//===-- MipsELFObjectWriter.cpp - Mips ELF Writer -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/MipsFixupKinds.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <list>
#include <utility>
#define DEBUG_TYPE "mips-elf-object-writer"
using namespace llvm;
namespace {
/// Holds additional information needed by the relocation ordering algorithm.
struct MipsRelocationEntry {
const ELFRelocationEntry R; ///< The relocation.
bool Matched = false; ///< Is this relocation part of a match.
MipsRelocationEntry(const ELFRelocationEntry &R) : R(R) {}
void print(raw_ostream &Out) const {
R.print(Out);
Out << ", Matched=" << Matched;
}
};
#ifndef NDEBUG
raw_ostream &operator<<(raw_ostream &OS, const MipsRelocationEntry &RHS) {
RHS.print(OS);
return OS;
}
#endif
class MipsELFObjectWriter : public MCELFObjectTargetWriter {
public:
MipsELFObjectWriter(uint8_t OSABI, bool HasRelocationAddend, bool Is64);
~MipsELFObjectWriter() override = default;
unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
const MCFixup &Fixup, bool IsPCRel) const override;
bool needsRelocateWithSymbol(const MCSymbol &Sym,
unsigned Type) const override;
void sortRelocs(const MCAssembler &Asm,
std::vector<ELFRelocationEntry> &Relocs) override;
};
/// The possible results of the Predicate function used by find_best.
enum FindBestPredicateResult {
FindBest_NoMatch = 0, ///< The current element is not a match.
FindBest_Match, ///< The current element is a match but better ones are
/// possible.
FindBest_PerfectMatch, ///< The current element is an unbeatable match.
};
} // end anonymous namespace
/// Copy elements in the range [First, Last) to d1 when the predicate is true or
/// d2 when the predicate is false. This is essentially both std::copy_if and
/// std::remove_copy_if combined into a single pass.
template <class InputIt, class OutputIt1, class OutputIt2, class UnaryPredicate>
static std::pair<OutputIt1, OutputIt2> copy_if_else(InputIt First, InputIt Last,
OutputIt1 d1, OutputIt2 d2,
UnaryPredicate Predicate) {
for (InputIt I = First; I != Last; ++I) {
if (Predicate(*I)) {
*d1 = *I;
d1++;
} else {
*d2 = *I;
d2++;
}
}
return std::make_pair(d1, d2);
}
/// Find the best match in the range [First, Last).
///
/// An element matches when Predicate(X) returns FindBest_Match or
/// FindBest_PerfectMatch. A value of FindBest_PerfectMatch also terminates
/// the search. BetterThan(A, B) is a comparator that returns true when A is a
/// better match than B. The return value is the position of the best match.
///
/// This is similar to std::find_if but finds the best of multiple possible
/// matches.
template <class InputIt, class UnaryPredicate, class Comparator>
static InputIt find_best(InputIt First, InputIt Last, UnaryPredicate Predicate,
Comparator BetterThan) {
InputIt Best = Last;
for (InputIt I = First; I != Last; ++I) {
unsigned Matched = Predicate(*I);
if (Matched != FindBest_NoMatch) {
LLVM_DEBUG(dbgs() << std::distance(First, I) << " is a match (";
I->print(dbgs()); dbgs() << ")\n");
if (Best == Last || BetterThan(*I, *Best)) {
LLVM_DEBUG(dbgs() << ".. and it beats the last one\n");
Best = I;
}
}
if (Matched == FindBest_PerfectMatch) {
LLVM_DEBUG(dbgs() << ".. and it is unbeatable\n");
break;
}
}
return Best;
}
/// Determine the low relocation that matches the given relocation.
/// If the relocation does not need a low relocation then the return value
/// is ELF::R_MIPS_NONE.
///
/// The relocations that need a matching low part are
/// R_(MIPS|MICROMIPS|MIPS16)_HI16 for all symbols and
/// R_(MIPS|MICROMIPS|MIPS16)_GOT16 for local symbols only.
static unsigned getMatchingLoType(const ELFRelocationEntry &Reloc) {
unsigned Type = Reloc.Type;
if (Type == ELF::R_MIPS_HI16)
return ELF::R_MIPS_LO16;
if (Type == ELF::R_MICROMIPS_HI16)
return ELF::R_MICROMIPS_LO16;
if (Type == ELF::R_MIPS16_HI16)
return ELF::R_MIPS16_LO16;
if (Reloc.OriginalSymbol &&
Reloc.OriginalSymbol->getBinding() != ELF::STB_LOCAL)
return ELF::R_MIPS_NONE;
if (Type == ELF::R_MIPS_GOT16)
return ELF::R_MIPS_LO16;
if (Type == ELF::R_MICROMIPS_GOT16)
return ELF::R_MICROMIPS_LO16;
if (Type == ELF::R_MIPS16_GOT16)
return ELF::R_MIPS16_LO16;
return ELF::R_MIPS_NONE;
}
/// Determine whether a relocation (X) matches the one given in R.
///
/// A relocation matches if:
/// - It's type matches that of a corresponding low part. This is provided in
/// MatchingType for efficiency.
/// - It's based on the same symbol.
/// - It's offset of greater or equal to that of the one given in R.
/// It should be noted that this rule assumes the programmer does not use
/// offsets that exceed the alignment of the symbol. The carry-bit will be
/// incorrect if this is not true.
///
/// A matching relocation is unbeatable if:
/// - It is not already involved in a match.
/// - It's offset is exactly that of the one given in R.
static FindBestPredicateResult isMatchingReloc(const MipsRelocationEntry &X,
const ELFRelocationEntry &R,
unsigned MatchingType) {
if (X.R.Type == MatchingType && X.R.OriginalSymbol == R.OriginalSymbol) {
if (!X.Matched &&
X.R.OriginalAddend == R.OriginalAddend)
return FindBest_PerfectMatch;
else if (X.R.OriginalAddend >= R.OriginalAddend)
return FindBest_Match;
}
return FindBest_NoMatch;
}
/// Determine whether Candidate or PreviousBest is the better match.
/// The return value is true if Candidate is the better match.
///
/// A matching relocation is a better match if:
/// - It has a smaller addend.
/// - It is not already involved in a match.
static bool compareMatchingRelocs(const MipsRelocationEntry &Candidate,
const MipsRelocationEntry &PreviousBest) {
if (Candidate.R.OriginalAddend != PreviousBest.R.OriginalAddend)
return Candidate.R.OriginalAddend < PreviousBest.R.OriginalAddend;
return PreviousBest.Matched && !Candidate.Matched;
}
#ifndef NDEBUG
/// Print all the relocations.
template <class Container>
static void dumpRelocs(const char *Prefix, const Container &Relocs) {
for (const auto &R : Relocs)
dbgs() << Prefix << R << "\n";
}
#endif
MipsELFObjectWriter::MipsELFObjectWriter(uint8_t OSABI,
bool HasRelocationAddend, bool Is64)
: MCELFObjectTargetWriter(Is64, OSABI, ELF::EM_MIPS, HasRelocationAddend) {}
unsigned MipsELFObjectWriter::getRelocType(MCContext &Ctx,
const MCValue &Target,
const MCFixup &Fixup,
bool IsPCRel) const {
// Determine the type of the relocation.
unsigned Kind = Fixup.getTargetKind();
switch (Kind) {
case FK_NONE:
return ELF::R_MIPS_NONE;
case FK_Data_1:
Ctx.reportError(Fixup.getLoc(),
"MIPS does not support one byte relocations");
return ELF::R_MIPS_NONE;
case Mips::fixup_Mips_16:
case FK_Data_2:
return IsPCRel ? ELF::R_MIPS_PC16 : ELF::R_MIPS_16;
case Mips::fixup_Mips_32:
case FK_Data_4:
return IsPCRel ? ELF::R_MIPS_PC32 : ELF::R_MIPS_32;
case Mips::fixup_Mips_64:
case FK_Data_8:
return IsPCRel
? setRTypes(ELF::R_MIPS_PC32, ELF::R_MIPS_64, ELF::R_MIPS_NONE)
: (unsigned)ELF::R_MIPS_64;
}
if (IsPCRel) {
switch (Kind) {
case Mips::fixup_Mips_Branch_PCRel:
case Mips::fixup_Mips_PC16:
return ELF::R_MIPS_PC16;
case Mips::fixup_MICROMIPS_PC7_S1:
return ELF::R_MICROMIPS_PC7_S1;
case Mips::fixup_MICROMIPS_PC10_S1:
return ELF::R_MICROMIPS_PC10_S1;
case Mips::fixup_MICROMIPS_PC16_S1:
return ELF::R_MICROMIPS_PC16_S1;
case Mips::fixup_MICROMIPS_PC26_S1:
return ELF::R_MICROMIPS_PC26_S1;
case Mips::fixup_MICROMIPS_PC19_S2:
return ELF::R_MICROMIPS_PC19_S2;
case Mips::fixup_MICROMIPS_PC18_S3:
return ELF::R_MICROMIPS_PC18_S3;
case Mips::fixup_MICROMIPS_PC21_S1:
return ELF::R_MICROMIPS_PC21_S1;
case Mips::fixup_MIPS_PC19_S2:
return ELF::R_MIPS_PC19_S2;
case Mips::fixup_MIPS_PC18_S3:
return ELF::R_MIPS_PC18_S3;
case Mips::fixup_MIPS_PC21_S2:
return ELF::R_MIPS_PC21_S2;
case Mips::fixup_MIPS_PC26_S2:
return ELF::R_MIPS_PC26_S2;
case Mips::fixup_MIPS_PCHI16:
return ELF::R_MIPS_PCHI16;
case Mips::fixup_MIPS_PCLO16:
return ELF::R_MIPS_PCLO16;
}
llvm_unreachable("invalid PC-relative fixup kind!");
}
switch (Kind) {
case FK_DTPRel_4:
return ELF::R_MIPS_TLS_DTPREL32;
case FK_DTPRel_8:
return ELF::R_MIPS_TLS_DTPREL64;
case FK_TPRel_4:
return ELF::R_MIPS_TLS_TPREL32;
case FK_TPRel_8:
return ELF::R_MIPS_TLS_TPREL64;
case FK_GPRel_4:
return setRTypes(ELF::R_MIPS_GPREL32,
is64Bit() ? ELF::R_MIPS_64 : ELF::R_MIPS_NONE,
ELF::R_MIPS_NONE);
case Mips::fixup_Mips_GPREL16:
return ELF::R_MIPS_GPREL16;
case Mips::fixup_Mips_26:
return ELF::R_MIPS_26;
case Mips::fixup_Mips_CALL16:
return ELF::R_MIPS_CALL16;
case Mips::fixup_Mips_GOT:
return ELF::R_MIPS_GOT16;
case Mips::fixup_Mips_HI16:
return ELF::R_MIPS_HI16;
case Mips::fixup_Mips_LO16:
return ELF::R_MIPS_LO16;
case Mips::fixup_Mips_TLSGD:
return ELF::R_MIPS_TLS_GD;
case Mips::fixup_Mips_GOTTPREL:
return ELF::R_MIPS_TLS_GOTTPREL;
case Mips::fixup_Mips_TPREL_HI:
return ELF::R_MIPS_TLS_TPREL_HI16;
case Mips::fixup_Mips_TPREL_LO:
return ELF::R_MIPS_TLS_TPREL_LO16;
case Mips::fixup_Mips_TLSLDM:
return ELF::R_MIPS_TLS_LDM;
case Mips::fixup_Mips_DTPREL_HI:
return ELF::R_MIPS_TLS_DTPREL_HI16;
case Mips::fixup_Mips_DTPREL_LO:
return ELF::R_MIPS_TLS_DTPREL_LO16;
case Mips::fixup_Mips_GOT_PAGE:
return ELF::R_MIPS_GOT_PAGE;
case Mips::fixup_Mips_GOT_OFST:
return ELF::R_MIPS_GOT_OFST;
case Mips::fixup_Mips_GOT_DISP:
return ELF::R_MIPS_GOT_DISP;
case Mips::fixup_Mips_GPOFF_HI:
return setRTypes(ELF::R_MIPS_GPREL16, ELF::R_MIPS_SUB, ELF::R_MIPS_HI16);
case Mips::fixup_MICROMIPS_GPOFF_HI:
return setRTypes(ELF::R_MICROMIPS_GPREL16, ELF::R_MICROMIPS_SUB,
ELF::R_MICROMIPS_HI16);
case Mips::fixup_Mips_GPOFF_LO:
return setRTypes(ELF::R_MIPS_GPREL16, ELF::R_MIPS_SUB, ELF::R_MIPS_LO16);
case Mips::fixup_MICROMIPS_GPOFF_LO:
return setRTypes(ELF::R_MICROMIPS_GPREL16, ELF::R_MICROMIPS_SUB,
ELF::R_MICROMIPS_LO16);
case Mips::fixup_Mips_HIGHER:
return ELF::R_MIPS_HIGHER;
case Mips::fixup_Mips_HIGHEST:
return ELF::R_MIPS_HIGHEST;
case Mips::fixup_Mips_SUB:
return ELF::R_MIPS_SUB;
case Mips::fixup_Mips_GOT_HI16:
return ELF::R_MIPS_GOT_HI16;
case Mips::fixup_Mips_GOT_LO16:
return ELF::R_MIPS_GOT_LO16;
case Mips::fixup_Mips_CALL_HI16:
return ELF::R_MIPS_CALL_HI16;
case Mips::fixup_Mips_CALL_LO16:
return ELF::R_MIPS_CALL_LO16;
case Mips::fixup_MICROMIPS_26_S1:
return ELF::R_MICROMIPS_26_S1;
case Mips::fixup_MICROMIPS_HI16:
return ELF::R_MICROMIPS_HI16;
case Mips::fixup_MICROMIPS_LO16:
return ELF::R_MICROMIPS_LO16;
case Mips::fixup_MICROMIPS_GOT16:
return ELF::R_MICROMIPS_GOT16;
case Mips::fixup_MICROMIPS_CALL16:
return ELF::R_MICROMIPS_CALL16;
case Mips::fixup_MICROMIPS_GOT_DISP:
return ELF::R_MICROMIPS_GOT_DISP;
case Mips::fixup_MICROMIPS_GOT_PAGE:
return ELF::R_MICROMIPS_GOT_PAGE;
case Mips::fixup_MICROMIPS_GOT_OFST:
return ELF::R_MICROMIPS_GOT_OFST;
case Mips::fixup_MICROMIPS_TLS_GD:
return ELF::R_MICROMIPS_TLS_GD;
case Mips::fixup_MICROMIPS_TLS_LDM:
return ELF::R_MICROMIPS_TLS_LDM;
case Mips::fixup_MICROMIPS_TLS_DTPREL_HI16:
return ELF::R_MICROMIPS_TLS_DTPREL_HI16;
case Mips::fixup_MICROMIPS_TLS_DTPREL_LO16:
return ELF::R_MICROMIPS_TLS_DTPREL_LO16;
case Mips::fixup_MICROMIPS_GOTTPREL:
return ELF::R_MICROMIPS_TLS_GOTTPREL;
case Mips::fixup_MICROMIPS_TLS_TPREL_HI16:
return ELF::R_MICROMIPS_TLS_TPREL_HI16;
case Mips::fixup_MICROMIPS_TLS_TPREL_LO16:
return ELF::R_MICROMIPS_TLS_TPREL_LO16;
case Mips::fixup_MICROMIPS_SUB:
return ELF::R_MICROMIPS_SUB;
case Mips::fixup_MICROMIPS_HIGHER:
return ELF::R_MICROMIPS_HIGHER;
case Mips::fixup_MICROMIPS_HIGHEST:
return ELF::R_MICROMIPS_HIGHEST;
case Mips::fixup_Mips_JALR:
return ELF::R_MIPS_JALR;
case Mips::fixup_MICROMIPS_JALR:
return ELF::R_MICROMIPS_JALR;
}
llvm_unreachable("invalid fixup kind!");
}
/// Sort relocation table entries by offset except where another order is
/// required by the MIPS ABI.
///
/// MIPS has a few relocations that have an AHL component in the expression used
/// to evaluate them. This AHL component is an addend with the same number of
/// bits as a symbol value but not all of our ABI's are able to supply a
/// sufficiently sized addend in a single relocation.
///
/// The O32 ABI for example, uses REL relocations which store the addend in the
/// section data. All the relocations with AHL components affect 16-bit fields
/// so the addend for a single relocation is limited to 16-bit. This ABI
/// resolves the limitation by linking relocations (e.g. R_MIPS_HI16 and
/// R_MIPS_LO16) and distributing the addend between the linked relocations. The
/// ABI mandates that such relocations must be next to each other in a
/// particular order (e.g. R_MIPS_HI16 must be immediately followed by a
/// matching R_MIPS_LO16) but the rule is less strict in practice.
///
/// The de facto standard is lenient in the following ways:
/// - 'Immediately following' does not refer to the next relocation entry but
/// the next matching relocation.
/// - There may be multiple high parts relocations for one low part relocation.
/// - There may be multiple low part relocations for one high part relocation.
/// - The AHL addend in each part does not have to be exactly equal as long as
/// the difference does not affect the carry bit from bit 15 into 16. This is
/// to allow, for example, the use of %lo(foo) and %lo(foo+4) when loading
/// both halves of a long long.
///
/// See getMatchingLoType() for a description of which high part relocations
/// match which low part relocations. One particular thing to note is that
/// R_MIPS_GOT16 and similar only have AHL addends if they refer to local
/// symbols.
///
/// It should also be noted that this function is not affected by whether
/// the symbol was kept or rewritten into a section-relative equivalent. We
/// always match using the expressions from the source.
void MipsELFObjectWriter::sortRelocs(const MCAssembler &Asm,
std::vector<ELFRelocationEntry> &Relocs) {
// We do not need to sort the relocation table for RELA relocations which
// N32/N64 uses as the relocation addend contains the value we require,
// rather than it being split across a pair of relocations.
if (hasRelocationAddend())
return;
if (Relocs.size() < 2)
return;
// Sort relocations by the address they are applied to.
llvm::sort(Relocs,
[](const ELFRelocationEntry &A, const ELFRelocationEntry &B) {
return A.Offset < B.Offset;
});
std::list<MipsRelocationEntry> Sorted;
std::list<ELFRelocationEntry> Remainder;
LLVM_DEBUG(dumpRelocs("R: ", Relocs));
// Separate the movable relocations (AHL relocations using the high bits) from
// the immobile relocations (everything else). This does not preserve high/low
// matches that already existed in the input.
copy_if_else(Relocs.begin(), Relocs.end(), std::back_inserter(Remainder),
std::back_inserter(Sorted), [](const ELFRelocationEntry &Reloc) {
return getMatchingLoType(Reloc) != ELF::R_MIPS_NONE;
});
for (auto &R : Remainder) {
LLVM_DEBUG(dbgs() << "Matching: " << R << "\n");
unsigned MatchingType = getMatchingLoType(R);
assert(MatchingType != ELF::R_MIPS_NONE &&
"Wrong list for reloc that doesn't need a match");
// Find the best matching relocation for the current high part.
// See isMatchingReloc for a description of a matching relocation and
// compareMatchingRelocs for a description of what 'best' means.
auto InsertionPoint =
find_best(Sorted.begin(), Sorted.end(),
[&R, &MatchingType](const MipsRelocationEntry &X) {
return isMatchingReloc(X, R, MatchingType);
},
compareMatchingRelocs);
// If we matched then insert the high part in front of the match and mark
// both relocations as being involved in a match. We only mark the high
// part for cosmetic reasons in the debug output.
//
// If we failed to find a match then the high part is orphaned. This is not
// permitted since the relocation cannot be evaluated without knowing the
// carry-in. We can sometimes handle this using a matching low part that is
// already used in a match but we already cover that case in
// isMatchingReloc and compareMatchingRelocs. For the remaining cases we
// should insert the high part at the end of the list. This will cause the
// linker to fail but the alternative is to cause the linker to bind the
// high part to a semi-matching low part and silently calculate the wrong
// value. Unfortunately we have no means to warn the user that we did this
// so leave it up to the linker to complain about it.
if (InsertionPoint != Sorted.end())
InsertionPoint->Matched = true;
Sorted.insert(InsertionPoint, R)->Matched = true;
}
LLVM_DEBUG(dumpRelocs("S: ", Sorted));
assert(Relocs.size() == Sorted.size() && "Some relocs were not consumed");
// Overwrite the original vector with the sorted elements. The caller expects
// them in reverse order.
unsigned CopyTo = 0;
for (const auto &R : reverse(Sorted))
Relocs[CopyTo++] = R.R;
}
bool MipsELFObjectWriter::needsRelocateWithSymbol(const MCSymbol &Sym,
unsigned Type) const {
// If it's a compound relocation for N64 then we need the relocation if any
// sub-relocation needs it.
if (!isUInt<8>(Type))
return needsRelocateWithSymbol(Sym, Type & 0xff) ||
needsRelocateWithSymbol(Sym, (Type >> 8) & 0xff) ||
needsRelocateWithSymbol(Sym, (Type >> 16) & 0xff);
switch (Type) {
default:
errs() << Type << "\n";
llvm_unreachable("Unexpected relocation");
return true;
// This relocation doesn't affect the section data.
case ELF::R_MIPS_NONE:
return false;
// On REL ABI's (e.g. O32), these relocations form pairs. The pairing is done
// by the static linker by matching the symbol and offset.
// We only see one relocation at a time but it's still safe to relocate with
// the section so long as both relocations make the same decision.
//
// Some older linkers may require the symbol for particular cases. Such cases
// are not supported yet but can be added as required.
case ELF::R_MIPS_GOT16:
case ELF::R_MIPS16_GOT16:
case ELF::R_MICROMIPS_GOT16:
case ELF::R_MIPS_HIGHER:
case ELF::R_MIPS_HIGHEST:
case ELF::R_MIPS_HI16:
case ELF::R_MIPS16_HI16:
case ELF::R_MICROMIPS_HI16:
case ELF::R_MIPS_LO16:
case ELF::R_MIPS16_LO16:
case ELF::R_MICROMIPS_LO16:
// FIXME: It should be safe to return false for the STO_MIPS_MICROMIPS but
// we neglect to handle the adjustment to the LSB of the addend that
// it causes in applyFixup() and similar.
if (cast<MCSymbolELF>(Sym).getOther() & ELF::STO_MIPS_MICROMIPS)
return true;
return false;
case ELF::R_MIPS_GOT_PAGE:
case ELF::R_MICROMIPS_GOT_PAGE:
case ELF::R_MIPS_GOT_OFST:
case ELF::R_MICROMIPS_GOT_OFST:
case ELF::R_MIPS_16:
case ELF::R_MIPS_32:
case ELF::R_MIPS_GPREL32:
if (cast<MCSymbolELF>(Sym).getOther() & ELF::STO_MIPS_MICROMIPS)
return true;
LLVM_FALLTHROUGH;
case ELF::R_MIPS_26:
case ELF::R_MIPS_64:
case ELF::R_MIPS_GPREL16:
case ELF::R_MIPS_PC16:
case ELF::R_MIPS_SUB:
return false;
// FIXME: Many of these relocations should probably return false but this
// hasn't been confirmed to be safe yet.
case ELF::R_MIPS_REL32:
case ELF::R_MIPS_LITERAL:
case ELF::R_MIPS_CALL16:
case ELF::R_MIPS_SHIFT5:
case ELF::R_MIPS_SHIFT6:
case ELF::R_MIPS_GOT_DISP:
case ELF::R_MIPS_GOT_HI16:
case ELF::R_MIPS_GOT_LO16:
case ELF::R_MIPS_INSERT_A:
case ELF::R_MIPS_INSERT_B:
case ELF::R_MIPS_DELETE:
case ELF::R_MIPS_CALL_HI16:
case ELF::R_MIPS_CALL_LO16:
case ELF::R_MIPS_SCN_DISP:
case ELF::R_MIPS_REL16:
case ELF::R_MIPS_ADD_IMMEDIATE:
case ELF::R_MIPS_PJUMP:
case ELF::R_MIPS_RELGOT:
case ELF::R_MIPS_JALR:
case ELF::R_MIPS_TLS_DTPMOD32:
case ELF::R_MIPS_TLS_DTPREL32:
case ELF::R_MIPS_TLS_DTPMOD64:
case ELF::R_MIPS_TLS_DTPREL64:
case ELF::R_MIPS_TLS_GD:
case ELF::R_MIPS_TLS_LDM:
case ELF::R_MIPS_TLS_DTPREL_HI16:
case ELF::R_MIPS_TLS_DTPREL_LO16:
case ELF::R_MIPS_TLS_GOTTPREL:
case ELF::R_MIPS_TLS_TPREL32:
case ELF::R_MIPS_TLS_TPREL64:
case ELF::R_MIPS_TLS_TPREL_HI16:
case ELF::R_MIPS_TLS_TPREL_LO16:
case ELF::R_MIPS_GLOB_DAT:
case ELF::R_MIPS_PC21_S2:
case ELF::R_MIPS_PC26_S2:
case ELF::R_MIPS_PC18_S3:
case ELF::R_MIPS_PC19_S2:
case ELF::R_MIPS_PCHI16:
case ELF::R_MIPS_PCLO16:
case ELF::R_MIPS_COPY:
case ELF::R_MIPS_JUMP_SLOT:
case ELF::R_MIPS_NUM:
case ELF::R_MIPS_PC32:
case ELF::R_MIPS_EH:
case ELF::R_MICROMIPS_26_S1:
case ELF::R_MICROMIPS_GPREL16:
case ELF::R_MICROMIPS_LITERAL:
case ELF::R_MICROMIPS_PC7_S1:
case ELF::R_MICROMIPS_PC10_S1:
case ELF::R_MICROMIPS_PC16_S1:
case ELF::R_MICROMIPS_CALL16:
case ELF::R_MICROMIPS_GOT_DISP:
case ELF::R_MICROMIPS_GOT_HI16:
case ELF::R_MICROMIPS_GOT_LO16:
case ELF::R_MICROMIPS_SUB:
case ELF::R_MICROMIPS_HIGHER:
case ELF::R_MICROMIPS_HIGHEST:
case ELF::R_MICROMIPS_CALL_HI16:
case ELF::R_MICROMIPS_CALL_LO16:
case ELF::R_MICROMIPS_SCN_DISP:
case ELF::R_MICROMIPS_JALR:
case ELF::R_MICROMIPS_HI0_LO16:
case ELF::R_MICROMIPS_TLS_GD:
case ELF::R_MICROMIPS_TLS_LDM:
case ELF::R_MICROMIPS_TLS_DTPREL_HI16:
case ELF::R_MICROMIPS_TLS_DTPREL_LO16:
case ELF::R_MICROMIPS_TLS_GOTTPREL:
case ELF::R_MICROMIPS_TLS_TPREL_HI16:
case ELF::R_MICROMIPS_TLS_TPREL_LO16:
case ELF::R_MICROMIPS_GPREL7_S2:
case ELF::R_MICROMIPS_PC23_S2:
case ELF::R_MICROMIPS_PC21_S1:
case ELF::R_MICROMIPS_PC26_S1:
case ELF::R_MICROMIPS_PC18_S3:
case ELF::R_MICROMIPS_PC19_S2:
return true;
// FIXME: Many of these should probably return false but MIPS16 isn't
// supported by the integrated assembler.
case ELF::R_MIPS16_26:
case ELF::R_MIPS16_GPREL:
case ELF::R_MIPS16_CALL16:
case ELF::R_MIPS16_TLS_GD:
case ELF::R_MIPS16_TLS_LDM:
case ELF::R_MIPS16_TLS_DTPREL_HI16:
case ELF::R_MIPS16_TLS_DTPREL_LO16:
case ELF::R_MIPS16_TLS_GOTTPREL:
case ELF::R_MIPS16_TLS_TPREL_HI16:
case ELF::R_MIPS16_TLS_TPREL_LO16:
llvm_unreachable("Unsupported MIPS16 relocation");
return true;
}
}
std::unique_ptr<MCObjectTargetWriter>
llvm::createMipsELFObjectWriter(const Triple &TT, bool IsN32) {
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
bool IsN64 = TT.isArch64Bit() && !IsN32;
bool HasRelocationAddend = TT.isArch64Bit();
return std::make_unique<MipsELFObjectWriter>(OSABI, HasRelocationAddend,
IsN64);
}