Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// \file
//===----------------------------------------------------------------------===//
//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "si-fold-operands"
using namespace llvm;

namespace {

struct FoldCandidate {
  MachineInstr *UseMI;
  union {
    MachineOperand *OpToFold;
    uint64_t ImmToFold;
    int FrameIndexToFold;
  };
  int ShrinkOpcode;
  unsigned char UseOpNo;
  MachineOperand::MachineOperandType Kind;
  bool Commuted;

  FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
                bool Commuted_ = false,
                int ShrinkOp = -1) :
    UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
    Kind(FoldOp->getType()),
    Commuted(Commuted_) {
    if (FoldOp->isImm()) {
      ImmToFold = FoldOp->getImm();
    } else if (FoldOp->isFI()) {
      FrameIndexToFold = FoldOp->getIndex();
    } else {
      assert(FoldOp->isReg() || FoldOp->isGlobal());
      OpToFold = FoldOp;
    }
  }

  bool isFI() const {
    return Kind == MachineOperand::MO_FrameIndex;
  }

  bool isImm() const {
    return Kind == MachineOperand::MO_Immediate;
  }

  bool isReg() const {
    return Kind == MachineOperand::MO_Register;
  }

  bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }

  bool isCommuted() const {
    return Commuted;
  }

  bool needsShrink() const {
    return ShrinkOpcode != -1;
  }

  int getShrinkOpcode() const {
    return ShrinkOpcode;
  }
};

class SIFoldOperands : public MachineFunctionPass {
public:
  static char ID;
  MachineRegisterInfo *MRI;
  const SIInstrInfo *TII;
  const SIRegisterInfo *TRI;
  const GCNSubtarget *ST;
  const SIMachineFunctionInfo *MFI;

  void foldOperand(MachineOperand &OpToFold,
                   MachineInstr *UseMI,
                   int UseOpIdx,
                   SmallVectorImpl<FoldCandidate> &FoldList,
                   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;

  void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;

  const MachineOperand *isClamp(const MachineInstr &MI) const;
  bool tryFoldClamp(MachineInstr &MI);

  std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
  bool tryFoldOMod(MachineInstr &MI);

public:
  SIFoldOperands() : MachineFunctionPass(ID) {
    initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Fold Operands"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
                "SI Fold Operands", false, false)

char SIFoldOperands::ID = 0;

char &llvm::SIFoldOperandsID = SIFoldOperands::ID;

// Wrapper around isInlineConstant that understands special cases when
// instruction types are replaced during operand folding.
static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
                                     const MachineInstr &UseMI,
                                     unsigned OpNo,
                                     const MachineOperand &OpToFold) {
  if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
    return true;

  unsigned Opc = UseMI.getOpcode();
  switch (Opc) {
  case AMDGPU::V_MAC_F32_e64:
  case AMDGPU::V_MAC_F16_e64:
  case AMDGPU::V_FMAC_F32_e64:
  case AMDGPU::V_FMAC_F16_e64: {
    // Special case for mac. Since this is replaced with mad when folded into
    // src2, we need to check the legality for the final instruction.
    int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
    if (static_cast<int>(OpNo) == Src2Idx) {
      bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
                   Opc == AMDGPU::V_FMAC_F16_e64;
      bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
                   Opc == AMDGPU::V_FMAC_F32_e64;

      unsigned Opc = IsFMA ?
        (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
        (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
      const MCInstrDesc &MadDesc = TII->get(Opc);
      return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
    }
    return false;
  }
  default:
    return false;
  }
}

// TODO: Add heuristic that the frame index might not fit in the addressing mode
// immediate offset to avoid materializing in loops.
static bool frameIndexMayFold(const SIInstrInfo *TII,
                              const MachineInstr &UseMI,
                              int OpNo,
                              const MachineOperand &OpToFold) {
  return OpToFold.isFI() &&
    (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) &&
    OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr);
}

FunctionPass *llvm::createSIFoldOperandsPass() {
  return new SIFoldOperands();
}

static bool updateOperand(FoldCandidate &Fold,
                          const SIInstrInfo &TII,
                          const TargetRegisterInfo &TRI,
                          const GCNSubtarget &ST) {
  MachineInstr *MI = Fold.UseMI;
  MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
  assert(Old.isReg());

  if (Fold.isImm()) {
    if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
        !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
        AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
                                      ST.hasInv2PiInlineImm())) {
      // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
      // already set.
      unsigned Opcode = MI->getOpcode();
      int OpNo = MI->getOperandNo(&Old);
      int ModIdx = -1;
      if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
        ModIdx = AMDGPU::OpName::src0_modifiers;
      else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
        ModIdx = AMDGPU::OpName::src1_modifiers;
      else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
        ModIdx = AMDGPU::OpName::src2_modifiers;
      assert(ModIdx != -1);
      ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
      MachineOperand &Mod = MI->getOperand(ModIdx);
      unsigned Val = Mod.getImm();
      if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
        // Only apply the following transformation if that operand requries
        // a packed immediate.
        switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
        case AMDGPU::OPERAND_REG_IMM_V2FP16:
        case AMDGPU::OPERAND_REG_IMM_V2INT16:
        case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
        case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
          // If upper part is all zero we do not need op_sel_hi.
          if (!isUInt<16>(Fold.ImmToFold)) {
            if (!(Fold.ImmToFold & 0xffff)) {
              Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
              Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
              Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
              return true;
            }
            Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
            Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
            return true;
          }
          break;
        default:
          break;
        }
      }
    }
  }

  if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
    MachineBasicBlock *MBB = MI->getParent();
    auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
    if (Liveness != MachineBasicBlock::LQR_Dead) {
      LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
      return false;
    }

    MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
    int Op32 = Fold.getShrinkOpcode();
    MachineOperand &Dst0 = MI->getOperand(0);
    MachineOperand &Dst1 = MI->getOperand(1);
    assert(Dst0.isDef() && Dst1.isDef());

    bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());

    const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
    Register NewReg0 = MRI.createVirtualRegister(Dst0RC);

    MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);

    if (HaveNonDbgCarryUse) {
      BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
        .addReg(AMDGPU::VCC, RegState::Kill);
    }

    // Keep the old instruction around to avoid breaking iterators, but
    // replace it with a dummy instruction to remove uses.
    //
    // FIXME: We should not invert how this pass looks at operands to avoid
    // this. Should track set of foldable movs instead of looking for uses
    // when looking at a use.
    Dst0.setReg(NewReg0);
    for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
      MI->RemoveOperand(I);
    MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));

    if (Fold.isCommuted())
      TII.commuteInstruction(*Inst32, false);
    return true;
  }

  assert(!Fold.needsShrink() && "not handled");

  if (Fold.isImm()) {
    // FIXME: ChangeToImmediate should probably clear the subreg flags. It's
    // reinterpreted as TargetFlags.
    Old.setSubReg(0);
    Old.ChangeToImmediate(Fold.ImmToFold);
    return true;
  }

  if (Fold.isGlobal()) {
    Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
                   Fold.OpToFold->getTargetFlags());
    return true;
  }

  if (Fold.isFI()) {
    Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
    return true;
  }

  MachineOperand *New = Fold.OpToFold;
  Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
  Old.setIsUndef(New->isUndef());
  return true;
}

static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
                              const MachineInstr *MI) {
  for (auto Candidate : FoldList) {
    if (Candidate.UseMI == MI)
      return true;
  }
  return false;
}

static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
                                MachineInstr *MI, unsigned OpNo,
                                MachineOperand *FoldOp, bool Commuted = false,
                                int ShrinkOp = -1) {
  // Skip additional folding on the same operand.
  for (FoldCandidate &Fold : FoldList)
    if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
      return;
  LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
                    << " operand " << OpNo << "\n  " << *MI << '\n');
  FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp));
}

static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
                             MachineInstr *MI, unsigned OpNo,
                             MachineOperand *OpToFold,
                             const SIInstrInfo *TII) {
  if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
    // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
    unsigned Opc = MI->getOpcode();
    if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
         Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) &&
        (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
      bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
                   Opc == AMDGPU::V_FMAC_F16_e64;
      bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
                   Opc == AMDGPU::V_FMAC_F32_e64;
      unsigned NewOpc = IsFMA ?
        (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
        (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);

      // Check if changing this to a v_mad_{f16, f32} instruction will allow us
      // to fold the operand.
      MI->setDesc(TII->get(NewOpc));
      bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
      if (FoldAsMAD) {
        MI->untieRegOperand(OpNo);
        return true;
      }
      MI->setDesc(TII->get(Opc));
    }

    // Special case for s_setreg_b32
    if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
      MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
      appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
      return true;
    }

    // If we are already folding into another operand of MI, then
    // we can't commute the instruction, otherwise we risk making the
    // other fold illegal.
    if (isUseMIInFoldList(FoldList, MI))
      return false;

    unsigned CommuteOpNo = OpNo;

    // Operand is not legal, so try to commute the instruction to
    // see if this makes it possible to fold.
    unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
    unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
    bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);

    if (CanCommute) {
      if (CommuteIdx0 == OpNo)
        CommuteOpNo = CommuteIdx1;
      else if (CommuteIdx1 == OpNo)
        CommuteOpNo = CommuteIdx0;
    }


    // One of operands might be an Imm operand, and OpNo may refer to it after
    // the call of commuteInstruction() below. Such situations are avoided
    // here explicitly as OpNo must be a register operand to be a candidate
    // for memory folding.
    if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
                       !MI->getOperand(CommuteIdx1).isReg()))
      return false;

    if (!CanCommute ||
        !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
      return false;

    if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
      if ((Opc == AMDGPU::V_ADD_I32_e64 ||
           Opc == AMDGPU::V_SUB_I32_e64 ||
           Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
          (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
        MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();

        // Verify the other operand is a VGPR, otherwise we would violate the
        // constant bus restriction.
        unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
        MachineOperand &OtherOp = MI->getOperand(OtherIdx);
        if (!OtherOp.isReg() ||
            !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
          return false;

        assert(MI->getOperand(1).isDef());

        // Make sure to get the 32-bit version of the commuted opcode.
        unsigned MaybeCommutedOpc = MI->getOpcode();
        int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);

        appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
        return true;
      }

      TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
      return false;
    }

    appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
    return true;
  }

  // Check the case where we might introduce a second constant operand to a
  // scalar instruction
  if (TII->isSALU(MI->getOpcode())) {
    const MCInstrDesc &InstDesc = MI->getDesc();
    const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
    const SIRegisterInfo &SRI = TII->getRegisterInfo();

    // Fine if the operand can be encoded as an inline constant
    if (OpToFold->isImm()) {
      if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
          !TII->isInlineConstant(*OpToFold, OpInfo)) {
        // Otherwise check for another constant
        for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
          auto &Op = MI->getOperand(i);
          if (OpNo != i &&
              TII->isLiteralConstantLike(Op, OpInfo)) {
            return false;
          }
        }
      }
    }
  }

  appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
  return true;
}

// If the use operand doesn't care about the value, this may be an operand only
// used for register indexing, in which case it is unsafe to fold.
static bool isUseSafeToFold(const SIInstrInfo *TII,
                            const MachineInstr &MI,
                            const MachineOperand &UseMO) {
  return !UseMO.isUndef() && !TII->isSDWA(MI);
  //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
}

// Find a def of the UseReg, check if it is a reg_seqence and find initializers
// for each subreg, tracking it to foldable inline immediate if possible.
// Returns true on success.
static bool getRegSeqInit(
    SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
    Register UseReg, uint8_t OpTy,
    const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
  MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
  if (!Def || !Def->isRegSequence())
    return false;

  for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
    MachineOperand *Sub = &Def->getOperand(I);
    assert (Sub->isReg());

    for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg());
         SubDef && Sub->isReg() && !Sub->getSubReg() &&
         TII->isFoldableCopy(*SubDef);
         SubDef = MRI.getUniqueVRegDef(Sub->getReg())) {
      MachineOperand *Op = &SubDef->getOperand(1);
      if (Op->isImm()) {
        if (TII->isInlineConstant(*Op, OpTy))
          Sub = Op;
        break;
      }
      if (!Op->isReg())
        break;
      Sub = Op;
    }

    Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm()));
  }

  return true;
}

static bool tryToFoldACImm(const SIInstrInfo *TII,
                           const MachineOperand &OpToFold,
                           MachineInstr *UseMI,
                           unsigned UseOpIdx,
                           SmallVectorImpl<FoldCandidate> &FoldList) {
  const MCInstrDesc &Desc = UseMI->getDesc();
  const MCOperandInfo *OpInfo = Desc.OpInfo;
  if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
    return false;

  uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
  if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
      OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
    return false;

  if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
      TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
    UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
    return true;
  }

  if (!OpToFold.isReg())
    return false;

  Register UseReg = OpToFold.getReg();
  if (!Register::isVirtualRegister(UseReg))
    return false;

  if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) {
        return FC.UseMI == UseMI; }) != FoldList.end())
    return false;

  MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
  SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
  if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
    return false;

  int32_t Imm;
  for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
    const MachineOperand *Op = Defs[I].first;
    if (!Op->isImm())
      return false;

    auto SubImm = Op->getImm();
    if (!I) {
      Imm = SubImm;
      if (!TII->isInlineConstant(*Op, OpTy) ||
          !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
        return false;

      continue;
    }
    if (Imm != SubImm)
      return false; // Can only fold splat constants
  }

  appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
  return true;
}

void SIFoldOperands::foldOperand(
  MachineOperand &OpToFold,
  MachineInstr *UseMI,
  int UseOpIdx,
  SmallVectorImpl<FoldCandidate> &FoldList,
  SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
  const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);

  if (!isUseSafeToFold(TII, *UseMI, UseOp))
    return;

  // FIXME: Fold operands with subregs.
  if (UseOp.isReg() && OpToFold.isReg()) {
    if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
      return;
  }

  // Special case for REG_SEQUENCE: We can't fold literals into
  // REG_SEQUENCE instructions, so we have to fold them into the
  // uses of REG_SEQUENCE.
  if (UseMI->isRegSequence()) {
    Register RegSeqDstReg = UseMI->getOperand(0).getReg();
    unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();

    MachineRegisterInfo::use_iterator Next;
    for (MachineRegisterInfo::use_iterator
           RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
         RSUse != RSE; RSUse = Next) {
      Next = std::next(RSUse);

      MachineInstr *RSUseMI = RSUse->getParent();

      if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
                         RSUse.getOperandNo(), FoldList))
        continue;

      if (RSUse->getSubReg() != RegSeqDstSubReg)
        continue;

      foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
                  CopiesToReplace);
    }

    return;
  }

  if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
    return;

  if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
    // Sanity check that this is a stack access.
    // FIXME: Should probably use stack pseudos before frame lowering.

    if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
        MFI->getScratchRSrcReg())
      return;

    // Ensure this is either relative to the current frame or the current wave.
    MachineOperand &SOff =
        *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
    if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) &&
        (!SOff.isImm() || SOff.getImm() != 0))
      return;

    // A frame index will resolve to a positive constant, so it should always be
    // safe to fold the addressing mode, even pre-GFX9.
    UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());

    // If this is relative to the current wave, update it to be relative to the
    // current frame.
    if (SOff.isImm())
      SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false);
    return;
  }

  bool FoldingImmLike =
      OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();

  if (FoldingImmLike && UseMI->isCopy()) {
    Register DestReg = UseMI->getOperand(0).getReg();

    // Don't fold into a copy to a physical register. Doing so would interfere
    // with the register coalescer's logic which would avoid redundant
    // initalizations.
    if (DestReg.isPhysical())
      return;

    const TargetRegisterClass *DestRC =  MRI->getRegClass(DestReg);

    Register SrcReg = UseMI->getOperand(1).getReg();
    if (SrcReg.isVirtual()) { // XXX - This can be an assert?
      const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
      if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
        MachineRegisterInfo::use_iterator NextUse;
        SmallVector<FoldCandidate, 4> CopyUses;
        for (MachineRegisterInfo::use_iterator
          Use = MRI->use_begin(DestReg), E = MRI->use_end();
          Use != E; Use = NextUse) {
          NextUse = std::next(Use);
          FoldCandidate FC = FoldCandidate(Use->getParent(),
           Use.getOperandNo(), &UseMI->getOperand(1));
          CopyUses.push_back(FC);
       }
        for (auto & F : CopyUses) {
          foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
           FoldList, CopiesToReplace);
        }
      }
    }

    if (DestRC == &AMDGPU::AGPR_32RegClass &&
        TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
      UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
      UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
      CopiesToReplace.push_back(UseMI);
      return;
    }

    // In order to fold immediates into copies, we need to change the
    // copy to a MOV.

    unsigned MovOp = TII->getMovOpcode(DestRC);
    if (MovOp == AMDGPU::COPY)
      return;

    UseMI->setDesc(TII->get(MovOp));
    MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
    MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
    while (ImpOpI != ImpOpE) {
      MachineInstr::mop_iterator Tmp = ImpOpI;
      ImpOpI++;
      UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
    }
    CopiesToReplace.push_back(UseMI);
  } else {
    if (UseMI->isCopy() && OpToFold.isReg() &&
        UseMI->getOperand(0).getReg().isVirtual() &&
        !UseMI->getOperand(1).getSubReg()) {
      LLVM_DEBUG(dbgs() << "Folding " << OpToFold
                        << "\n into " << *UseMI << '\n');
      unsigned Size = TII->getOpSize(*UseMI, 1);
      Register UseReg = OpToFold.getReg();
      UseMI->getOperand(1).setReg(UseReg);
      UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
      UseMI->getOperand(1).setIsKill(false);
      CopiesToReplace.push_back(UseMI);
      OpToFold.setIsKill(false);

      // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
      // can only accept VGPR or inline immediate. Recreate a reg_sequence with
      // its initializers right here, so we will rematerialize immediates and
      // avoid copies via different reg classes.
      SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
      if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
          getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
                        *MRI)) {
        const DebugLoc &DL = UseMI->getDebugLoc();
        MachineBasicBlock &MBB = *UseMI->getParent();

        UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
        for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
          UseMI->RemoveOperand(I);

        MachineInstrBuilder B(*MBB.getParent(), UseMI);
        DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
        SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
        for (unsigned I = 0; I < Size / 4; ++I) {
          MachineOperand *Def = Defs[I].first;
          TargetInstrInfo::RegSubRegPair CopyToVGPR;
          if (Def->isImm() &&
              TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
            int64_t Imm = Def->getImm();

            auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
            BuildMI(MBB, UseMI, DL,
                    TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm);
            B.addReg(Tmp);
          } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
            auto Src = getRegSubRegPair(*Def);
            Def->setIsKill(false);
            if (!SeenAGPRs.insert(Src)) {
              // We cannot build a reg_sequence out of the same registers, they
              // must be copied. Better do it here before copyPhysReg() created
              // several reads to do the AGPR->VGPR->AGPR copy.
              CopyToVGPR = Src;
            } else {
              B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
                       Src.SubReg);
            }
          } else {
            assert(Def->isReg());
            Def->setIsKill(false);
            auto Src = getRegSubRegPair(*Def);

            // Direct copy from SGPR to AGPR is not possible. To avoid creation
            // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
            // create a copy here and track if we already have such a copy.
            if (TRI->isSGPRReg(*MRI, Src.Reg)) {
              CopyToVGPR = Src;
            } else {
              auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
              BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
              B.addReg(Tmp);
            }
          }

          if (CopyToVGPR.Reg) {
            Register Vgpr;
            if (VGPRCopies.count(CopyToVGPR)) {
              Vgpr = VGPRCopies[CopyToVGPR];
            } else {
              Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
              BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
              VGPRCopies[CopyToVGPR] = Vgpr;
            }
            auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
            BuildMI(MBB, UseMI, DL,
                    TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr);
            B.addReg(Tmp);
          }

          B.addImm(Defs[I].second);
        }
        LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n');
        return;
      }

      if (Size != 4)
        return;
      if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
          TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
        UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
      else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
               TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
        UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32));
      return;
    }

    unsigned UseOpc = UseMI->getOpcode();
    if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
        (UseOpc == AMDGPU::V_READLANE_B32 &&
         (int)UseOpIdx ==
         AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
      // %vgpr = V_MOV_B32 imm
      // %sgpr = V_READFIRSTLANE_B32 %vgpr
      // =>
      // %sgpr = S_MOV_B32 imm
      if (FoldingImmLike) {
        if (execMayBeModifiedBeforeUse(*MRI,
                                       UseMI->getOperand(UseOpIdx).getReg(),
                                       *OpToFold.getParent(),
                                       *UseMI))
          return;

        UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));

        // FIXME: ChangeToImmediate should clear subreg
        UseMI->getOperand(1).setSubReg(0);
        if (OpToFold.isImm())
          UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
        else
          UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
        UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
        return;
      }

      if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
        if (execMayBeModifiedBeforeUse(*MRI,
                                       UseMI->getOperand(UseOpIdx).getReg(),
                                       *OpToFold.getParent(),
                                       *UseMI))
          return;

        // %vgpr = COPY %sgpr0
        // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
        // =>
        // %sgpr1 = COPY %sgpr0
        UseMI->setDesc(TII->get(AMDGPU::COPY));
        UseMI->getOperand(1).setReg(OpToFold.getReg());
        UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
        UseMI->getOperand(1).setIsKill(false);
        UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
        return;
      }
    }

    const MCInstrDesc &UseDesc = UseMI->getDesc();

    // Don't fold into target independent nodes.  Target independent opcodes
    // don't have defined register classes.
    if (UseDesc.isVariadic() ||
        UseOp.isImplicit() ||
        UseDesc.OpInfo[UseOpIdx].RegClass == -1)
      return;
  }

  if (!FoldingImmLike) {
    tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);

    // FIXME: We could try to change the instruction from 64-bit to 32-bit
    // to enable more folding opportunites.  The shrink operands pass
    // already does this.
    return;
  }


  const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
  const TargetRegisterClass *FoldRC =
    TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);

  // Split 64-bit constants into 32-bits for folding.
  if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
    Register UseReg = UseOp.getReg();
    const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);

    if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
      return;

    APInt Imm(64, OpToFold.getImm());
    if (UseOp.getSubReg() == AMDGPU::sub0) {
      Imm = Imm.getLoBits(32);
    } else {
      assert(UseOp.getSubReg() == AMDGPU::sub1);
      Imm = Imm.getHiBits(32);
    }

    MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
    tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
    return;
  }



  tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
}

static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
                                  uint32_t LHS, uint32_t RHS) {
  switch (Opcode) {
  case AMDGPU::V_AND_B32_e64:
  case AMDGPU::V_AND_B32_e32:
  case AMDGPU::S_AND_B32:
    Result = LHS & RHS;
    return true;
  case AMDGPU::V_OR_B32_e64:
  case AMDGPU::V_OR_B32_e32:
  case AMDGPU::S_OR_B32:
    Result = LHS | RHS;
    return true;
  case AMDGPU::V_XOR_B32_e64:
  case AMDGPU::V_XOR_B32_e32:
  case AMDGPU::S_XOR_B32:
    Result = LHS ^ RHS;
    return true;
  case AMDGPU::S_XNOR_B32:
    Result = ~(LHS ^ RHS);
    return true;
  case AMDGPU::S_NAND_B32:
    Result = ~(LHS & RHS);
    return true;
  case AMDGPU::S_NOR_B32:
    Result = ~(LHS | RHS);
    return true;
  case AMDGPU::S_ANDN2_B32:
    Result = LHS & ~RHS;
    return true;
  case AMDGPU::S_ORN2_B32:
    Result = LHS | ~RHS;
    return true;
  case AMDGPU::V_LSHL_B32_e64:
  case AMDGPU::V_LSHL_B32_e32:
  case AMDGPU::S_LSHL_B32:
    // The instruction ignores the high bits for out of bounds shifts.
    Result = LHS << (RHS & 31);
    return true;
  case AMDGPU::V_LSHLREV_B32_e64:
  case AMDGPU::V_LSHLREV_B32_e32:
    Result = RHS << (LHS & 31);
    return true;
  case AMDGPU::V_LSHR_B32_e64:
  case AMDGPU::V_LSHR_B32_e32:
  case AMDGPU::S_LSHR_B32:
    Result = LHS >> (RHS & 31);
    return true;
  case AMDGPU::V_LSHRREV_B32_e64:
  case AMDGPU::V_LSHRREV_B32_e32:
    Result = RHS >> (LHS & 31);
    return true;
  case AMDGPU::V_ASHR_I32_e64:
  case AMDGPU::V_ASHR_I32_e32:
  case AMDGPU::S_ASHR_I32:
    Result = static_cast<int32_t>(LHS) >> (RHS & 31);
    return true;
  case AMDGPU::V_ASHRREV_I32_e64:
  case AMDGPU::V_ASHRREV_I32_e32:
    Result = static_cast<int32_t>(RHS) >> (LHS & 31);
    return true;
  default:
    return false;
  }
}

static unsigned getMovOpc(bool IsScalar) {
  return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
}

/// Remove any leftover implicit operands from mutating the instruction. e.g.
/// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
/// anymore.
static void stripExtraCopyOperands(MachineInstr &MI) {
  const MCInstrDesc &Desc = MI.getDesc();
  unsigned NumOps = Desc.getNumOperands() +
                    Desc.getNumImplicitUses() +
                    Desc.getNumImplicitDefs();

  for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
    MI.RemoveOperand(I);
}

static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
  MI.setDesc(NewDesc);
  stripExtraCopyOperands(MI);
}

static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
                                               MachineOperand &Op) {
  if (Op.isReg()) {
    // If this has a subregister, it obviously is a register source.
    if (Op.getSubReg() != AMDGPU::NoSubRegister ||
        !Register::isVirtualRegister(Op.getReg()))
      return &Op;

    MachineInstr *Def = MRI.getVRegDef(Op.getReg());
    if (Def && Def->isMoveImmediate()) {
      MachineOperand &ImmSrc = Def->getOperand(1);
      if (ImmSrc.isImm())
        return &ImmSrc;
    }
  }

  return &Op;
}

// Try to simplify operations with a constant that may appear after instruction
// selection.
// TODO: See if a frame index with a fixed offset can fold.
static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
                              const SIInstrInfo *TII,
                              MachineInstr *MI,
                              MachineOperand *ImmOp) {
  unsigned Opc = MI->getOpcode();
  if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
      Opc == AMDGPU::S_NOT_B32) {
    MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
    mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
    return true;
  }

  int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
  if (Src1Idx == -1)
    return false;

  int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
  MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
  MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));

  if (!Src0->isImm() && !Src1->isImm())
    return false;

  if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32 ||
      MI->getOpcode() == AMDGPU::V_LSHL_ADD_U32 ||
      MI->getOpcode() == AMDGPU::V_AND_OR_B32) {
    if (Src0->isImm() && Src0->getImm() == 0) {
      // v_lshl_or_b32 0, X, Y -> copy Y
      // v_lshl_or_b32 0, X, K -> v_mov_b32 K
      // v_lshl_add_b32 0, X, Y -> copy Y
      // v_lshl_add_b32 0, X, K -> v_mov_b32 K
      // v_and_or_b32 0, X, Y -> copy Y
      // v_and_or_b32 0, X, K -> v_mov_b32 K
      bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
      MI->RemoveOperand(Src1Idx);
      MI->RemoveOperand(Src0Idx);

      MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
      return true;
    }
  }

  // and k0, k1 -> v_mov_b32 (k0 & k1)
  // or k0, k1 -> v_mov_b32 (k0 | k1)
  // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
  if (Src0->isImm() && Src1->isImm()) {
    int32_t NewImm;
    if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
      return false;

    const SIRegisterInfo &TRI = TII->getRegisterInfo();
    bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());

    // Be careful to change the right operand, src0 may belong to a different
    // instruction.
    MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
    MI->RemoveOperand(Src1Idx);
    mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
    return true;
  }

  if (!MI->isCommutable())
    return false;

  if (Src0->isImm() && !Src1->isImm()) {
    std::swap(Src0, Src1);
    std::swap(Src0Idx, Src1Idx);
  }

  int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
  if (Opc == AMDGPU::V_OR_B32_e64 ||
      Opc == AMDGPU::V_OR_B32_e32 ||
      Opc == AMDGPU::S_OR_B32) {
    if (Src1Val == 0) {
      // y = or x, 0 => y = copy x
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
    } else if (Src1Val == -1) {
      // y = or x, -1 => y = v_mov_b32 -1
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
    } else
      return false;

    return true;
  }

  if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
      MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
      MI->getOpcode() == AMDGPU::S_AND_B32) {
    if (Src1Val == 0) {
      // y = and x, 0 => y = v_mov_b32 0
      MI->RemoveOperand(Src0Idx);
      mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
    } else if (Src1Val == -1) {
      // y = and x, -1 => y = copy x
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
      stripExtraCopyOperands(*MI);
    } else
      return false;

    return true;
  }

  if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
      MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
      MI->getOpcode() == AMDGPU::S_XOR_B32) {
    if (Src1Val == 0) {
      // y = xor x, 0 => y = copy x
      MI->RemoveOperand(Src1Idx);
      mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
      return true;
    }
  }

  return false;
}

// Try to fold an instruction into a simpler one
static bool tryFoldInst(const SIInstrInfo *TII,
                        MachineInstr *MI) {
  unsigned Opc = MI->getOpcode();

  if (Opc == AMDGPU::V_CNDMASK_B32_e32    ||
      Opc == AMDGPU::V_CNDMASK_B32_e64    ||
      Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
    const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
    int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
    int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
    if (Src1->isIdenticalTo(*Src0) &&
        (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
        (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
      LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
      auto &NewDesc =
          TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
      int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
      if (Src2Idx != -1)
        MI->RemoveOperand(Src2Idx);
      MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
      if (Src1ModIdx != -1)
        MI->RemoveOperand(Src1ModIdx);
      if (Src0ModIdx != -1)
        MI->RemoveOperand(Src0ModIdx);
      mutateCopyOp(*MI, NewDesc);
      LLVM_DEBUG(dbgs() << *MI << '\n');
      return true;
    }
  }

  return false;
}

void SIFoldOperands::foldInstOperand(MachineInstr &MI,
                                     MachineOperand &OpToFold) const {
  // We need mutate the operands of new mov instructions to add implicit
  // uses of EXEC, but adding them invalidates the use_iterator, so defer
  // this.
  SmallVector<MachineInstr *, 4> CopiesToReplace;
  SmallVector<FoldCandidate, 4> FoldList;
  MachineOperand &Dst = MI.getOperand(0);

  bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
  if (FoldingImm) {
    unsigned NumLiteralUses = 0;
    MachineOperand *NonInlineUse = nullptr;
    int NonInlineUseOpNo = -1;

    MachineRegisterInfo::use_iterator NextUse;
    for (MachineRegisterInfo::use_iterator
           Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
         Use != E; Use = NextUse) {
      NextUse = std::next(Use);
      MachineInstr *UseMI = Use->getParent();
      unsigned OpNo = Use.getOperandNo();

      // Folding the immediate may reveal operations that can be constant
      // folded or replaced with a copy. This can happen for example after
      // frame indices are lowered to constants or from splitting 64-bit
      // constants.
      //
      // We may also encounter cases where one or both operands are
      // immediates materialized into a register, which would ordinarily not
      // be folded due to multiple uses or operand constraints.

      if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
        LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');

        // Some constant folding cases change the same immediate's use to a new
        // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
        // again. The same constant folded instruction could also have a second
        // use operand.
        NextUse = MRI->use_begin(Dst.getReg());
        FoldList.clear();
        continue;
      }

      // Try to fold any inline immediate uses, and then only fold other
      // constants if they have one use.
      //
      // The legality of the inline immediate must be checked based on the use
      // operand, not the defining instruction, because 32-bit instructions
      // with 32-bit inline immediate sources may be used to materialize
      // constants used in 16-bit operands.
      //
      // e.g. it is unsafe to fold:
      //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
      //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00

      // Folding immediates with more than one use will increase program size.
      // FIXME: This will also reduce register usage, which may be better
      // in some cases. A better heuristic is needed.
      if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
        foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
      } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
        foldOperand(OpToFold, UseMI, OpNo, FoldList,
                    CopiesToReplace);
      } else {
        if (++NumLiteralUses == 1) {
          NonInlineUse = &*Use;
          NonInlineUseOpNo = OpNo;
        }
      }
    }

    if (NumLiteralUses == 1) {
      MachineInstr *UseMI = NonInlineUse->getParent();
      foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
    }
  } else {
    // Folding register.
    SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
    for (MachineRegisterInfo::use_iterator
           Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
         Use != E; ++Use) {
      UsesToProcess.push_back(Use);
    }
    for (auto U : UsesToProcess) {
      MachineInstr *UseMI = U->getParent();

      foldOperand(OpToFold, UseMI, U.getOperandNo(),
        FoldList, CopiesToReplace);
    }
  }

  MachineFunction *MF = MI.getParent()->getParent();
  // Make sure we add EXEC uses to any new v_mov instructions created.
  for (MachineInstr *Copy : CopiesToReplace)
    Copy->addImplicitDefUseOperands(*MF);

  for (FoldCandidate &Fold : FoldList) {
    assert(!Fold.isReg() || Fold.OpToFold);
    if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) {
      Register Reg = Fold.OpToFold->getReg();
      MachineInstr *DefMI = Fold.OpToFold->getParent();
      if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
          execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
        continue;
    }
    if (updateOperand(Fold, *TII, *TRI, *ST)) {
      // Clear kill flags.
      if (Fold.isReg()) {
        assert(Fold.OpToFold && Fold.OpToFold->isReg());
        // FIXME: Probably shouldn't bother trying to fold if not an
        // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
        // copies.
        MRI->clearKillFlags(Fold.OpToFold->getReg());
      }
      LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
                        << static_cast<int>(Fold.UseOpNo) << " of "
                        << *Fold.UseMI << '\n');
      tryFoldInst(TII, Fold.UseMI);
    } else if (Fold.isCommuted()) {
      // Restoring instruction's original operand order if fold has failed.
      TII->commuteInstruction(*Fold.UseMI, false);
    }
  }
}

// Clamp patterns are canonically selected to v_max_* instructions, so only
// handle them.
const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
  unsigned Op = MI.getOpcode();
  switch (Op) {
  case AMDGPU::V_MAX_F32_e64:
  case AMDGPU::V_MAX_F16_e64:
  case AMDGPU::V_MAX_F64:
  case AMDGPU::V_PK_MAX_F16: {
    if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
      return nullptr;

    // Make sure sources are identical.
    const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
    if (!Src0->isReg() || !Src1->isReg() ||
        Src0->getReg() != Src1->getReg() ||
        Src0->getSubReg() != Src1->getSubReg() ||
        Src0->getSubReg() != AMDGPU::NoSubRegister)
      return nullptr;

    // Can't fold up if we have modifiers.
    if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
      return nullptr;

    unsigned Src0Mods
      = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
    unsigned Src1Mods
      = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();

    // Having a 0 op_sel_hi would require swizzling the output in the source
    // instruction, which we can't do.
    unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
                                                      : 0u;
    if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
      return nullptr;
    return Src0;
  }
  default:
    return nullptr;
  }
}

// We obviously have multiple uses in a clamp since the register is used twice
// in the same instruction.
static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
  int Count = 0;
  for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
       I != E; ++I) {
    if (++Count > 1)
      return false;
  }

  return true;
}

// FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
  const MachineOperand *ClampSrc = isClamp(MI);
  if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
    return false;

  MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());

  // The type of clamp must be compatible.
  if (TII->getClampMask(*Def) != TII->getClampMask(MI))
    return false;

  MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
  if (!DefClamp)
    return false;

  LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
                    << '\n');

  // Clamp is applied after omod, so it is OK if omod is set.
  DefClamp->setImm(1);
  MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
  MI.eraseFromParent();
  return true;
}

static int getOModValue(unsigned Opc, int64_t Val) {
  switch (Opc) {
  case AMDGPU::V_MUL_F32_e64: {
    switch (static_cast<uint32_t>(Val)) {
    case 0x3f000000: // 0.5
      return SIOutMods::DIV2;
    case 0x40000000: // 2.0
      return SIOutMods::MUL2;
    case 0x40800000: // 4.0
      return SIOutMods::MUL4;
    default:
      return SIOutMods::NONE;
    }
  }
  case AMDGPU::V_MUL_F16_e64: {
    switch (static_cast<uint16_t>(Val)) {
    case 0x3800: // 0.5
      return SIOutMods::DIV2;
    case 0x4000: // 2.0
      return SIOutMods::MUL2;
    case 0x4400: // 4.0
      return SIOutMods::MUL4;
    default:
      return SIOutMods::NONE;
    }
  }
  default:
    llvm_unreachable("invalid mul opcode");
  }
}

// FIXME: Does this really not support denormals with f16?
// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
// handled, so will anything other than that break?
std::pair<const MachineOperand *, int>
SIFoldOperands::isOMod(const MachineInstr &MI) const {
  unsigned Op = MI.getOpcode();
  switch (Op) {
  case AMDGPU::V_MUL_F32_e64:
  case AMDGPU::V_MUL_F16_e64: {
    // If output denormals are enabled, omod is ignored.
    if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
        (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals))
      return std::make_pair(nullptr, SIOutMods::NONE);

    const MachineOperand *RegOp = nullptr;
    const MachineOperand *ImmOp = nullptr;
    const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
    if (Src0->isImm()) {
      ImmOp = Src0;
      RegOp = Src1;
    } else if (Src1->isImm()) {
      ImmOp = Src1;
      RegOp = Src0;
    } else
      return std::make_pair(nullptr, SIOutMods::NONE);

    int OMod = getOModValue(Op, ImmOp->getImm());
    if (OMod == SIOutMods::NONE ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
        TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
      return std::make_pair(nullptr, SIOutMods::NONE);

    return std::make_pair(RegOp, OMod);
  }
  case AMDGPU::V_ADD_F32_e64:
  case AMDGPU::V_ADD_F16_e64: {
    // If output denormals are enabled, omod is ignored.
    if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
        (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals))
      return std::make_pair(nullptr, SIOutMods::NONE);

    // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
    const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
    const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);

    if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
        Src0->getSubReg() == Src1->getSubReg() &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
        !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
      return std::make_pair(Src0, SIOutMods::MUL2);

    return std::make_pair(nullptr, SIOutMods::NONE);
  }
  default:
    return std::make_pair(nullptr, SIOutMods::NONE);
  }
}

// FIXME: Does this need to check IEEE bit on function?
bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
  const MachineOperand *RegOp;
  int OMod;
  std::tie(RegOp, OMod) = isOMod(MI);
  if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
      RegOp->getSubReg() != AMDGPU::NoSubRegister ||
      !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
    return false;

  MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
  MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
  if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
    return false;

  // Clamp is applied after omod. If the source already has clamp set, don't
  // fold it.
  if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
    return false;

  LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');

  DefOMod->setImm(OMod);
  MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
  MI.eraseFromParent();
  return true;
}

bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  MRI = &MF.getRegInfo();
  ST = &MF.getSubtarget<GCNSubtarget>();
  TII = ST->getInstrInfo();
  TRI = &TII->getRegisterInfo();
  MFI = MF.getInfo<SIMachineFunctionInfo>();

  // omod is ignored by hardware if IEEE bit is enabled. omod also does not
  // correctly handle signed zeros.
  //
  // FIXME: Also need to check strictfp
  bool IsIEEEMode = MFI->getMode().IEEE;
  bool HasNSZ = MFI->hasNoSignedZerosFPMath();

  for (MachineBasicBlock *MBB : depth_first(&MF)) {
    MachineBasicBlock::iterator I, Next;

    MachineOperand *CurrentKnownM0Val = nullptr;
    for (I = MBB->begin(); I != MBB->end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      tryFoldInst(TII, &MI);

      if (!TII->isFoldableCopy(MI)) {
        // Saw an unknown clobber of m0, so we no longer know what it is.
        if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
          CurrentKnownM0Val = nullptr;

        // TODO: Omod might be OK if there is NSZ only on the source
        // instruction, and not the omod multiply.
        if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
            !tryFoldOMod(MI))
          tryFoldClamp(MI);

        continue;
      }

      // Specially track simple redefs of m0 to the same value in a block, so we
      // can erase the later ones.
      if (MI.getOperand(0).getReg() == AMDGPU::M0) {
        MachineOperand &NewM0Val = MI.getOperand(1);
        if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
          MI.eraseFromParent();
          continue;
        }

        // We aren't tracking other physical registers
        CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
          nullptr : &NewM0Val;
        continue;
      }

      MachineOperand &OpToFold = MI.getOperand(1);
      bool FoldingImm =
          OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();

      // FIXME: We could also be folding things like TargetIndexes.
      if (!FoldingImm && !OpToFold.isReg())
        continue;

      if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg()))
        continue;

      // Prevent folding operands backwards in the function. For example,
      // the COPY opcode must not be replaced by 1 in this example:
      //
      //    %3 = COPY %vgpr0; VGPR_32:%3
      //    ...
      //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
      MachineOperand &Dst = MI.getOperand(0);
      if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg()))
        continue;

      foldInstOperand(MI, OpToFold);
    }
  }
  return true;
}