Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
//===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass is used to make Pc relative loads of constants.
// For now, only Mips16 will use this.
//
// Loading constants inline is expensive on Mips16 and it's in general better
// to place the constant nearby in code space and then it can be loaded with a
// simple 16 bit load instruction.
//
// The constants can be not just numbers but addresses of functions and labels.
// This can be particularly helpful in static relocation mode for embedded
// non-linux targets.
//
//===----------------------------------------------------------------------===//

#include "Mips.h"
#include "Mips16InstrInfo.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "mips-constant-islands"

STATISTIC(NumCPEs,       "Number of constpool entries");
STATISTIC(NumSplit,      "Number of uncond branches inserted");
STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");

// FIXME: This option should be removed once it has received sufficient testing.
static cl::opt<bool>
AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
          cl::desc("Align constant islands in code"));

// Rather than do make check tests with huge amounts of code, we force
// the test to use this amount.
static cl::opt<int> ConstantIslandsSmallOffset(
  "mips-constant-islands-small-offset",
  cl::init(0),
  cl::desc("Make small offsets be this amount for testing purposes"),
  cl::Hidden);

// For testing purposes we tell it to not use relaxed load forms so that it
// will split blocks.
static cl::opt<bool> NoLoadRelaxation(
  "mips-constant-islands-no-load-relaxation",
  cl::init(false),
  cl::desc("Don't relax loads to long loads - for testing purposes"),
  cl::Hidden);

static unsigned int branchTargetOperand(MachineInstr *MI) {
  switch (MI->getOpcode()) {
  case Mips::Bimm16:
  case Mips::BimmX16:
  case Mips::Bteqz16:
  case Mips::BteqzX16:
  case Mips::Btnez16:
  case Mips::BtnezX16:
  case Mips::JalB16:
    return 0;
  case Mips::BeqzRxImm16:
  case Mips::BeqzRxImmX16:
  case Mips::BnezRxImm16:
  case Mips::BnezRxImmX16:
    return 1;
  }
  llvm_unreachable("Unknown branch type");
}

static unsigned int longformBranchOpcode(unsigned int Opcode) {
  switch (Opcode) {
  case Mips::Bimm16:
  case Mips::BimmX16:
    return Mips::BimmX16;
  case Mips::Bteqz16:
  case Mips::BteqzX16:
    return Mips::BteqzX16;
  case Mips::Btnez16:
  case Mips::BtnezX16:
    return Mips::BtnezX16;
  case Mips::JalB16:
    return Mips::JalB16;
  case Mips::BeqzRxImm16:
  case Mips::BeqzRxImmX16:
    return Mips::BeqzRxImmX16;
  case Mips::BnezRxImm16:
  case Mips::BnezRxImmX16:
    return Mips::BnezRxImmX16;
  }
  llvm_unreachable("Unknown branch type");
}

// FIXME: need to go through this whole constant islands port and check
// the math for branch ranges and clean this up and make some functions
// to calculate things that are done many times identically.
// Need to refactor some of the code to call this routine.
static unsigned int branchMaxOffsets(unsigned int Opcode) {
  unsigned Bits, Scale;
  switch (Opcode) {
    case Mips::Bimm16:
      Bits = 11;
      Scale = 2;
      break;
    case Mips::BimmX16:
      Bits = 16;
      Scale = 2;
      break;
    case Mips::BeqzRxImm16:
      Bits = 8;
      Scale = 2;
      break;
    case Mips::BeqzRxImmX16:
      Bits = 16;
      Scale = 2;
      break;
    case Mips::BnezRxImm16:
      Bits = 8;
      Scale = 2;
      break;
    case Mips::BnezRxImmX16:
      Bits = 16;
      Scale = 2;
      break;
    case Mips::Bteqz16:
      Bits = 8;
      Scale = 2;
      break;
    case Mips::BteqzX16:
      Bits = 16;
      Scale = 2;
      break;
    case Mips::Btnez16:
      Bits = 8;
      Scale = 2;
      break;
    case Mips::BtnezX16:
      Bits = 16;
      Scale = 2;
      break;
    default:
      llvm_unreachable("Unknown branch type");
  }
  unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
  return MaxOffs;
}

namespace {

  using Iter = MachineBasicBlock::iterator;
  using ReverseIter = MachineBasicBlock::reverse_iterator;

  /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
  /// requires constant pool entries to be scattered among the instructions
  /// inside a function.  To do this, it completely ignores the normal LLVM
  /// constant pool; instead, it places constants wherever it feels like with
  /// special instructions.
  ///
  /// The terminology used in this pass includes:
  ///   Islands - Clumps of constants placed in the function.
  ///   Water   - Potential places where an island could be formed.
  ///   CPE     - A constant pool entry that has been placed somewhere, which
  ///             tracks a list of users.

  class MipsConstantIslands : public MachineFunctionPass {
    /// BasicBlockInfo - Information about the offset and size of a single
    /// basic block.
    struct BasicBlockInfo {
      /// Offset - Distance from the beginning of the function to the beginning
      /// of this basic block.
      ///
      /// Offsets are computed assuming worst case padding before an aligned
      /// block. This means that subtracting basic block offsets always gives a
      /// conservative estimate of the real distance which may be smaller.
      ///
      /// Because worst case padding is used, the computed offset of an aligned
      /// block may not actually be aligned.
      unsigned Offset = 0;

      /// Size - Size of the basic block in bytes.  If the block contains
      /// inline assembly, this is a worst case estimate.
      ///
      /// The size does not include any alignment padding whether from the
      /// beginning of the block, or from an aligned jump table at the end.
      unsigned Size = 0;

      BasicBlockInfo() = default;

      unsigned postOffset() const { return Offset + Size; }
    };

    std::vector<BasicBlockInfo> BBInfo;

    /// WaterList - A sorted list of basic blocks where islands could be placed
    /// (i.e. blocks that don't fall through to the following block, due
    /// to a return, unreachable, or unconditional branch).
    std::vector<MachineBasicBlock*> WaterList;

    /// NewWaterList - The subset of WaterList that was created since the
    /// previous iteration by inserting unconditional branches.
    SmallSet<MachineBasicBlock*, 4> NewWaterList;

    using water_iterator = std::vector<MachineBasicBlock *>::iterator;

    /// CPUser - One user of a constant pool, keeping the machine instruction
    /// pointer, the constant pool being referenced, and the max displacement
    /// allowed from the instruction to the CP.  The HighWaterMark records the
    /// highest basic block where a new CPEntry can be placed.  To ensure this
    /// pass terminates, the CP entries are initially placed at the end of the
    /// function and then move monotonically to lower addresses.  The
    /// exception to this rule is when the current CP entry for a particular
    /// CPUser is out of range, but there is another CP entry for the same
    /// constant value in range.  We want to use the existing in-range CP
    /// entry, but if it later moves out of range, the search for new water
    /// should resume where it left off.  The HighWaterMark is used to record
    /// that point.
    struct CPUser {
      MachineInstr *MI;
      MachineInstr *CPEMI;
      MachineBasicBlock *HighWaterMark;

    private:
      unsigned MaxDisp;
      unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
                                // with different displacements
      unsigned LongFormOpcode;

    public:
      bool NegOk;

      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
             bool neg,
             unsigned longformmaxdisp, unsigned longformopcode)
        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
          LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
          NegOk(neg){
        HighWaterMark = CPEMI->getParent();
      }

      /// getMaxDisp - Returns the maximum displacement supported by MI.
      unsigned getMaxDisp() const {
        unsigned xMaxDisp = ConstantIslandsSmallOffset?
                            ConstantIslandsSmallOffset: MaxDisp;
        return xMaxDisp;
      }

      void setMaxDisp(unsigned val) {
        MaxDisp = val;
      }

      unsigned getLongFormMaxDisp() const {
        return LongFormMaxDisp;
      }

      unsigned getLongFormOpcode() const {
          return LongFormOpcode;
      }
    };

    /// CPUsers - Keep track of all of the machine instructions that use various
    /// constant pools and their max displacement.
    std::vector<CPUser> CPUsers;

  /// CPEntry - One per constant pool entry, keeping the machine instruction
  /// pointer, the constpool index, and the number of CPUser's which
  /// reference this entry.
  struct CPEntry {
    MachineInstr *CPEMI;
    unsigned CPI;
    unsigned RefCount;

    CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
      : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
  };

  /// CPEntries - Keep track of all of the constant pool entry machine
  /// instructions. For each original constpool index (i.e. those that
  /// existed upon entry to this pass), it keeps a vector of entries.
  /// Original elements are cloned as we go along; the clones are
  /// put in the vector of the original element, but have distinct CPIs.
  std::vector<std::vector<CPEntry>> CPEntries;

  /// ImmBranch - One per immediate branch, keeping the machine instruction
  /// pointer, conditional or unconditional, the max displacement,
  /// and (if isCond is true) the corresponding unconditional branch
  /// opcode.
  struct ImmBranch {
    MachineInstr *MI;
    unsigned MaxDisp : 31;
    bool isCond : 1;
    int UncondBr;

    ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
      : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
  };

  /// ImmBranches - Keep track of all the immediate branch instructions.
  ///
  std::vector<ImmBranch> ImmBranches;

  /// HasFarJump - True if any far jump instruction has been emitted during
  /// the branch fix up pass.
  bool HasFarJump;

  const MipsSubtarget *STI = nullptr;
  const Mips16InstrInfo *TII;
  MipsFunctionInfo *MFI;
  MachineFunction *MF = nullptr;
  MachineConstantPool *MCP = nullptr;

  unsigned PICLabelUId;
  bool PrescannedForConstants = false;

  void initPICLabelUId(unsigned UId) {
    PICLabelUId = UId;
  }

  unsigned createPICLabelUId() {
    return PICLabelUId++;
  }

  public:
    static char ID;

    MipsConstantIslands() : MachineFunctionPass(ID) {}

    StringRef getPassName() const override { return "Mips Constant Islands"; }

    bool runOnMachineFunction(MachineFunction &F) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    Align getCPEAlign(const MachineInstr &CPEMI);
    void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
    unsigned getOffsetOf(MachineInstr *MI) const;
    unsigned getUserOffset(CPUser&) const;
    void dumpBBs();

    bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
                         unsigned Disp, bool NegativeOK);
    bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
                         const CPUser &U);

    void computeBlockSize(MachineBasicBlock *MBB);
    MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
    void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    void adjustBBOffsetsAfter(MachineBasicBlock *BB);
    bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
    int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
    int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
    bool findAvailableWater(CPUser&U, unsigned UserOffset,
                            water_iterator &WaterIter);
    void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
                        MachineBasicBlock *&NewMBB);
    bool handleConstantPoolUser(unsigned CPUserIndex);
    void removeDeadCPEMI(MachineInstr *CPEMI);
    bool removeUnusedCPEntries();
    bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
                          MachineInstr *CPEMI, unsigned Disp, bool NegOk,
                          bool DoDump = false);
    bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
                        CPUser &U, unsigned &Growth);
    bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    bool fixupImmediateBr(ImmBranch &Br);
    bool fixupConditionalBr(ImmBranch &Br);
    bool fixupUnconditionalBr(ImmBranch &Br);

    void prescanForConstants();
  };

} // end anonymous namespace

char MipsConstantIslands::ID = 0;

bool MipsConstantIslands::isOffsetInRange
  (unsigned UserOffset, unsigned TrialOffset,
   const CPUser &U) {
  return isOffsetInRange(UserOffset, TrialOffset,
                         U.getMaxDisp(), U.NegOk);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// print block size and offset information - debugging
LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
  for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
    const BasicBlockInfo &BBI = BBInfo[J];
    dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
           << format(" size=%#x\n", BBInfo[J].Size);
  }
}
#endif

bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
  // The intention is for this to be a mips16 only pass for now
  // FIXME:
  MF = &mf;
  MCP = mf.getConstantPool();
  STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
  LLVM_DEBUG(dbgs() << "constant island machine function "
                    << "\n");
  if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
    return false;
  }
  TII = (const Mips16InstrInfo *)STI->getInstrInfo();
  MFI = MF->getInfo<MipsFunctionInfo>();
  LLVM_DEBUG(dbgs() << "constant island processing "
                    << "\n");
  //
  // will need to make predermination if there is any constants we need to
  // put in constant islands. TBD.
  //
  if (!PrescannedForConstants) prescanForConstants();

  HasFarJump = false;
  // This pass invalidates liveness information when it splits basic blocks.
  MF->getRegInfo().invalidateLiveness();

  // Renumber all of the machine basic blocks in the function, guaranteeing that
  // the numbers agree with the position of the block in the function.
  MF->RenumberBlocks();

  bool MadeChange = false;

  // Perform the initial placement of the constant pool entries.  To start with,
  // we put them all at the end of the function.
  std::vector<MachineInstr*> CPEMIs;
  if (!MCP->isEmpty())
    doInitialPlacement(CPEMIs);

  /// The next UID to take is the first unused one.
  initPICLabelUId(CPEMIs.size());

  // Do the initial scan of the function, building up information about the
  // sizes of each block, the location of all the water, and finding all of the
  // constant pool users.
  initializeFunctionInfo(CPEMIs);
  CPEMIs.clear();
  LLVM_DEBUG(dumpBBs());

  /// Remove dead constant pool entries.
  MadeChange |= removeUnusedCPEntries();

  // Iteratively place constant pool entries and fix up branches until there
  // is no change.
  unsigned NoCPIters = 0, NoBRIters = 0;
  (void)NoBRIters;
  while (true) {
    LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
    bool CPChange = false;
    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
      CPChange |= handleConstantPoolUser(i);
    if (CPChange && ++NoCPIters > 30)
      report_fatal_error("Constant Island pass failed to converge!");
    LLVM_DEBUG(dumpBBs());

    // Clear NewWaterList now.  If we split a block for branches, it should
    // appear as "new water" for the next iteration of constant pool placement.
    NewWaterList.clear();

    LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
    bool BRChange = false;
    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
      BRChange |= fixupImmediateBr(ImmBranches[i]);
    if (BRChange && ++NoBRIters > 30)
      report_fatal_error("Branch Fix Up pass failed to converge!");
    LLVM_DEBUG(dumpBBs());
    if (!CPChange && !BRChange)
      break;
    MadeChange = true;
  }

  LLVM_DEBUG(dbgs() << '\n'; dumpBBs());

  BBInfo.clear();
  WaterList.clear();
  CPUsers.clear();
  CPEntries.clear();
  ImmBranches.clear();
  return MadeChange;
}

/// doInitialPlacement - Perform the initial placement of the constant pool
/// entries.  To start with, we put them all at the end of the function.
void
MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
  // Create the basic block to hold the CPE's.
  MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
  MF->push_back(BB);

  // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
  const Align MaxAlign = MCP->getConstantPoolAlign();

  // Mark the basic block as required by the const-pool.
  // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
  BB->setAlignment(AlignConstantIslands ? MaxAlign : Align(4));

  // The function needs to be as aligned as the basic blocks. The linker may
  // move functions around based on their alignment.
  MF->ensureAlignment(BB->getAlignment());

  // Order the entries in BB by descending alignment.  That ensures correct
  // alignment of all entries as long as BB is sufficiently aligned.  Keep
  // track of the insertion point for each alignment.  We are going to bucket
  // sort the entries as they are created.
  SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
                                                       BB->end());

  // Add all of the constants from the constant pool to the end block, use an
  // identity mapping of CPI's to CPE's.
  const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();

  const DataLayout &TD = MF->getDataLayout();
  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
    assert(Size >= 4 && "Too small constant pool entry");
    Align Alignment = CPs[i].getAlign();
    // Verify that all constant pool entries are a multiple of their alignment.
    // If not, we would have to pad them out so that instructions stay aligned.
    assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");

    // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
    unsigned LogAlign = Log2(Alignment);
    MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];

    MachineInstr *CPEMI =
      BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
        .addImm(i).addConstantPoolIndex(i).addImm(Size);

    CPEMIs.push_back(CPEMI);

    // Ensure that future entries with higher alignment get inserted before
    // CPEMI. This is bucket sort with iterators.
    for (unsigned a = LogAlign + 1; a <= Log2(MaxAlign); ++a)
      if (InsPoint[a] == InsAt)
        InsPoint[a] = CPEMI;
    // Add a new CPEntry, but no corresponding CPUser yet.
    CPEntries.emplace_back(1, CPEntry(CPEMI, i));
    ++NumCPEs;
    LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
                      << Size << ", align = " << Alignment.value() << '\n');
  }
  LLVM_DEBUG(BB->dump());
}

/// BBHasFallthrough - Return true if the specified basic block can fallthrough
/// into the block immediately after it.
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
  // Get the next machine basic block in the function.
  MachineFunction::iterator MBBI = MBB->getIterator();
  // Can't fall off end of function.
  if (std::next(MBBI) == MBB->getParent()->end())
    return false;

  MachineBasicBlock *NextBB = &*std::next(MBBI);
  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
       E = MBB->succ_end(); I != E; ++I)
    if (*I == NextBB)
      return true;

  return false;
}

/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
/// look up the corresponding CPEntry.
MipsConstantIslands::CPEntry
*MipsConstantIslands::findConstPoolEntry(unsigned CPI,
                                        const MachineInstr *CPEMI) {
  std::vector<CPEntry> &CPEs = CPEntries[CPI];
  // Number of entries per constpool index should be small, just do a
  // linear search.
  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    if (CPEs[i].CPEMI == CPEMI)
      return &CPEs[i];
  }
  return nullptr;
}

/// getCPEAlign - Returns the required alignment of the constant pool entry
/// represented by CPEMI.  Alignment is measured in log2(bytes) units.
Align MipsConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
  assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);

  // Everything is 4-byte aligned unless AlignConstantIslands is set.
  if (!AlignConstantIslands)
    return Align(4);

  unsigned CPI = CPEMI.getOperand(1).getIndex();
  assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
  return MCP->getConstants()[CPI].getAlign();
}

/// initializeFunctionInfo - Do the initial scan of the function, building up
/// information about the sizes of each block, the location of all the water,
/// and finding all of the constant pool users.
void MipsConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
  BBInfo.clear();
  BBInfo.resize(MF->getNumBlockIDs());

  // First thing, compute the size of all basic blocks, and see if the function
  // has any inline assembly in it. If so, we have to be conservative about
  // alignment assumptions, as we don't know for sure the size of any
  // instructions in the inline assembly.
  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
    computeBlockSize(&*I);

  // Compute block offsets.
  adjustBBOffsetsAfter(&MF->front());

  // Now go back through the instructions and build up our data structures.
  for (MachineBasicBlock &MBB : *MF) {
    // If this block doesn't fall through into the next MBB, then this is
    // 'water' that a constant pool island could be placed.
    if (!BBHasFallthrough(&MBB))
      WaterList.push_back(&MBB);
    for (MachineInstr &MI : MBB) {
      if (MI.isDebugInstr())
        continue;

      int Opc = MI.getOpcode();
      if (MI.isBranch()) {
        bool isCond = false;
        unsigned Bits = 0;
        unsigned Scale = 1;
        int UOpc = Opc;
        switch (Opc) {
        default:
          continue;  // Ignore other branches for now
        case Mips::Bimm16:
          Bits = 11;
          Scale = 2;
          isCond = false;
          break;
        case Mips::BimmX16:
          Bits = 16;
          Scale = 2;
          isCond = false;
          break;
        case Mips::BeqzRxImm16:
          UOpc=Mips::Bimm16;
          Bits = 8;
          Scale = 2;
          isCond = true;
          break;
        case Mips::BeqzRxImmX16:
          UOpc=Mips::Bimm16;
          Bits = 16;
          Scale = 2;
          isCond = true;
          break;
        case Mips::BnezRxImm16:
          UOpc=Mips::Bimm16;
          Bits = 8;
          Scale = 2;
          isCond = true;
          break;
        case Mips::BnezRxImmX16:
          UOpc=Mips::Bimm16;
          Bits = 16;
          Scale = 2;
          isCond = true;
          break;
        case Mips::Bteqz16:
          UOpc=Mips::Bimm16;
          Bits = 8;
          Scale = 2;
          isCond = true;
          break;
        case Mips::BteqzX16:
          UOpc=Mips::Bimm16;
          Bits = 16;
          Scale = 2;
          isCond = true;
          break;
        case Mips::Btnez16:
          UOpc=Mips::Bimm16;
          Bits = 8;
          Scale = 2;
          isCond = true;
          break;
        case Mips::BtnezX16:
          UOpc=Mips::Bimm16;
          Bits = 16;
          Scale = 2;
          isCond = true;
          break;
        }
        // Record this immediate branch.
        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
        ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
      }

      if (Opc == Mips::CONSTPOOL_ENTRY)
        continue;

      // Scan the instructions for constant pool operands.
      for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
        if (MI.getOperand(op).isCPI()) {
          // We found one.  The addressing mode tells us the max displacement
          // from the PC that this instruction permits.

          // Basic size info comes from the TSFlags field.
          unsigned Bits = 0;
          unsigned Scale = 1;
          bool NegOk = false;
          unsigned LongFormBits = 0;
          unsigned LongFormScale = 0;
          unsigned LongFormOpcode = 0;
          switch (Opc) {
          default:
            llvm_unreachable("Unknown addressing mode for CP reference!");
          case Mips::LwRxPcTcp16:
            Bits = 8;
            Scale = 4;
            LongFormOpcode = Mips::LwRxPcTcpX16;
            LongFormBits = 14;
            LongFormScale = 1;
            break;
          case Mips::LwRxPcTcpX16:
            Bits = 14;
            Scale = 1;
            NegOk = true;
            break;
          }
          // Remember that this is a user of a CP entry.
          unsigned CPI = MI.getOperand(op).getIndex();
          MachineInstr *CPEMI = CPEMIs[CPI];
          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
          unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
          CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
                                   LongFormOpcode));

          // Increment corresponding CPEntry reference count.
          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
          assert(CPE && "Cannot find a corresponding CPEntry!");
          CPE->RefCount++;

          // Instructions can only use one CP entry, don't bother scanning the
          // rest of the operands.
          break;
        }
    }
  }
}

/// computeBlockSize - Compute the size and some alignment information for MBB.
/// This function updates BBInfo directly.
void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
  BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
  BBI.Size = 0;

  for (const MachineInstr &MI : *MBB)
    BBI.Size += TII->getInstSizeInBytes(MI);
}

/// getOffsetOf - Return the current offset of the specified machine instruction
/// from the start of the function.  This offset changes as stuff is moved
/// around inside the function.
unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
  MachineBasicBlock *MBB = MI->getParent();

  // The offset is composed of two things: the sum of the sizes of all MBB's
  // before this instruction's block, and the offset from the start of the block
  // it is in.
  unsigned Offset = BBInfo[MBB->getNumber()].Offset;

  // Sum instructions before MI in MBB.
  for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    Offset += TII->getInstSizeInBytes(*I);
  }
  return Offset;
}

/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
/// ID.
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
                              const MachineBasicBlock *RHS) {
  return LHS->getNumber() < RHS->getNumber();
}

/// updateForInsertedWaterBlock - When a block is newly inserted into the
/// machine function, it upsets all of the block numbers.  Renumber the blocks
/// and update the arrays that parallel this numbering.
void MipsConstantIslands::updateForInsertedWaterBlock
  (MachineBasicBlock *NewBB) {
  // Renumber the MBB's to keep them consecutive.
  NewBB->getParent()->RenumberBlocks(NewBB);

  // Insert an entry into BBInfo to align it properly with the (newly
  // renumbered) block numbers.
  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());

  // Next, update WaterList.  Specifically, we need to add NewMBB as having
  // available water after it.
  water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
  WaterList.insert(IP, NewBB);
}

unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
  return getOffsetOf(U.MI);
}

/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch.  Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *
MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
  MachineBasicBlock *OrigBB = MI.getParent();

  // Create a new MBB for the code after the OrigBB.
  MachineBasicBlock *NewBB =
    MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
  MachineFunction::iterator MBBI = ++OrigBB->getIterator();
  MF->insert(MBBI, NewBB);

  // Splice the instructions starting with MI over to NewBB.
  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());

  // Add an unconditional branch from OrigBB to NewBB.
  // Note the new unconditional branch is not being recorded.
  // There doesn't seem to be meaningful DebugInfo available; this doesn't
  // correspond to anything in the source.
  BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
  ++NumSplit;

  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
  NewBB->transferSuccessors(OrigBB);

  // OrigBB branches to NewBB.
  OrigBB->addSuccessor(NewBB);

  // Update internal data structures to account for the newly inserted MBB.
  // This is almost the same as updateForInsertedWaterBlock, except that
  // the Water goes after OrigBB, not NewBB.
  MF->RenumberBlocks(NewBB);

  // Insert an entry into BBInfo to align it properly with the (newly
  // renumbered) block numbers.
  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());

  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
  // available water after it (but not if it's already there, which happens
  // when splitting before a conditional branch that is followed by an
  // unconditional branch - in that case we want to insert NewBB).
  water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
  MachineBasicBlock* WaterBB = *IP;
  if (WaterBB == OrigBB)
    WaterList.insert(std::next(IP), NewBB);
  else
    WaterList.insert(IP, OrigBB);
  NewWaterList.insert(OrigBB);

  // Figure out how large the OrigBB is.  As the first half of the original
  // block, it cannot contain a tablejump.  The size includes
  // the new jump we added.  (It should be possible to do this without
  // recounting everything, but it's very confusing, and this is rarely
  // executed.)
  computeBlockSize(OrigBB);

  // Figure out how large the NewMBB is.  As the second half of the original
  // block, it may contain a tablejump.
  computeBlockSize(NewBB);

  // All BBOffsets following these blocks must be modified.
  adjustBBOffsetsAfter(OrigBB);

  return NewBB;
}

/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
/// reference) is within MaxDisp of TrialOffset (a proposed location of a
/// constant pool entry).
bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
                                         unsigned TrialOffset, unsigned MaxDisp,
                                         bool NegativeOK) {
  if (UserOffset <= TrialOffset) {
    // User before the Trial.
    if (TrialOffset - UserOffset <= MaxDisp)
      return true;
  } else if (NegativeOK) {
    if (UserOffset - TrialOffset <= MaxDisp)
      return true;
  }
  return false;
}

/// isWaterInRange - Returns true if a CPE placed after the specified
/// Water (a basic block) will be in range for the specific MI.
///
/// Compute how much the function will grow by inserting a CPE after Water.
bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
                                        MachineBasicBlock* Water, CPUser &U,
                                        unsigned &Growth) {
  unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
  unsigned NextBlockOffset;
  Align NextBlockAlignment;
  MachineFunction::const_iterator NextBlock = ++Water->getIterator();
  if (NextBlock == MF->end()) {
    NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
    NextBlockAlignment = Align(1);
  } else {
    NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
    NextBlockAlignment = NextBlock->getAlignment();
  }
  unsigned Size = U.CPEMI->getOperand(2).getImm();
  unsigned CPEEnd = CPEOffset + Size;

  // The CPE may be able to hide in the alignment padding before the next
  // block. It may also cause more padding to be required if it is more aligned
  // that the next block.
  if (CPEEnd > NextBlockOffset) {
    Growth = CPEEnd - NextBlockOffset;
    // Compute the padding that would go at the end of the CPE to align the next
    // block.
    Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);

    // If the CPE is to be inserted before the instruction, that will raise
    // the offset of the instruction. Also account for unknown alignment padding
    // in blocks between CPE and the user.
    if (CPEOffset < UserOffset)
      UserOffset += Growth;
  } else
    // CPE fits in existing padding.
    Growth = 0;

  return isOffsetInRange(UserOffset, CPEOffset, U);
}

/// isCPEntryInRange - Returns true if the distance between specific MI and
/// specific ConstPool entry instruction can fit in MI's displacement field.
bool MipsConstantIslands::isCPEntryInRange
  (MachineInstr *MI, unsigned UserOffset,
   MachineInstr *CPEMI, unsigned MaxDisp,
   bool NegOk, bool DoDump) {
  unsigned CPEOffset  = getOffsetOf(CPEMI);

  if (DoDump) {
    LLVM_DEBUG({
      unsigned Block = MI->getParent()->getNumber();
      const BasicBlockInfo &BBI = BBInfo[Block];
      dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
             << " max delta=" << MaxDisp
             << format(" insn address=%#x", UserOffset) << " in "
             << printMBBReference(*MI->getParent()) << ": "
             << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
             << format("CPE address=%#x offset=%+d: ", CPEOffset,
                       int(CPEOffset - UserOffset));
    });
  }

  return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
}

#ifndef NDEBUG
/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
/// unconditionally branches to its only successor.
static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    return false;
  MachineBasicBlock *Succ = *MBB->succ_begin();
  MachineBasicBlock *Pred = *MBB->pred_begin();
  MachineInstr *PredMI = &Pred->back();
  if (PredMI->getOpcode() == Mips::Bimm16)
    return PredMI->getOperand(0).getMBB() == Succ;
  return false;
}
#endif

void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
  unsigned BBNum = BB->getNumber();
  for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
    // Get the offset and known bits at the end of the layout predecessor.
    // Include the alignment of the current block.
    unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
    BBInfo[i].Offset = Offset;
  }
}

/// decrementCPEReferenceCount - find the constant pool entry with index CPI
/// and instruction CPEMI, and decrement its refcount.  If the refcount
/// becomes 0 remove the entry and instruction.  Returns true if we removed
/// the entry, false if we didn't.
bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
                                                    MachineInstr *CPEMI) {
  // Find the old entry. Eliminate it if it is no longer used.
  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
  assert(CPE && "Unexpected!");
  if (--CPE->RefCount == 0) {
    removeDeadCPEMI(CPEMI);
    CPE->CPEMI = nullptr;
    --NumCPEs;
    return true;
  }
  return false;
}

/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
/// if not, see if an in-range clone of the CPE is in range, and if so,
/// change the data structures so the user references the clone.  Returns:
/// 0 = no existing entry found
/// 1 = entry found, and there were no code insertions or deletions
/// 2 = entry found, and there were code insertions or deletions
int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
{
  MachineInstr *UserMI = U.MI;
  MachineInstr *CPEMI  = U.CPEMI;

  // Check to see if the CPE is already in-range.
  if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
                       true)) {
    LLVM_DEBUG(dbgs() << "In range\n");
    return 1;
  }

  // No.  Look for previously created clones of the CPE that are in range.
  unsigned CPI = CPEMI->getOperand(1).getIndex();
  std::vector<CPEntry> &CPEs = CPEntries[CPI];
  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    // We already tried this one
    if (CPEs[i].CPEMI == CPEMI)
      continue;
    // Removing CPEs can leave empty entries, skip
    if (CPEs[i].CPEMI == nullptr)
      continue;
    if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
                     U.NegOk)) {
      LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
                        << CPEs[i].CPI << "\n");
      // Point the CPUser node to the replacement
      U.CPEMI = CPEs[i].CPEMI;
      // Change the CPI in the instruction operand to refer to the clone.
      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
        if (UserMI->getOperand(j).isCPI()) {
          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
          break;
        }
      // Adjust the refcount of the clone...
      CPEs[i].RefCount++;
      // ...and the original.  If we didn't remove the old entry, none of the
      // addresses changed, so we don't need another pass.
      return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
    }
  }
  return 0;
}

/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
/// This version checks if the longer form of the instruction can be used to
/// to satisfy things.
/// if not, see if an in-range clone of the CPE is in range, and if so,
/// change the data structures so the user references the clone.  Returns:
/// 0 = no existing entry found
/// 1 = entry found, and there were no code insertions or deletions
/// 2 = entry found, and there were code insertions or deletions
int MipsConstantIslands::findLongFormInRangeCPEntry
  (CPUser& U, unsigned UserOffset)
{
  MachineInstr *UserMI = U.MI;
  MachineInstr *CPEMI  = U.CPEMI;

  // Check to see if the CPE is already in-range.
  if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
                       U.getLongFormMaxDisp(), U.NegOk,
                       true)) {
    LLVM_DEBUG(dbgs() << "In range\n");
    UserMI->setDesc(TII->get(U.getLongFormOpcode()));
    U.setMaxDisp(U.getLongFormMaxDisp());
    return 2;  // instruction is longer length now
  }

  // No.  Look for previously created clones of the CPE that are in range.
  unsigned CPI = CPEMI->getOperand(1).getIndex();
  std::vector<CPEntry> &CPEs = CPEntries[CPI];
  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    // We already tried this one
    if (CPEs[i].CPEMI == CPEMI)
      continue;
    // Removing CPEs can leave empty entries, skip
    if (CPEs[i].CPEMI == nullptr)
      continue;
    if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
                         U.getLongFormMaxDisp(), U.NegOk)) {
      LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
                        << CPEs[i].CPI << "\n");
      // Point the CPUser node to the replacement
      U.CPEMI = CPEs[i].CPEMI;
      // Change the CPI in the instruction operand to refer to the clone.
      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
        if (UserMI->getOperand(j).isCPI()) {
          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
          break;
        }
      // Adjust the refcount of the clone...
      CPEs[i].RefCount++;
      // ...and the original.  If we didn't remove the old entry, none of the
      // addresses changed, so we don't need another pass.
      return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
    }
  }
  return 0;
}

/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
/// the specific unconditional branch instruction.
static inline unsigned getUnconditionalBrDisp(int Opc) {
  switch (Opc) {
  case Mips::Bimm16:
    return ((1<<10)-1)*2;
  case Mips::BimmX16:
    return ((1<<16)-1)*2;
  default:
    break;
  }
  return ((1<<16)-1)*2;
}

/// findAvailableWater - Look for an existing entry in the WaterList in which
/// we can place the CPE referenced from U so it's within range of U's MI.
/// Returns true if found, false if not.  If it returns true, WaterIter
/// is set to the WaterList entry.
/// To ensure that this pass
/// terminates, the CPE location for a particular CPUser is only allowed to
/// move to a lower address, so search backward from the end of the list and
/// prefer the first water that is in range.
bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
                                      water_iterator &WaterIter) {
  if (WaterList.empty())
    return false;

  unsigned BestGrowth = ~0u;
  for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
       --IP) {
    MachineBasicBlock* WaterBB = *IP;
    // Check if water is in range and is either at a lower address than the
    // current "high water mark" or a new water block that was created since
    // the previous iteration by inserting an unconditional branch.  In the
    // latter case, we want to allow resetting the high water mark back to
    // this new water since we haven't seen it before.  Inserting branches
    // should be relatively uncommon and when it does happen, we want to be
    // sure to take advantage of it for all the CPEs near that block, so that
    // we don't insert more branches than necessary.
    unsigned Growth;
    if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
         NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
      // This is the least amount of required padding seen so far.
      BestGrowth = Growth;
      WaterIter = IP;
      LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
                        << " Growth=" << Growth << '\n');

      // Keep looking unless it is perfect.
      if (BestGrowth == 0)
        return true;
    }
    if (IP == B)
      break;
  }
  return BestGrowth != ~0u;
}

/// createNewWater - No existing WaterList entry will work for
/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
/// block is used if in range, and the conditional branch munged so control
/// flow is correct.  Otherwise the block is split to create a hole with an
/// unconditional branch around it.  In either case NewMBB is set to a
/// block following which the new island can be inserted (the WaterList
/// is not adjusted).
void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
                                        unsigned UserOffset,
                                        MachineBasicBlock *&NewMBB) {
  CPUser &U = CPUsers[CPUserIndex];
  MachineInstr *UserMI = U.MI;
  MachineInstr *CPEMI  = U.CPEMI;
  MachineBasicBlock *UserMBB = UserMI->getParent();
  const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];

  // If the block does not end in an unconditional branch already, and if the
  // end of the block is within range, make new water there.
  if (BBHasFallthrough(UserMBB)) {
    // Size of branch to insert.
    unsigned Delta = 2;
    // Compute the offset where the CPE will begin.
    unsigned CPEOffset = UserBBI.postOffset() + Delta;

    if (isOffsetInRange(UserOffset, CPEOffset, U)) {
      LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
                        << format(", expected CPE offset %#x\n", CPEOffset));
      NewMBB = &*++UserMBB->getIterator();
      // Add an unconditional branch from UserMBB to fallthrough block.  Record
      // it for branch lengthening; this new branch will not get out of range,
      // but if the preceding conditional branch is out of range, the targets
      // will be exchanged, and the altered branch may be out of range, so the
      // machinery has to know about it.
      int UncondBr = Mips::Bimm16;
      BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
      unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
      ImmBranches.push_back(ImmBranch(&UserMBB->back(),
                                      MaxDisp, false, UncondBr));
      BBInfo[UserMBB->getNumber()].Size += Delta;
      adjustBBOffsetsAfter(UserMBB);
      return;
    }
  }

  // What a big block.  Find a place within the block to split it.

  // Try to split the block so it's fully aligned.  Compute the latest split
  // point where we can add a 4-byte branch instruction, and then align to
  // Align which is the largest possible alignment in the function.
  const Align Align = MF->getAlignment();
  unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
  LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
                              BaseInsertOffset));

  // The 4 in the following is for the unconditional branch we'll be inserting
  // Alignment of the island is handled
  // inside isOffsetInRange.
  BaseInsertOffset -= 4;

  LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
                    << " la=" << Log2(Align) << '\n');

  // This could point off the end of the block if we've already got constant
  // pool entries following this block; only the last one is in the water list.
  // Back past any possible branches (allow for a conditional and a maximally
  // long unconditional).
  if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
    BaseInsertOffset = UserBBI.postOffset() - 8;
    LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
  }
  unsigned EndInsertOffset = BaseInsertOffset + 4 +
    CPEMI->getOperand(2).getImm();
  MachineBasicBlock::iterator MI = UserMI;
  ++MI;
  unsigned CPUIndex = CPUserIndex+1;
  unsigned NumCPUsers = CPUsers.size();
  //MachineInstr *LastIT = 0;
  for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
       Offset < BaseInsertOffset;
       Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
    assert(MI != UserMBB->end() && "Fell off end of block");
    if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
      CPUser &U = CPUsers[CPUIndex];
      if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
        // Shift intertion point by one unit of alignment so it is within reach.
        BaseInsertOffset -= Align.value();
        EndInsertOffset -= Align.value();
      }
      // This is overly conservative, as we don't account for CPEMIs being
      // reused within the block, but it doesn't matter much.  Also assume CPEs
      // are added in order with alignment padding.  We may eventually be able
      // to pack the aligned CPEs better.
      EndInsertOffset += U.CPEMI->getOperand(2).getImm();
      CPUIndex++;
    }
  }

  NewMBB = splitBlockBeforeInstr(*--MI);
}

/// handleConstantPoolUser - Analyze the specified user, checking to see if it
/// is out-of-range.  If so, pick up the constant pool value and move it some
/// place in-range.  Return true if we changed any addresses (thus must run
/// another pass of branch lengthening), false otherwise.
bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
  CPUser &U = CPUsers[CPUserIndex];
  MachineInstr *UserMI = U.MI;
  MachineInstr *CPEMI  = U.CPEMI;
  unsigned CPI = CPEMI->getOperand(1).getIndex();
  unsigned Size = CPEMI->getOperand(2).getImm();
  // Compute this only once, it's expensive.
  unsigned UserOffset = getUserOffset(U);

  // See if the current entry is within range, or there is a clone of it
  // in range.
  int result = findInRangeCPEntry(U, UserOffset);
  if (result==1) return false;
  else if (result==2) return true;

  // Look for water where we can place this CPE.
  MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
  MachineBasicBlock *NewMBB;
  water_iterator IP;
  if (findAvailableWater(U, UserOffset, IP)) {
    LLVM_DEBUG(dbgs() << "Found water in range\n");
    MachineBasicBlock *WaterBB = *IP;

    // If the original WaterList entry was "new water" on this iteration,
    // propagate that to the new island.  This is just keeping NewWaterList
    // updated to match the WaterList, which will be updated below.
    if (NewWaterList.erase(WaterBB))
      NewWaterList.insert(NewIsland);

    // The new CPE goes before the following block (NewMBB).
    NewMBB = &*++WaterBB->getIterator();
  } else {
    // No water found.
    // we first see if a longer form of the instrucion could have reached
    // the constant. in that case we won't bother to split
    if (!NoLoadRelaxation) {
      result = findLongFormInRangeCPEntry(U, UserOffset);
      if (result != 0) return true;
    }
    LLVM_DEBUG(dbgs() << "No water found\n");
    createNewWater(CPUserIndex, UserOffset, NewMBB);

    // splitBlockBeforeInstr adds to WaterList, which is important when it is
    // called while handling branches so that the water will be seen on the
    // next iteration for constant pools, but in this context, we don't want
    // it.  Check for this so it will be removed from the WaterList.
    // Also remove any entry from NewWaterList.
    MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
    IP = llvm::find(WaterList, WaterBB);
    if (IP != WaterList.end())
      NewWaterList.erase(WaterBB);

    // We are adding new water.  Update NewWaterList.
    NewWaterList.insert(NewIsland);
  }

  // Remove the original WaterList entry; we want subsequent insertions in
  // this vicinity to go after the one we're about to insert.  This
  // considerably reduces the number of times we have to move the same CPE
  // more than once and is also important to ensure the algorithm terminates.
  if (IP != WaterList.end())
    WaterList.erase(IP);

  // Okay, we know we can put an island before NewMBB now, do it!
  MF->insert(NewMBB->getIterator(), NewIsland);

  // Update internal data structures to account for the newly inserted MBB.
  updateForInsertedWaterBlock(NewIsland);

  // Decrement the old entry, and remove it if refcount becomes 0.
  decrementCPEReferenceCount(CPI, CPEMI);

  // No existing clone of this CPE is within range.
  // We will be generating a new clone.  Get a UID for it.
  unsigned ID = createPICLabelUId();

  // Now that we have an island to add the CPE to, clone the original CPE and
  // add it to the island.
  U.HighWaterMark = NewIsland;
  U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
  ++NumCPEs;

  // Mark the basic block as aligned as required by the const-pool entry.
  NewIsland->setAlignment(getCPEAlign(*U.CPEMI));

  // Increase the size of the island block to account for the new entry.
  BBInfo[NewIsland->getNumber()].Size += Size;
  adjustBBOffsetsAfter(&*--NewIsland->getIterator());

  // Finally, change the CPI in the instruction operand to be ID.
  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
    if (UserMI->getOperand(i).isCPI()) {
      UserMI->getOperand(i).setIndex(ID);
      break;
    }

  LLVM_DEBUG(
      dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
             << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));

  return true;
}

/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
/// sizes and offsets of impacted basic blocks.
void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
  MachineBasicBlock *CPEBB = CPEMI->getParent();
  unsigned Size = CPEMI->getOperand(2).getImm();
  CPEMI->eraseFromParent();
  BBInfo[CPEBB->getNumber()].Size -= Size;
  // All succeeding offsets have the current size value added in, fix this.
  if (CPEBB->empty()) {
    BBInfo[CPEBB->getNumber()].Size = 0;

    // This block no longer needs to be aligned.
    CPEBB->setAlignment(Align(1));
  } else {
    // Entries are sorted by descending alignment, so realign from the front.
    CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
  }

  adjustBBOffsetsAfter(CPEBB);
  // An island has only one predecessor BB and one successor BB. Check if
  // this BB's predecessor jumps directly to this BB's successor. This
  // shouldn't happen currently.
  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
  // FIXME: remove the empty blocks after all the work is done?
}

/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
/// are zero.
bool MipsConstantIslands::removeUnusedCPEntries() {
  unsigned MadeChange = false;
  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
      std::vector<CPEntry> &CPEs = CPEntries[i];
      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
          removeDeadCPEMI(CPEs[j].CPEMI);
          CPEs[j].CPEMI = nullptr;
          MadeChange = true;
        }
      }
  }
  return MadeChange;
}

/// isBBInRange - Returns true if the distance between specific MI and
/// specific BB can fit in MI's displacement field.
bool MipsConstantIslands::isBBInRange
  (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
  unsigned PCAdj = 4;
  unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
  unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;

  LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
                    << " from " << printMBBReference(*MI->getParent())
                    << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
                    << " to " << DestOffset << " offset "
                    << int(DestOffset - BrOffset) << "\t" << *MI);

  if (BrOffset <= DestOffset) {
    // Branch before the Dest.
    if (DestOffset-BrOffset <= MaxDisp)
      return true;
  } else {
    if (BrOffset-DestOffset <= MaxDisp)
      return true;
  }
  return false;
}

/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
/// away to fit in its displacement field.
bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
  MachineInstr *MI = Br.MI;
  unsigned TargetOperand = branchTargetOperand(MI);
  MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();

  // Check to see if the DestBB is already in-range.
  if (isBBInRange(MI, DestBB, Br.MaxDisp))
    return false;

  if (!Br.isCond)
    return fixupUnconditionalBr(Br);
  return fixupConditionalBr(Br);
}

/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
/// too far away to fit in its displacement field. If the LR register has been
/// spilled in the epilogue, then we can use BL to implement a far jump.
/// Otherwise, add an intermediate branch instruction to a branch.
bool
MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
  MachineInstr *MI = Br.MI;
  MachineBasicBlock *MBB = MI->getParent();
  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
  // Use BL to implement far jump.
  unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
  if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
    Br.MaxDisp = BimmX16MaxDisp;
    MI->setDesc(TII->get(Mips::BimmX16));
  }
  else {
    // need to give the math a more careful look here
    // this is really a segment address and not
    // a PC relative address. FIXME. But I think that
    // just reducing the bits by 1 as I've done is correct.
    // The basic block we are branching too much be longword aligned.
    // we know that RA is saved because we always save it right now.
    // this requirement will be relaxed later but we also have an alternate
    // way to implement this that I will implement that does not need jal.
    // We should have a way to back out this alignment restriction
    // if we "can" later. but it is not harmful.
    //
    DestBB->setAlignment(Align(4));
    Br.MaxDisp = ((1<<24)-1) * 2;
    MI->setDesc(TII->get(Mips::JalB16));
  }
  BBInfo[MBB->getNumber()].Size += 2;
  adjustBBOffsetsAfter(MBB);
  HasFarJump = true;
  ++NumUBrFixed;

  LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);

  return true;
}

/// fixupConditionalBr - Fix up a conditional branch whose destination is too
/// far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool
MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
  MachineInstr *MI = Br.MI;
  unsigned TargetOperand = branchTargetOperand(MI);
  MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
  unsigned Opcode = MI->getOpcode();
  unsigned LongFormOpcode = longformBranchOpcode(Opcode);
  unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);

  // Check to see if the DestBB is already in-range.
  if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
    Br.MaxDisp = LongFormMaxOff;
    MI->setDesc(TII->get(LongFormOpcode));
    return true;
  }

  // Add an unconditional branch to the destination and invert the branch
  // condition to jump over it:
  // bteqz L1
  // =>
  // bnez L2
  // b   L1
  // L2:

  // If the branch is at the end of its MBB and that has a fall-through block,
  // direct the updated conditional branch to the fall-through block. Otherwise,
  // split the MBB before the next instruction.
  MachineBasicBlock *MBB = MI->getParent();
  MachineInstr *BMI = &MBB->back();
  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
  unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);

  ++NumCBrFixed;
  if (BMI != MI) {
    if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
        BMI->isUnconditionalBranch()) {
      // Last MI in the BB is an unconditional branch. Can we simply invert the
      // condition and swap destinations:
      // beqz L1
      // b   L2
      // =>
      // bnez L2
      // b   L1
      unsigned BMITargetOperand = branchTargetOperand(BMI);
      MachineBasicBlock *NewDest =
        BMI->getOperand(BMITargetOperand).getMBB();
      if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
        LLVM_DEBUG(
            dbgs() << "  Invert Bcc condition and swap its destination with "
                   << *BMI);
        MI->setDesc(TII->get(OppositeBranchOpcode));
        BMI->getOperand(BMITargetOperand).setMBB(DestBB);
        MI->getOperand(TargetOperand).setMBB(NewDest);
        return true;
      }
    }
  }

  if (NeedSplit) {
    splitBlockBeforeInstr(*MI);
    // No need for the branch to the next block. We're adding an unconditional
    // branch to the destination.
    int delta = TII->getInstSizeInBytes(MBB->back());
    BBInfo[MBB->getNumber()].Size -= delta;
    MBB->back().eraseFromParent();
    // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
  }
  MachineBasicBlock *NextBB = &*++MBB->getIterator();

  LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
                    << " also invert condition and change dest. to "
                    << printMBBReference(*NextBB) << "\n");

  // Insert a new conditional branch and a new unconditional branch.
  // Also update the ImmBranch as well as adding a new entry for the new branch.
  if (MI->getNumExplicitOperands() == 2) {
    BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
           .addReg(MI->getOperand(0).getReg())
           .addMBB(NextBB);
  } else {
    BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
           .addMBB(NextBB);
  }
  Br.MI = &MBB->back();
  BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
  BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
  BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));

  // Remove the old conditional branch.  It may or may not still be in MBB.
  BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
  MI->eraseFromParent();
  adjustBBOffsetsAfter(MBB);
  return true;
}

void MipsConstantIslands::prescanForConstants() {
  unsigned J = 0;
  (void)J;
  for (MachineFunction::iterator B =
         MF->begin(), E = MF->end(); B != E; ++B) {
    for (MachineBasicBlock::instr_iterator I =
        B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
      switch(I->getDesc().getOpcode()) {
        case Mips::LwConstant32: {
          PrescannedForConstants = true;
          LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
          J = I->getNumOperands();
          LLVM_DEBUG(dbgs() << "num operands " << J << "\n");
          MachineOperand& Literal = I->getOperand(1);
          if (Literal.isImm()) {
            int64_t V = Literal.getImm();
            LLVM_DEBUG(dbgs() << "literal " << V << "\n");
            Type *Int32Ty =
              Type::getInt32Ty(MF->getFunction().getContext());
            const Constant *C = ConstantInt::get(Int32Ty, V);
            unsigned index = MCP->getConstantPoolIndex(C, Align(4));
            I->getOperand(2).ChangeToImmediate(index);
            LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
            I->setDesc(TII->get(Mips::LwRxPcTcp16));
            I->RemoveOperand(1);
            I->RemoveOperand(1);
            I->addOperand(MachineOperand::CreateCPI(index, 0));
            I->addOperand(MachineOperand::CreateImm(4));
          }
          break;
        }
        default:
          break;
      }
    }
  }
}

/// Returns a pass that converts branches to long branches.
FunctionPass *llvm::createMipsConstantIslandPass() {
  return new MipsConstantIslands();
}