Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
//===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips16 instructions.
//
//===----------------------------------------------------------------------===//
//
//
// Mips Address
//
def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>;
def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>;

//
// Address operand
def mem16 : Operand<i32> {
  let PrintMethod = "printMemOperand";
  let MIOperandInfo = (ops CPU16Regs, simm16);
  let EncoderMethod = "getMemEncoding";
}

def mem16sp : Operand<i32> {
  let PrintMethod = "printMemOperand";
  // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at
  // keeping the sp-relative load and the other varieties separate at the
  // moment. This lie fixes the problem sufficiently well to fix the errors
  // emitted by -verify-machineinstrs and the output ends up correct as long
  // as we use an external assembler (which is already a requirement for MIPS16
  // for several other reasons).
  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
  let EncoderMethod = "getMemEncoding";
}

def mem16_ea : Operand<i32> {
  let PrintMethod = "printMemOperandEA";
  let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
  let EncoderMethod = "getMemEncoding";
}

def pcrel16 : Operand<i32>;

//
// I-type instruction format
//
// this is only used by bimm. the actual assembly value is a 12 bit signed
// number
//
class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
  FI16<op, (outs), (ins brtarget:$imm16),
            !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;

//
//
// I8 instruction format
//

class FI816_ins_base<bits<3> _func, string asmstr,
                     string asmstr2, InstrItinClass itin>:
  FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
        [], itin>;

class FI816_ins<bits<3> _func, string asmstr,
                InstrItinClass itin>:
  FI816_ins_base<_func, asmstr, "\t$imm  # 16 bit inst", itin>;

class FI816_SP_ins<bits<3> _func, string asmstr,
                   InstrItinClass itin>:
  FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;

//
// RI instruction format
//


class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
                     InstrItinClass itin>:
  FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
        !strconcat(asmstr, asmstr2), [], itin>;

class FRI16_ins<bits<5> op, string asmstr,
                InstrItinClass itin>:
  FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;

class FRI16_TCP_ins<bits<5> _op, string asmstr,
                    InstrItinClass itin>:
  FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
            !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;

class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
                     InstrItinClass itin>:
  FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
        !strconcat(asmstr, asmstr2), [], itin>;

class FRI16R_ins<bits<5> op, string asmstr,
                InstrItinClass itin>:
  FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;

class F2RI16_ins<bits<5> _op, string asmstr,
                     InstrItinClass itin>:
  FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
        !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
  let Constraints = "$rx_ = $rx";
}

class FRI16_B_ins<bits<5> _op, string asmstr,
                  InstrItinClass itin>:
  FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
        !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
//
// Compare a register and immediate and place result in CC
// Implicit use of T8
//
// EXT-CCRR Instruction format
//
class FEXT_CCRXI16_ins<string asmstr>:
  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
               !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
  let isCodeGenOnly=1;
  let usesCustomInserter = 1;
}

// JAL and JALX instruction format
//
class FJAL16_ins<bits<1> _X, string asmstr,
                 InstrItinClass itin>:
  FJAL16<_X, (outs), (ins uimm26:$imm),
         !strconcat(asmstr, "\t$imm\n\tnop"),[],
         itin>  {
  let isCodeGenOnly=1;
  let Size=6;
}

class FJALB16_ins<bits<1> _X, string asmstr,
                 InstrItinClass itin>:
  FJAL16<_X, (outs), (ins uimm26:$imm),
         !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[],
         itin>  {
  let isCodeGenOnly=1;
  let Size=6;
}

//
// EXT-I instruction format
//
class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
  FEXT_I16<eop, (outs), (ins brtarget:$imm16),
           !strconcat(asmstr, "\t$imm16"),[], itin>;

//
// EXT-I8 instruction format
//

class FEXT_I816_ins_base<bits<3> _func, string asmstr,
                         string asmstr2, InstrItinClass itin>:
  FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
            [], itin>;

class FEXT_I816_ins<bits<3> _func, string asmstr,
                    InstrItinClass itin>:
  FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;

class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
                       InstrItinClass itin>:
      FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;

//
// Assembler formats in alphabetical order.
// Natural and pseudos are mixed together.
//
// Compare two registers and place result in CC
// Implicit use of T8
//
// CC-RR Instruction format
//
class FCCRR16_ins<string asmstr> :
  MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
  let isCodeGenOnly=1;
  let usesCustomInserter = 1;
}

//
// EXT-RI instruction format
//

class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
                         InstrItinClass itin>:
  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
                  !strconcat(asmstr, asmstr2), [], itin>;

class FEXT_RI16_ins<bits<5> _op, string asmstr,
                    InstrItinClass itin>:
  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;

class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
                         InstrItinClass itin>:
  FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
                  !strconcat(asmstr, asmstr2), [], itin>;

class FEXT_RI16R_ins<bits<5> _op, string asmstr,
                    InstrItinClass itin>:
  FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;

class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
  FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;

class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
                      InstrItinClass itin>:
  FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;

class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
                        InstrItinClass itin>:
  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
            !strconcat(asmstr, "\t$rx, $imm"), [], itin>;

class FEXT_2RI16_ins<bits<5> _op, string asmstr,
                     InstrItinClass itin>:
  FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
            !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
  let Constraints = "$rx_ = $rx";
}

//
// EXT-RRI instruction format
//

class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
                         InstrItinClass itin>:
  FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;

class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
                          InstrItinClass itin>:
  FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
             !strconcat(asmstr, "\t$ry, $addr"), [], itin>;

//
//
// EXT-RRI-A instruction format
//

class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
                           InstrItinClass itin>:
  FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
               !strconcat(asmstr, "\t$ry, $addr"), [], itin>;

//
// EXT-SHIFT instruction format
//
class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
  FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
               !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;

//
// EXT-T8I8
//
class FEXT_T8I816_ins<string asmstr, string asmstr2>:
  MipsPseudo16<(outs),
               (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
               !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
               !strconcat(asmstr, "\t$imm"))),[]> {
  let isCodeGenOnly=1;
  let usesCustomInserter = 1;
}

//
// EXT-T8I8I
//
class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
  MipsPseudo16<(outs),
               (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
               !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
               !strconcat(asmstr, "\t$targ"))), []> {
  let isCodeGenOnly=1;
  let usesCustomInserter = 1;
}
//


//
// I8_MOVR32 instruction format (used only by the MOVR32 instructio
//
class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
       FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
       !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;

//
// I8_MOV32R instruction format (used only by MOV32R instruction)
//

class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
  FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
               !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;

//
// This are pseudo formats for multiply
// This first one can be changed to non-pseudo now.
//
// MULT
//
class FMULT16_ins<string asmstr, InstrItinClass itin> :
  MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
               !strconcat(asmstr, "\t$rx, $ry"), []>;

//
// MULT-LO
//
class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
               !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
  let isCodeGenOnly=1;
}

//
// RR-type instruction format
//

class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
}

class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
  FRRBreak16<(outs), (ins), asmstr, [], itin> {
  let Code=0;
}

class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
  FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
        !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
}

class FRRTR16_ins<string asmstr> :
  MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
               !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;

//
// maybe refactor but need a $zero as a dummy first parameter
//
class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
  FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
        !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;

class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
  FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
        !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;


class FRR16_M_ins<bits<5> f, string asmstr,
                  InstrItinClass itin> :
  FRR16<f, (outs CPU16Regs:$rx), (ins),
        !strconcat(asmstr, "\t$rx"), [], itin>;

class FRxRxRy16_ins<bits<5> f, string asmstr,
                    InstrItinClass itin> :
  FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
            !strconcat(asmstr, "\t$rz, $ry"),
            [], itin> {
  let Constraints = "$rx = $rz";
}

let rx=0 in
class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
                              string asmstr, InstrItinClass itin>:
  FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"),
              [], itin> ;


class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
                      string asmstr, InstrItinClass itin>:
  FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
              !strconcat(asmstr, "\t$rx"), [], itin> ;

class FRR_SF16_ins
  <bits<5> _funct, bits<3> _subfunc,
    string asmstr, InstrItinClass itin>:
  FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
           !strconcat(asmstr, "\t $rx"),
           [], itin> {
  let Constraints = "$rx_ = $rx";
  }
//
// RRR-type instruction format
//

class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
  FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
         !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;

//
// These Sel patterns support the generation of conditional move
// pseudo instructions.
//
// The nomenclature uses the components making up the pseudo and may
// be a bit counter intuitive when compared with the end result we seek.
// For example using a bqez in the example directly below results in the
// conditional move being done if the tested register is not zero.
// I considered in easier to check by keeping the pseudo consistent with
// it's components but it could have been done differently.
//
// The simplest case is when can test and operand directly and do the
// conditional move based on a simple mips16 conditional
//  branch instruction.
// for example:
// if $op == beqz or bnez:
//
// $op1 $rt, .+4
// move $rd, $rs
//
// if $op == beqz, then if $rt != 0, then the conditional assignment
// $rd = $rs is done.

// if $op == bnez, then if $rt == 0, then the conditional assignment
// $rd = $rs is done.
//
// So this pseudo class only has one operand, i.e. op
//
class Sel<string op>:
  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
               CPU16Regs:$rt),
               !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
  //let isCodeGenOnly=1;
  let Constraints = "$rd = $rd_";
  let usesCustomInserter = 1;
}

//
// The next two instruction classes allow for an operand which tests
// two operands and returns a value in register T8 and
//then does a conditional branch based on the value of T8
//

// op2 can be cmpi or slti/sltiu
// op1 can bteqz or btnez
// the operands for op2 are a register and a signed constant
//
// $op2 $t, $imm  ;test register t and branch conditionally
// $op1 .+4       ;op1 is a conditional branch
// move $rd, $rs
//
//
class SeliT<string op1, string op2>:
  MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
                                       CPU16Regs:$rl, simm16:$imm),
               !strconcat(op2,
               !strconcat("\t$rl, $imm\n\t",
               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
  let isCodeGenOnly=1;
  let Constraints = "$rd = $rd_";
  let usesCustomInserter = 1;
}

//
// op2 can be cmp or slt/sltu
// op1 can be bteqz or btnez
// the operands for op2 are two registers
// op1 is a conditional branch
//
//
// $op2 $rl, $rr  ;test registers rl,rr
// $op1 .+4       ;op2 is a conditional branch
// move $rd, $rs
//
//
class SelT<string op1, string op2>:
  MipsPseudo16<(outs CPU16Regs:$rd_),
               (ins CPU16Regs:$rd, CPU16Regs:$rs,
                CPU16Regs:$rl, CPU16Regs:$rr),
               !strconcat(op2,
               !strconcat("\t$rl, $rr\n\t",
               !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
  let isCodeGenOnly=1;
  let Constraints = "$rd = $rd_";
  let usesCustomInserter = 1;
}

//
// 32 bit constant
//
def Constant32 : MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>;

def LwConstant32 :
  MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid),
               "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;

//
// Some general instruction class info
//
//

class ArithLogic16Defs<bit isCom=0> {
  bits<5> shamt = 0;
  bit isCommutable = isCom;
  bit isReMaterializable = 1;
  bit hasSideEffects = 0;
}

class branch16 {
  bit isBranch = 1;
  bit isTerminator = 1;
  bit isBarrier = 1;
}

class cbranch16 {
  bit isBranch = 1;
  bit isTerminator = 1;
}

class MayLoad {
  bit mayLoad = 1;
}

class MayStore {
  bit mayStore = 1;
}
//


// Format: ADDIU rx, immediate MIPS16e
// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
// To add a constant to a 32-bit integer.
//
def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>;

def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>,
  ArithLogic16Defs<0> {
  let AddedComplexity = 5;
}
def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>,
  ArithLogic16Defs<0> {
  let isCodeGenOnly = 1;
}

def AddiuRxRyOffMemX16:
  FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>;

//

// Format: ADDIU rx, pc, immediate MIPS16e
// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
// To add a constant to the program counter.
//
def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>;

//
// Format: ADDIU sp, immediate MIPS16e
// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
// To add a constant to the stack pointer.
//
def AddiuSpImm16
  : FI816_SP_ins<0b011, "addiu", IIM16Alu> {
  let Defs = [SP];
  let Uses = [SP];
  let AddedComplexity = 5;
}

def AddiuSpImmX16
  : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> {
  let Defs = [SP];
  let Uses = [SP];
}

//
// Format: ADDU rz, rx, ry MIPS16e
// Purpose: Add Unsigned Word (3-Operand)
// To add 32-bit integers.
//

def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>;

//
// Format: AND rx, ry MIPS16e
// Purpose: AND
// To do a bitwise logical AND.

def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>;


//
// Format: BEQZ rx, offset MIPS16e
// Purpose: Branch on Equal to Zero
// To test a GPR then do a PC-relative conditional branch.
//
def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;


//
// Format: BEQZ rx, offset MIPS16e
// Purpose: Branch on Equal to Zero (Extended)
// To test a GPR then do a PC-relative conditional branch.
//
def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;

//
// Format: B offset MIPS16e
// Purpose: Unconditional Branch (Extended)
// To do an unconditional PC-relative branch.
//

def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16;

// Format: B offset MIPS16e
// Purpose: Unconditional Branch
// To do an unconditional PC-relative branch.
//
def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16;

//
// Format: BNEZ rx, offset MIPS16e
// Purpose: Branch on Not Equal to Zero
// To test a GPR then do a PC-relative conditional branch.
//
def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;

//
// Format: BNEZ rx, offset MIPS16e
// Purpose: Branch on Not Equal to Zero (Extended)
// To test a GPR then do a PC-relative conditional branch.
//
def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;


//
//Format: BREAK immediate
// Purpose: Breakpoint
// To cause a Breakpoint exception.

def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>;
//
// Format: BTEQZ offset MIPS16e
// Purpose: Branch on T Equal to Zero (Extended)
// To test special register T then do a PC-relative conditional branch.
//
def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
  let Uses = [T8];
}

def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
  let Uses = [T8];
}

def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;

def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
  cbranch16;

def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;

def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;

def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;

def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
  cbranch16;

//
// Format: BTNEZ offset MIPS16e
// Purpose: Branch on T Not Equal to Zero (Extended)
// To test special register T then do a PC-relative conditional branch.
//

def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 {
  let Uses = [T8];
}

def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 {
  let Uses = [T8];
}

def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;

def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;

def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;

def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;

def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;

def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
  cbranch16;

//
// Format: CMP rx, ry MIPS16e
// Purpose: Compare
// To compare the contents of two GPRs.
//
def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> {
  let Defs = [T8];
}

//
// Format: CMPI rx, immediate MIPS16e
// Purpose: Compare Immediate
// To compare a constant with the contents of a GPR.
//
def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> {
  let Defs = [T8];
}

//
// Format: CMPI rx, immediate MIPS16e
// Purpose: Compare Immediate (Extended)
// To compare a constant with the contents of a GPR.
//
def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> {
  let Defs = [T8];
}


//
// Format: DIV rx, ry MIPS16e
// Purpose: Divide Word
// To divide 32-bit signed integers.
//
def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> {
  let Defs = [HI0, LO0];
}

//
// Format: DIVU rx, ry MIPS16e
// Purpose: Divide Unsigned Word
// To divide 32-bit unsigned integers.
//
def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> {
  let Defs = [HI0, LO0];
}
//
// Format: JAL target MIPS16e
// Purpose: Jump and Link
// To execute a procedure call within the current 256 MB-aligned
// region and preserve the current ISA.
//

def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> {
  let hasDelaySlot = 0;  // not true, but we add the nop for now
  let isCall=1;
  let Defs = [RA];
}

def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 {
  let hasDelaySlot = 0;  // not true, but we add the nop for now
  let isBranch=1;
  let Defs = [RA];
}

//
// Format: JR ra MIPS16e
// Purpose: Jump Register Through Register ra
// To execute a branch to the instruction address in the return
// address register.
//

def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> {
  let isBranch = 1;
  let isIndirectBranch = 1;
  let hasDelaySlot = 1;
  let isTerminator=1;
  let isBarrier=1;
  let isReturn=1;
}

def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> {
  let isBranch = 1;
  let isIndirectBranch = 1;
  let isTerminator=1;
  let isBarrier=1;
  let isReturn=1;
}

def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> {
  let isBranch = 1;
  let isIndirectBranch = 1;
  let isTerminator=1;
  let isBarrier=1;
}
//
// Format: LB ry, offset(rx) MIPS16e
// Purpose: Load Byte (Extended)
// To load a byte from memory as a signed value.
//
def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
  let isCodeGenOnly = 1;
}

//
// Format: LBU ry, offset(rx) MIPS16e
// Purpose: Load Byte Unsigned (Extended)
// To load a byte from memory as a unsigned value.
//
def LbuRxRyOffMemX16:
  FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
  let isCodeGenOnly = 1;
}

//
// Format: LH ry, offset(rx) MIPS16e
// Purpose: Load Halfword signed (Extended)
// To load a halfword from memory as a signed value.
//
def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
  let isCodeGenOnly = 1;
}

//
// Format: LHU ry, offset(rx) MIPS16e
// Purpose: Load Halfword unsigned (Extended)
// To load a halfword from memory as an unsigned value.
//
def LhuRxRyOffMemX16:
  FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
  let isCodeGenOnly = 1;
}

//
// Format: LI rx, immediate MIPS16e
// Purpose: Load Immediate
// To load a constant into a GPR.
//
def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>;

//
// Format: LI rx, immediate MIPS16e
// Purpose: Load Immediate (Extended)
// To load a constant into a GPR.
//
def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>;

def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> {
  let isCodeGenOnly = 1;
}

//
// Format: LW ry, offset(rx) MIPS16e
// Purpose: Load Word (Extended)
// To load a word from memory as a signed value.
//
def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
  let isCodeGenOnly = 1;
}

// Format: LW rx, offset(sp) MIPS16e
// Purpose: Load Word (SP-Relative, Extended)
// To load an SP-relative word from memory as a signed value.
//
def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad;

def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;

def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
//
// Format: MOVE r32, rz MIPS16e
// Purpose: Move
// To move the contents of a GPR to a GPR.
//
def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>;

//
// Format: MOVE ry, r32 MIPS16e
//Purpose: Move
// To move the contents of a GPR to a GPR.
//
def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> {
  let isMoveReg = 1;
}

//
// Format: MFHI rx MIPS16e
// Purpose: Move From HI Register
// To copy the special purpose HI register to a GPR.
//
def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> {
  let Uses = [HI0];
  let hasSideEffects = 0;
  let isMoveReg = 1;
}

//
// Format: MFLO rx MIPS16e
// Purpose: Move From LO Register
// To copy the special purpose LO register to a GPR.
//
def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> {
  let Uses = [LO0];
  let hasSideEffects = 0;
  let isMoveReg = 0;
}

//
// Pseudo Instruction for mult
//
def MultRxRy16:  FMULT16_ins<"mult",  IIM16Alu> {
  let isCommutable = 1;
  let hasSideEffects = 0;
  let Defs = [HI0, LO0];
}

def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> {
  let isCommutable = 1;
  let hasSideEffects = 0;
  let Defs = [HI0, LO0];
}

//
// Format: MULT rx, ry MIPS16e
// Purpose: Multiply Word
// To multiply 32-bit signed integers.
//
def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> {
  let isCommutable = 1;
  let hasSideEffects = 0;
  let Defs = [HI0, LO0];
}

//
// Format: MULTU rx, ry MIPS16e
// Purpose: Multiply Unsigned Word
// To multiply 32-bit unsigned integers.
//
def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> {
  let isCommutable = 1;
  let hasSideEffects = 0;
  let Defs = [HI0, LO0];
}

//
// Format: NEG rx, ry MIPS16e
// Purpose: Negate
// To negate an integer value.
//
def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>;

//
// Format: NOT rx, ry MIPS16e
// Purpose: Not
// To complement an integer value
//
def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>;

//
// Format: OR rx, ry MIPS16e
// Purpose: Or
// To do a bitwise logical OR.
//
def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>;

//
// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
// (All args are optional) MIPS16e
// Purpose: Restore Registers and Deallocate Stack Frame
// To deallocate a stack frame before exit from a subroutine,
// restoring return address and static registers, and adjusting
// stack
//

def Restore16:
  FI8_SVRS16<0b1, (outs), (ins variable_ops),
             "", [], II_RESTORE >, MayLoad {
  let isCodeGenOnly = 1;
  let Defs = [SP];
  let Uses = [SP];
}


def RestoreX16:
  FI8_SVRS16<0b1, (outs), (ins variable_ops),
             "", [], II_RESTORE >, MayLoad {
  let isCodeGenOnly = 1;
  let Defs = [SP];
  let Uses = [SP];
}

//
// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
// MIPS16e
// Purpose: Save Registers and Set Up Stack Frame
// To set up a stack frame on entry to a subroutine,
// saving return address and static registers, and adjusting stack
//
def Save16:
  FI8_SVRS16<0b1, (outs), (ins variable_ops),
             "", [], II_SAVE >, MayStore {
  let isCodeGenOnly = 1;
  let Uses = [SP];
  let Defs = [SP];
}

def SaveX16:
  FI8_SVRS16<0b1, (outs), (ins variable_ops),
             "", [], II_SAVE >, MayStore {
  let isCodeGenOnly = 1;
  let Uses = [SP];
  let Defs = [SP];
}
//
// Format: SB ry, offset(rx) MIPS16e
// Purpose: Store Byte (Extended)
// To store a byte to memory.
//
def SbRxRyOffMemX16:
  FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;

//
// Format: SEB rx MIPS16e
// Purpose: Sign-Extend Byte
// Sign-extend least significant byte in register rx.
//
def SebRx16
  : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>;

//
// Format: SEH rx MIPS16e
// Purpose: Sign-Extend Halfword
// Sign-extend least significant word in register rx.
//
def SehRx16
  : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>;

//
// The Sel(T) instructions are pseudos
// T means that they use T8 implicitly.
//
//
// Format: SelBeqZ rd, rs, rt
// Purpose: if rt==0, do nothing
//          else rs = rt
//
def SelBeqZ: Sel<"beqz">;

//
// Format:  SelTBteqZCmp rd, rs, rl, rr
// Purpose: b = Cmp rl, rr.
//          If b==0 then do nothing.
//          if b!=0 then rd = rs
//
def SelTBteqZCmp: SelT<"bteqz", "cmp">;

//
// Format:  SelTBteqZCmpi rd, rs, rl, rr
// Purpose: b = Cmpi rl, imm.
//          If b==0 then do nothing.
//          if b!=0 then rd = rs
//
def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;

//
// Format:  SelTBteqZSlt rd, rs, rl, rr
// Purpose: b = Slt rl, rr.
//          If b==0 then do nothing.
//          if b!=0 then rd = rs
//
def SelTBteqZSlt: SelT<"bteqz", "slt">;

//
// Format:  SelTBteqZSlti rd, rs, rl, rr
// Purpose: b = Slti rl, imm.
//          If b==0 then do nothing.
//          if b!=0 then rd = rs
//
def SelTBteqZSlti: SeliT<"bteqz", "slti">;

//
// Format:  SelTBteqZSltu rd, rs, rl, rr
// Purpose: b = Sltu rl, rr.
//          If b==0 then do nothing.
//          if b!=0 then rd = rs
//
def SelTBteqZSltu: SelT<"bteqz", "sltu">;

//
// Format:  SelTBteqZSltiu rd, rs, rl, rr
// Purpose: b = Sltiu rl, imm.
//          If b==0 then do nothing.
//          if b!=0 then rd = rs
//
def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;

//
// Format: SelBnez rd, rs, rt
// Purpose: if rt!=0, do nothing
//          else rs = rt
//
def SelBneZ: Sel<"bnez">;

//
// Format:  SelTBtneZCmp rd, rs, rl, rr
// Purpose: b = Cmp rl, rr.
//          If b!=0 then do nothing.
//          if b0=0 then rd = rs
//
def SelTBtneZCmp: SelT<"btnez", "cmp">;

//
// Format:  SelTBtnezCmpi rd, rs, rl, rr
// Purpose: b = Cmpi rl, imm.
//          If b!=0 then do nothing.
//          if b==0 then rd = rs
//
def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;

//
// Format:  SelTBtneZSlt rd, rs, rl, rr
// Purpose: b = Slt rl, rr.
//          If b!=0 then do nothing.
//          if b==0 then rd = rs
//
def SelTBtneZSlt: SelT<"btnez", "slt">;

//
// Format:  SelTBtneZSlti rd, rs, rl, rr
// Purpose: b = Slti rl, imm.
//          If b!=0 then do nothing.
//          if b==0 then rd = rs
//
def SelTBtneZSlti: SeliT<"btnez", "slti">;

//
// Format:  SelTBtneZSltu rd, rs, rl, rr
// Purpose: b = Sltu rl, rr.
//          If b!=0 then do nothing.
//          if b==0 then rd = rs
//
def SelTBtneZSltu: SelT<"btnez", "sltu">;

//
// Format:  SelTBtneZSltiu rd, rs, rl, rr
// Purpose: b = Slti rl, imm.
//          If b!=0 then do nothing.
//          if b==0 then rd = rs
//
def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
//
//
// Format: SH ry, offset(rx) MIPS16e
// Purpose: Store Halfword (Extended)
// To store a halfword to memory.
//
def ShRxRyOffMemX16:
  FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;

//
// Format: SLL rx, ry, sa MIPS16e
// Purpose: Shift Word Left Logical (Extended)
// To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
//
def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>;

//
// Format: SLLV ry, rx MIPS16e
// Purpose: Shift Word Left Logical Variable
// To execute a left-shift of a word by a variable number of bits.
//
def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>;

// Format: SLTI rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate
// To record the result of a less-than comparison with a constant.
//
//
def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> {
  let Defs = [T8];
}

//
// Format: SLTI rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate (Extended)
// To record the result of a less-than comparison with a constant.
//
//
def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> {
  let Defs = [T8];
}

def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;

// Format: SLTIU rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate Unsigned
// To record the result of a less-than comparison with a constant.
//
//
def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> {
  let Defs = [T8];
}

//
// Format: SLTI rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate Unsigned (Extended)
// To record the result of a less-than comparison with a constant.
//
//
def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> {
  let Defs = [T8];
}
//
// Format: SLTIU rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate Unsigned (Extended)
// To record the result of a less-than comparison with a constant.
//
def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;

//
// Format: SLT rx, ry MIPS16e
// Purpose: Set on Less Than
// To record the result of a less-than comparison.
//
def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{
  let Defs = [T8];
}

def SltCCRxRy16: FCCRR16_ins<"slt">;

// Format: SLTU rx, ry MIPS16e
// Purpose: Set on Less Than Unsigned
// To record the result of an unsigned less-than comparison.
//
def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{
  let Defs = [T8];
}

def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
  let isCodeGenOnly=1;
  let Defs = [T8];
}


def SltuCCRxRy16: FCCRR16_ins<"sltu">;
//
// Format: SRAV ry, rx MIPS16e
// Purpose: Shift Word Right Arithmetic Variable
// To execute an arithmetic right-shift of a word by a variable
// number of bits.
//
def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>;


//
// Format: SRA rx, ry, sa MIPS16e
// Purpose: Shift Word Right Arithmetic (Extended)
// To execute an arithmetic right-shift of a word by a fixed
// number of bits-1 to 8 bits.
//
def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>;


//
// Format: SRLV ry, rx MIPS16e
// Purpose: Shift Word Right Logical Variable
// To execute a logical right-shift of a word by a variable
// number of bits.
//
def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>;


//
// Format: SRL rx, ry, sa MIPS16e
// Purpose: Shift Word Right Logical (Extended)
// To execute a logical right-shift of a word by a fixed
// number of bits-1 to 31 bits.
//
def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>;

//
// Format: SUBU rz, rx, ry MIPS16e
// Purpose: Subtract Unsigned Word
// To subtract 32-bit integers
//
def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>;

//
// Format: SW ry, offset(rx) MIPS16e
// Purpose: Store Word (Extended)
// To store a word to memory.
//
def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;

//
// Format: SW rx, offset(sp) MIPS16e
// Purpose: Store Word rx (SP-Relative)
// To store an SP-relative word to memory.
//
def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore;

//
//
// Format: XOR rx, ry MIPS16e
// Purpose: Xor
// To do a bitwise logical XOR.
//
def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>;

class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
  let Predicates = [InMips16Mode];
}

// Unary Arith/Logic
//
class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
  Mips16Pat<(OpNode CPU16Regs:$r),
            (I CPU16Regs:$r)>;

def: ArithLogicU_pat<not, NotRxRy16>;
def: ArithLogicU_pat<ineg, NegRxRy16>;

class ArithLogic16_pat<SDNode OpNode, Instruction I> :
  Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
            (I CPU16Regs:$l, CPU16Regs:$r)>;

def: ArithLogic16_pat<add, AdduRxRyRz16>;
def: ArithLogic16_pat<and, AndRxRxRy16>;
def: ArithLogic16_pat<mul, MultRxRyRz16>;
def: ArithLogic16_pat<or, OrRxRxRy16>;
def: ArithLogic16_pat<sub, SubuRxRyRz16>;
def: ArithLogic16_pat<xor, XorRxRxRy16>;

// Arithmetic and logical instructions with 2 register operands.

class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
  Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
            (I CPU16Regs:$in, imm_type:$imm)>;

def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
def: ArithLogicI16_pat<sra, immZExt5, SraX16>;

class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
  Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
            (I CPU16Regs:$r, CPU16Regs:$ra)>;

def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
def: shift_rotate_reg16_pat<sra, SravRxRy16>;
def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;

class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
  Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>;

def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>;
def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>;
def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>;
def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>;
def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>;

class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
  Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>;

def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>;
def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>;
def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>;

// Unconditional branch
class UncondBranch16_pat<SDNode OpNode, Instruction I>:
  Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
    let Predicates = [InMips16Mode];
  }

def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
                (Jal16 tglobaladdr:$dst)>;

def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
                (Jal16 texternalsym:$dst)>;

// Indirect branch
def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
  // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
  // MIPS16's behaviour.
  let AddedComplexity = 1;
}

// Jump and Link (Call)
let isCall=1, hasDelaySlot=0 in
def JumpLinkReg16:
  FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
              "jalrc\t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> {
  let Defs = [RA];
}

// Mips16 pseudos
let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
  hasExtraSrcRegAllocReq = 1 in
def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;


// setcc patterns

class SetCC_R16<PatFrag cond_op, Instruction I>:
  Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
            (I CPU16Regs:$rx, CPU16Regs:$ry)>;

class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
  Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
            (I CPU16Regs:$rx, imm_type:$imm16)>;


def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>;


// Large (>16 bit) immediate loads
def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;

//
// Some branch conditional patterns are not generated by llvm at this time.
// Some are for seemingly arbitrary reasons not used: i.e. with signed number
// comparison they are used and for unsigned a different pattern is used.
// I am pushing upstream from the full mips16 port and it seemed that I needed
// these earlier and the mips32 port has these but now I cannot create test
// cases that use these patterns. While I sort this all out I will leave these
// extra patterns commented out and if I can be sure they are really not used,
// I will delete the code. I don't want to check the code in uncommented without
// a valid test case. In some cases, the compiler is generating patterns with
// setcc instead and earlier I had implemented setcc first so may have masked
// the problem. The setcc variants are suboptimal for mips16 so I may wantto
// figure out how to enable the brcond patterns or else possibly new
// combinations of brcond and setcc.
//
//
// bcond-seteq
//
def: Mips16Pat
  <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
  >;


def: Mips16Pat
  <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
   (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
  >;

def: Mips16Pat
  <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
   (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
  >;

//
// bcond-setgt (do we need to have this pair of setlt, setgt??)
//
def: Mips16Pat
  <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
  >;

//
// bcond-setge
//
def: Mips16Pat
  <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
  >;

//
// never called because compiler transforms a >= k to a > (k-1)
def: Mips16Pat
  <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
   (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
  >;

//
// bcond-setlt
//
def: Mips16Pat
  <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
  >;

def: Mips16Pat
  <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
   (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
  >;

//
// bcond-setle
//
def: Mips16Pat
  <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
  >;

//
// bcond-setne
//
def: Mips16Pat
  <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
  >;

def: Mips16Pat
  <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
   (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
  >;

def: Mips16Pat
  <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
  >;

//
// This needs to be there but I forget which code will generate it
//
def: Mips16Pat
  <(brcond CPU16Regs:$rx, bb:$targ16),
   (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
  >;

//

//
// bcond-setugt
//
//def: Mips16Pat
//  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
//   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
//  >;

//
// bcond-setuge
//
//def: Mips16Pat
//  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
//   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
//  >;


//
// bcond-setult
//
//def: Mips16Pat
//  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
//   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
//  >;

def: UncondBranch16_pat<br, Bimm16>;

// Small immediates
def: Mips16Pat<(i32 immSExt16:$in),
               (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>;

def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;

//
// MipsDivRem
//
def: Mips16Pat
  <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
   (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;

//
// MipsDivRemU
//
def: Mips16Pat
  <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
   (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;

//  signed a,b
//  x = (a>=b)?x:y
//
//  if !(a < b) x = y
//
def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$a, CPU16Regs:$b)>;

//  signed a,b
//  x = (a>b)?x:y
//
//  if  (b < a) x = y
//
def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$b, CPU16Regs:$a)>;

// unsigned a,b
// x = (a>=b)?x:y
//
// if !(a < b) x = y;
//
def : Mips16Pat<
  (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
   CPU16Regs:$x, CPU16Regs:$y),
  (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
   CPU16Regs:$a, CPU16Regs:$b)>;

//  unsigned a,b
//  x = (a>b)?x:y
//
//  if (b < a) x = y
//
def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$b, CPU16Regs:$a)>;

// signed
// x = (a >= k)?x:y
// due to an llvm optimization, i don't think that this will ever
// be used. This is transformed into x = (a > k-1)?x:y
//
//

//def : Mips16Pat<
//  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
//   CPU16Regs:$T, CPU16Regs:$F),
//  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
//   CPU16Regs:$lhs, immSExt16:$rhs)>;

//def : Mips16Pat<
//  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
//   CPU16Regs:$T, CPU16Regs:$F),
//  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
//   CPU16Regs:$lhs, immSExt16:$rhs)>;

// signed
// x = (a < k)?x:y
//
// if !(a < k) x = y;
//
def : Mips16Pat<
  (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
   CPU16Regs:$x, CPU16Regs:$y),
  (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
   CPU16Regs:$a, immSExt16:$b)>;


//
//
// signed
// x = (a <= b)? x : y
//
// if  (b < a) x = y
//
def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$b, CPU16Regs:$a)>;

//
// unsigned
// x = (a <= b)? x : y
//
// if  (b < a) x = y
//
def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$b, CPU16Regs:$a)>;

//
// signed/unsigned
// x = (a == b)? x : y
//
// if (a != b) x = y
//
def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$b, CPU16Regs:$a)>;

//
// signed/unsigned
// x = (a == 0)? x : y
//
// if (a != 0) x = y
//
def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$a)>;


//
// signed/unsigned
// x = (a == k)? x : y
//
// if (a != k) x = y
//
def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$a, immZExt16:$k)>;


//
// signed/unsigned
// x = (a != b)? x : y
//
// if (a == b) x = y
//
//
def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$b, CPU16Regs:$a)>;

//
// signed/unsigned
// x = (a != 0)? x : y
//
// if (a == 0) x = y
//
def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$a)>;

// signed/unsigned
// x = (a)? x : y
//
// if (!a) x = y
//
def : Mips16Pat<(select  CPU16Regs:$a,
                 CPU16Regs:$x, CPU16Regs:$y),
      (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
       CPU16Regs:$a)>;


//
// signed/unsigned
// x = (a != k)? x : y
//
// if (a == k) x = y
//
def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
                 CPU16Regs:$x, CPU16Regs:$y),
                (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
                 CPU16Regs:$a, immZExt16:$k)>;

//
// When writing C code to test setxx these patterns,
// some will be transformed into
// other things. So we test using C code but using -O3 and -O0
//
// seteq
//
def : Mips16Pat
  <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
   (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;

def : Mips16Pat
  <(seteq CPU16Regs:$lhs, 0),
   (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;


//
// setge
//

def: Mips16Pat
  <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
   (LiRxImmX16 1))>;

//
// For constants, llvm transforms this to:
// x > (k - 1) and then reverses the operands to use setlt. So this pattern
// is not used now by the compiler. (Presumably checking that k-1 does not
// overflow). The compiler never uses this at the current time, due to
// other optimizations.
//
//def: Mips16Pat
//  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
//   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
//   (LiRxImmX16 1))>;

// This catches the x >= -32768 case by transforming it to  x > -32769
//
def: Mips16Pat
  <(setgt CPU16Regs:$lhs, -32769),
   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
   (LiRxImmX16 1))>;

//
// setgt
//
//

def: Mips16Pat
  <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
   (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;

//
// setle
//
def: Mips16Pat
  <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
   (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;

//
// setlt
//
def: SetCC_R16<setlt, SltCCRxRy16>;

def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;

//
// setne
//
def : Mips16Pat
  <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
   (SltuCCRxRy16 (LiRxImmX16 0),
   (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;


//
// setuge
//
def: Mips16Pat
  <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
   (LiRxImmX16 1))>;

// this pattern will never be used because the compiler will transform
// x >= k to x > (k - 1) and then use SLT
//
//def: Mips16Pat
//  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
//   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
//   (LiRxImmX16 1))>;

//
// setugt
//
def: Mips16Pat
  <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
   (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;

//
// setule
//
def: Mips16Pat
  <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
   (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;

//
// setult
//
def: SetCC_R16<setult, SltuCCRxRy16>;

def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;

def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
               (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;

// hi/lo relocs
def : Mips16Pat<(MipsHi tblockaddress:$in),
                (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
def : Mips16Pat<(MipsHi tglobaladdr:$in),
                (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
def : Mips16Pat<(MipsHi tjumptable:$in),
                (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;

def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;

def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in),
                (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;

// wrapper_pic
class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
  Mips16Pat<(MipsWrapper RC:$gp, node:$in),
            (ADDiuOp RC:$gp, node:$in)>;


def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;

def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
                (LbuRxRyOffMemX16  addr16:$src)>;
def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
                (LhuRxRyOffMemX16  addr16:$src)>;

def: Mips16Pat<(trap), (Break16)>;

def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
                (SebRx16 CPU16Regs:$val)>;

def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
                (SehRx16 CPU16Regs:$val)>;

def GotPrologue16:
  MipsPseudo16<
    (outs CPU16Regs:$rh, CPU16Regs:$rl),
    (ins simm16:$immHi, simm16:$immLo),
    "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;

// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
def cpinst_operand : Operand<i32> {
  // let PrintMethod = "printCPInstOperand";
}

// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
// the function.  The first operand is the ID# for this instruction, the second
// is the index into the MachineConstantPool that this is, the third is the
// size in bytes of this constant pool entry.
//
let hasSideEffects = 0, isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
                      i32imm:$size), "foo", []>;

// Instruction Aliases

let EncodingPredicates = [InMips16Mode] in
def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>;