (atomic_load_max_local_32 i32:$src0, i32:$src1))]
>;
def LDS_MIN_UINT_RET : R600_LDS_1A1D_RET <0x27, "LDS_MIN_UINT",
  [(set i32:$dst, (atomic_load_umin_local_32 i32:$src0, i32:$src1))]
>;
def LDS_MAX_UINT_RET : R600_LDS_1A1D_RET <0x28, "LDS_MAX_UINT",
  [(set i32:$dst, (atomic_load_umax_local_32 i32:$src0, i32:$src1))]
>;
def LDS_WRXCHG_RET : R600_LDS_1A1D_RET <0x2d, "LDS_WRXCHG",
  [(set i32:$dst, (atomic_swap_local_32 i32:$src0, i32:$src1))]
>;
def LDS_CMPST_RET : R600_LDS_1A2D_RET <0x30, "LDS_CMPST",
  [(set i32:$dst, (atomic_cmp_swap_local_32 i32:$src0, i32:$src1, i32:$src2))]
>;
def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
  [(set (i32 R600_Reg32:$dst), (load_local R600_Reg32:$src0))]
>;
def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
  [(set i32:$dst, (sextloadi8_local i32:$src0))]
>;
def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
  [(set i32:$dst, (az_extloadi8_local i32:$src0))]
>;
def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
  [(set i32:$dst, (sextloadi16_local i32:$src0))]
>;
def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
  [(set i32:$dst, (az_extloadi16_local i32:$src0))]
>;

// TRUNC is used for the FLT_TO_INT instructions to work around a
// perceived problem where the rounding modes are applied differently
// depending on the instruction and the slot they are in.
// See:
// https://bugs.freedesktop.org/show_bug.cgi?id=50232
// Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
//
// XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
// which do not need to be truncated since the fp values are 0.0f or 1.0f.
// We should look into handling these cases separately.
def : EGOrCaymanPat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;

def : EGOrCaymanPat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;

// SHA-256 Patterns
defm : SHA256MaPattern <BFI_INT_eg, XOR_INT, R600_Reg64>;

def EG_ExportSwz : ExportSwzInst {
  let Word1{19-16} = 0; // BURST_COUNT
  let Word1{20} = 0; // VALID_PIXEL_MODE
  let Word1{21} = eop;
  let Word1{29-22} = inst;
  let Word1{30} = 0; // MARK
  let Word1{31} = 1; // BARRIER
}
defm : ExportPattern<EG_ExportSwz, 83>;

def EG_ExportBuf : ExportBufInst {
  let Word1{19-16} = 0; // BURST_COUNT
  let Word1{20} = 0; // VALID_PIXEL_MODE
  let Word1{21} = eop;
  let Word1{29-22} = inst;
  let Word1{30} = 0; // MARK
  let Word1{31} = 1; // BARRIER
}
defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;

def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
  "TEX $COUNT @$ADDR"> {
  let POP_COUNT = 0;
}
def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
  "VTX $COUNT @$ADDR"> {
  let POP_COUNT = 0;
}
def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
  "LOOP_START_DX10 @$ADDR"> {
  let POP_COUNT = 0;
  let COUNT = 0;
}
def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
  let POP_COUNT = 0;
  let COUNT = 0;
}
def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
  "LOOP_BREAK @$ADDR"> {
  let POP_COUNT = 0;
  let COUNT = 0;
}
def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
  "CONTINUE @$ADDR"> {
  let POP_COUNT = 0;
  let COUNT = 0;
}
def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
  "JUMP @$ADDR POP:$POP_COUNT"> {
  let COUNT = 0;
}
def CF_PUSH_EG : CF_CLAUSE_EG<11, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
                              "PUSH @$ADDR POP:$POP_COUNT"> {
  let COUNT = 0;
}
def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
  "ELSE @$ADDR POP:$POP_COUNT"> {
  let COUNT = 0;
}
def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
  let ADDR = 0;
  let COUNT = 0;
  let POP_COUNT = 0;
}
def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
  "POP @$ADDR POP:$POP_COUNT"> {
  let COUNT = 0;
}
def CF_END_EG :  CF_CLAUSE_EG<0, (ins), "CF_END"> {
  let COUNT = 0;
  let POP_COUNT = 0;
  let ADDR = 0;
  let END_OF_PROGRAM = 1;
}

} // End Predicates = [isEGorCayman]