Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
/// branches to help accelerate DSP applications. These two extensions,
/// combined with a new form of predication called tail-predication, can be used
/// to provide implicit vector predication within a low-overhead loop.
/// This is implicit because the predicate of active/inactive lanes is
/// calculated by hardware, and thus does not need to be explicitly passed
/// to vector instructions. The instructions responsible for this are the
/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
/// the total number of data elements processed by the loop. The loop-end
/// LETP instruction is responsible for decrementing and setting the remaining
/// elements to be processed and generating the mask of active lanes.
///
/// The HardwareLoops pass inserts intrinsics identifying loops that the
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
/// responsible for generating a vectorized loop in which the lanes are
/// predicated upon the iteration counter. This pass looks at these predicated
/// vector loops, that are targets for low-overhead loops, and prepares it for
/// code generation. Once the vectorizer has produced a masked loop, there's a
/// couple of final forms:
/// - A tail-predicated loop, with implicit predication.
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
///   blocks of instructions operating on different vector types.
///
/// This pass:
/// 1) Checks if the predicates of the masked load/store instructions are
///    generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes
///    the Backedge Taken Count (BTC) of the scalar loop as its second argument,
///    which we extract to set up the number of elements processed by the loop.
/// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target
///    specific VCTP intrinsic to represent the effect of tail predication.
///    This will be picked up by the ARM Low-overhead loop pass, which performs
///    the final transformation to a DLSTP or WLSTP tail-predicated loop.

#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;

#define DEBUG_TYPE "mve-tail-predication"
#define DESC "Transform predicated vector loops to use MVE tail predication"

cl::opt<TailPredication::Mode> EnableTailPredication(
   "tail-predication", cl::desc("MVE tail-predication options"),
   cl::init(TailPredication::Disabled),
   cl::values(clEnumValN(TailPredication::Disabled, "disabled",
                         "Don't tail-predicate loops"),
              clEnumValN(TailPredication::EnabledNoReductions,
                         "enabled-no-reductions",
                         "Enable tail-predication, but not for reduction loops"),
              clEnumValN(TailPredication::Enabled,
                         "enabled",
                         "Enable tail-predication, including reduction loops"),
              clEnumValN(TailPredication::ForceEnabledNoReductions,
                         "force-enabled-no-reductions",
                         "Enable tail-predication, but not for reduction loops, "
                         "and force this which might be unsafe"),
              clEnumValN(TailPredication::ForceEnabled,
                         "force-enabled",
                         "Enable tail-predication, including reduction loops, "
                         "and force this which might be unsafe")));


namespace {

class MVETailPredication : public LoopPass {
  SmallVector<IntrinsicInst*, 4> MaskedInsts;
  Loop *L = nullptr;
  ScalarEvolution *SE = nullptr;
  TargetTransformInfo *TTI = nullptr;
  const ARMSubtarget *ST = nullptr;

public:
  static char ID;

  MVETailPredication() : LoopPass(ID) { }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.setPreservesCFG();
  }

  bool runOnLoop(Loop *L, LPPassManager&) override;

private:
  /// Perform the relevant checks on the loop and convert if possible.
  bool TryConvert(Value *TripCount);

  /// Return whether this is a vectorized loop, that contains masked
  /// load/stores.
  bool IsPredicatedVectorLoop();

  /// Perform checks on the arguments of @llvm.get.active.lane.mask
  /// intrinsic: check if the first is a loop induction variable, and for the
  /// the second check that no overflow can occur in the expression that use
  /// this backedge-taken count.
  bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount,
                        FixedVectorType *VecTy);

  /// Insert the intrinsic to represent the effect of tail predication.
  void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount,
                           FixedVectorType *VecTy);

  /// Rematerialize the iteration count in exit blocks, which enables
  /// ARMLowOverheadLoops to better optimise away loop update statements inside
  /// hardware-loops.
  void RematerializeIterCount();
};

} // end namespace

static bool IsDecrement(Instruction &I) {
  auto *Call = dyn_cast<IntrinsicInst>(&I);
  if (!Call)
    return false;

  Intrinsic::ID ID = Call->getIntrinsicID();
  return ID == Intrinsic::loop_decrement_reg;
}

static bool IsMasked(Instruction *I) {
  auto *Call = dyn_cast<IntrinsicInst>(I);
  if (!Call)
    return false;

  Intrinsic::ID ID = Call->getIntrinsicID();
  // TODO: Support gather/scatter expand/compress operations.
  return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
}

bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
  if (skipLoop(L) || !EnableTailPredication)
    return false;

  MaskedInsts.clear();
  Function &F = *L->getHeader()->getParent();
  auto &TPC = getAnalysis<TargetPassConfig>();
  auto &TM = TPC.getTM<TargetMachine>();
  ST = &TM.getSubtarget<ARMSubtarget>(F);
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  this->L = L;

  // The MVE and LOB extensions are combined to enable tail-predication, but
  // there's nothing preventing us from generating VCTP instructions for v8.1m.
  if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
    LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
    return false;
  }

  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader)
    return false;

  auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
    for (auto &I : *BB) {
      auto *Call = dyn_cast<IntrinsicInst>(&I);
      if (!Call)
        continue;

      Intrinsic::ID ID = Call->getIntrinsicID();
      if (ID == Intrinsic::set_loop_iterations ||
          ID == Intrinsic::test_set_loop_iterations)
        return cast<IntrinsicInst>(&I);
    }
    return nullptr;
  };

  // Look for the hardware loop intrinsic that sets the iteration count.
  IntrinsicInst *Setup = FindLoopIterations(Preheader);

  // The test.set iteration could live in the pre-preheader.
  if (!Setup) {
    if (!Preheader->getSinglePredecessor())
      return false;
    Setup = FindLoopIterations(Preheader->getSinglePredecessor());
    if (!Setup)
      return false;
  }

  // Search for the hardware loop intrinic that decrements the loop counter.
  IntrinsicInst *Decrement = nullptr;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      if (IsDecrement(I)) {
        Decrement = cast<IntrinsicInst>(&I);
        break;
      }
    }
  }

  if (!Decrement)
    return false;

  LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
             << *Decrement << "\n");

  if (!TryConvert(Setup->getArgOperand(0))) {
    LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
    return false;
  }

  return true;
}

static FixedVectorType *getVectorType(IntrinsicInst *I) {
  unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
  auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
  auto *VecTy = cast<FixedVectorType>(PtrTy->getElementType());
  assert(VecTy && "No scalable vectors expected here");
  return VecTy;
}

bool MVETailPredication::IsPredicatedVectorLoop() {
  // Check that the loop contains at least one masked load/store intrinsic.
  // We only support 'normal' vector instructions - other than masked
  // load/stores.
  bool ActiveLaneMask = false;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      auto *Int = dyn_cast<IntrinsicInst>(&I);
      if (!Int)
        continue;

      switch (Int->getIntrinsicID()) {
      case Intrinsic::get_active_lane_mask:
        ActiveLaneMask = true;
        LLVM_FALLTHROUGH;
      case Intrinsic::sadd_sat:
      case Intrinsic::uadd_sat:
      case Intrinsic::ssub_sat:
      case Intrinsic::usub_sat:
        continue;
      case Intrinsic::fma:
      case Intrinsic::trunc:
      case Intrinsic::rint:
      case Intrinsic::round:
      case Intrinsic::floor:
      case Intrinsic::ceil:
      case Intrinsic::fabs:
        if (ST->hasMVEFloatOps())
          continue;
        LLVM_FALLTHROUGH;
      default:
        break;
      }

      if (IsMasked(&I)) {
        auto *VecTy = getVectorType(Int);
        unsigned Lanes = VecTy->getNumElements();
        unsigned ElementWidth = VecTy->getScalarSizeInBits();
        // MVE vectors are 128-bit, but don't support 128 x i1.
        // TODO: Can we support vectors larger than 128-bits?
        unsigned MaxWidth = TTI->getRegisterBitWidth(true);
        if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
          return false;
        MaskedInsts.push_back(cast<IntrinsicInst>(&I));
        continue;
      }

      for (const Use &U : Int->args()) {
        if (isa<VectorType>(U->getType()))
          return false;
      }
    }
  }

  if (!ActiveLaneMask) {
    LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n");
    return false;
  }
  return !MaskedInsts.empty();
}

// Look through the exit block to see whether there's a duplicate predicate
// instruction. This can happen when we need to perform a select on values
// from the last and previous iteration. Instead of doing a straight
// replacement of that predicate with the vctp, clone the vctp and place it
// in the block. This means that the VPR doesn't have to be live into the
// exit block which should make it easier to convert this loop into a proper
// tail predicated loop.
static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) {
  BasicBlock *Exit = L->getUniqueExitBlock();
  if (!Exit) {
    LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
    return;
  }

  // Drop references and add operands to check for dead.
  SmallPtrSet<Instruction*, 4> Dead;
  while (!MaybeDead.empty()) {
    auto *I = MaybeDead.front();
    MaybeDead.remove(I);
    if (I->hasNUsesOrMore(1))
      continue;

    for (auto &U : I->operands())
      if (auto *OpI = dyn_cast<Instruction>(U))
        MaybeDead.insert(OpI);

    Dead.insert(I);
  }

  for (auto *I : Dead) {
    LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
    I->eraseFromParent();
  }

  for (auto I : L->blocks())
    DeleteDeadPHIs(I);
}

// The active lane intrinsic has this form:
//
//    @llvm.get.active.lane.mask(IV, BTC)
//
// Here we perform checks that this intrinsic behaves as expected,
// which means:
//
// 1) The element count, which is calculated with BTC + 1, cannot overflow.
// 2) The element count needs to be sufficiently large that the decrement of
//    element counter doesn't overflow, which means that we need to prove:
//        ceil(ElementCount / VectorWidth) >= TripCount
//    by rounding up ElementCount up:
//        ((ElementCount + (VectorWidth - 1)) / VectorWidth
//    and evaluate if expression isKnownNonNegative:
//        (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
// 3) The IV must be an induction phi with an increment equal to the
//    vector width.
bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
    Value *TripCount, FixedVectorType *VecTy) {
  bool ForceTailPredication =
    EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
    EnableTailPredication == TailPredication::ForceEnabled;
  // 1) Test whether entry to the loop is protected by a conditional
  // BTC + 1 < 0. In other words, if the scalar trip count overflows,
  // becomes negative, we shouldn't enter the loop and creating
  // tripcount expression BTC + 1 is not safe. So, check that BTC
  // isn't max. This is evaluated in unsigned, because the semantics
  // of @get.active.lane.mask is a ULE comparison.

  int VectorWidth = VecTy->getNumElements();
  auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1);
  auto *BTC = SE->getSCEV(BackedgeTakenCount);

  if (!llvm::cannotBeMaxInLoop(BTC, L, *SE, false /*Signed*/) &&
      !ForceTailPredication) {
    LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be max: ";
               BTC->dump());
    return false;
  }

  // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow:
  //
  //      (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
  //
  // 2.1) First prove overflow can't happen in:
  //
  //      ElementCount + (VectorWidth - 1)
  //
  // Because of a lack of context, it is difficult to get a useful bounds on
  // this expression. But since ElementCount uses the same variables as the
  // TripCount (TC), for which we can find meaningful value ranges, we use that
  // instead and assert that:
  //
  //     upperbound(TC) <= UINT_MAX - VectorWidth
  //
  auto *TC = SE->getSCEV(TripCount);
  unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits();
  auto Diff =  APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth);
  uint64_t MaxMinusVW = Diff.getZExtValue();
  uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue();

  if (UpperboundTC > MaxMinusVW && !ForceTailPredication) {
    LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n";
               dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n";
               dbgs() << UpperboundTC << " <= " << MaxMinusVW << "== false\n";);
    return false;
  }

  // 2.2) Make sure overflow doesn't happen in final expression:
  //  (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount,
  // To do this, compare the full ranges of these subexpressions:
  //
  //     Range(Ceil) <= Range(TC)
  //
  // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime
  // values (and not constants), we have to compensate for the lowerbound value
  // range to be off by 1. The reason is that BTC lives in the preheader in
  // this form:
  //
  //     %trip.count.minus = add nsw nuw i32 %N, -1
  //
  // For the loop to be executed, %N has to be >= 1 and as a result the value
  // range of %trip.count.minus has a lower bound of 0. Value %TC has this form:
  //
  //     %5 = add nuw nsw i32 %4, 1
  //     call void @llvm.set.loop.iterations.i32(i32 %5)
  //
  // where %5 is some expression using %N, which needs to have a lower bound of
  // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set,
  // we first add 0 to TC such that we can do the <= comparison on both sets.
  //
  auto *One = SE->getOne(TripCount->getType());
  // ElementCount = BTC + 1
  auto *ElementCount = SE->getAddExpr(BTC, One);
  // Tmp = ElementCount + (VW-1)
  auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount,
      SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
  // Ceil = ElementCount + (VW-1) / VW
  auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1,
      SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)));

  ConstantRange RangeCeil = SE->getSignedRange(Ceil) ;
  ConstantRange RangeTC = SE->getSignedRange(TC) ;
  if (!RangeTC.isSingleElement()) {
    auto ZeroRange =
        ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0));
    RangeTC = RangeTC.unionWith(ZeroRange);
  }
  if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) {
    LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n");
    return false;
  }

  // 3) Find out if IV is an induction phi. Note that We can't use Loop
  // helpers here to get the induction variable, because the hardware loop is
  // no longer in loopsimplify form, and also the hwloop intrinsic use a
  // different counter.  Using SCEV, we check that the induction is of the
  // form i = i + 4, where the increment must be equal to the VectorWidth.
  auto *IV = ActiveLaneMask->getOperand(0);
  auto *IVExpr = SE->getSCEV(IV);
  auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
  if (!AddExpr) {
    LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
    return false;
  }
  // Check that this AddRec is associated with this loop.
  if (AddExpr->getLoop() != L) {
    LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
    return false;
  }
  auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
  if (!Step) {
    LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
               AddExpr->getOperand(1)->dump());
    return false;
  }
  auto StepValue = Step->getValue()->getSExtValue();
  if (VectorWidth == StepValue)
    return true;

  LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match "
             "vector width " << VectorWidth << "\n");

  return false;
}

// Materialize NumElements in the preheader block.
static Value *getNumElements(BasicBlock *Preheader, Value *BTC) {
  // First, check the preheader if it not already exist:
  //
  // preheader:
  //    %BTC = add i32 %N, -1
  //    ..
  // vector.body:
  //
  // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1,
  // but instead can just return %N.
  for (auto &I : *Preheader) {
    if (I.getOpcode() != Instruction::Add || &I != BTC)
      continue;
    ConstantInt *MinusOne = nullptr;
    if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1))))
      continue;
    if (MinusOne->getSExtValue() == -1) {
      LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n");
      return I.getOperand(0);
    }
  }

  // But we do need to materialise BTC if it is not already there,
  // e.g. if it is a constant.
  IRBuilder<> Builder(Preheader->getTerminator());
  Value *NumElements = Builder.CreateAdd(BTC,
        ConstantInt::get(BTC->getType(), 1), "num.elements");
  LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n");
  return NumElements;
}

void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
    Value *TripCount, FixedVectorType *VecTy) {
  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
  Module *M = L->getHeader()->getModule();
  Type *Ty = IntegerType::get(M->getContext(), 32);
  unsigned VectorWidth = VecTy->getNumElements();

  // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand,
  // is one less than the trip count. So we need to find or create
  // %num.elements = %BTC + 1 in the preheader.
  Value *BTC = ActiveLaneMask->getOperand(1);
  Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
  Value *NumElements = getNumElements(L->getLoopPreheader(), BTC);

  // Insert a phi to count the number of elements processed by the loop.
  Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI()  );
  PHINode *Processed = Builder.CreatePHI(Ty, 2);
  Processed->addIncoming(NumElements, L->getLoopPreheader());

  // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus
  // represent the effect of tail predication.
  Builder.SetInsertPoint(ActiveLaneMask);
  ConstantInt *Factor =
    ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);

  Intrinsic::ID VCTPID;
  switch (VectorWidth) {
  default:
    llvm_unreachable("unexpected number of lanes");
  case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
  case 8:  VCTPID = Intrinsic::arm_mve_vctp16; break;
  case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;

    // FIXME: vctp64 currently not supported because the predicate
    // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
    // type, so problems happen at isel time.
    // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
    // purposes, but takes a v4i1 instead of a v2i1.
  }
  Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
  Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
  ActiveLaneMask->replaceAllUsesWith(VCTPCall);

  // Add the incoming value to the new phi.
  // TODO: This add likely already exists in the loop.
  Value *Remaining = Builder.CreateSub(Processed, Factor);
  Processed->addIncoming(Remaining, L->getLoopLatch());
  LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
             << *Processed << "\n"
             << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
}

bool MVETailPredication::TryConvert(Value *TripCount) {
  if (!IsPredicatedVectorLoop()) {
    LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
  SetVector<Instruction*> Predicates;

  // Walk through the masked intrinsics and try to find whether the predicate
  // operand is generated by intrinsic @llvm.get.active.lane.mask().
  for (auto *I : MaskedInsts) {
    unsigned PredOp = I->getIntrinsicID() == Intrinsic::masked_load ? 2 : 3;
    auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
    if (!Predicate || Predicates.count(Predicate))
      continue;

    auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate);
    if (!ActiveLaneMask ||
        ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask)
      continue;

    Predicates.insert(Predicate);
    LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
                      << *ActiveLaneMask << "\n");

    auto *VecTy = getVectorType(I);
    if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) {
      LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
      return false;
    }
    LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
    InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy);
  }

  Cleanup(Predicates, L);
  return true;
}

Pass *llvm::createMVETailPredicationPass() {
  return new MVETailPredication();
}

char MVETailPredication::ID = 0;

INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)