Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
//===-- SystemZRegisterInfo.cpp - SystemZ register information ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "SystemZRegisterInfo.h"
#include "SystemZInstrInfo.h"
#include "SystemZSubtarget.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/VirtRegMap.h"

using namespace llvm;

#define GET_REGINFO_TARGET_DESC
#include "SystemZGenRegisterInfo.inc"

SystemZRegisterInfo::SystemZRegisterInfo()
    : SystemZGenRegisterInfo(SystemZ::R14D) {}

// Given that MO is a GRX32 operand, return either GR32 or GRH32 if MO
// somehow belongs in it. Otherwise, return GRX32.
static const TargetRegisterClass *getRC32(MachineOperand &MO,
                                          const VirtRegMap *VRM,
                                          const MachineRegisterInfo *MRI) {
  const TargetRegisterClass *RC = MRI->getRegClass(MO.getReg());

  if (SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
      MO.getSubReg() == SystemZ::subreg_l32 ||
      MO.getSubReg() == SystemZ::subreg_hl32)
    return &SystemZ::GR32BitRegClass;
  if (SystemZ::GRH32BitRegClass.hasSubClassEq(RC) ||
      MO.getSubReg() == SystemZ::subreg_h32 ||
      MO.getSubReg() == SystemZ::subreg_hh32)
    return &SystemZ::GRH32BitRegClass;

  if (VRM && VRM->hasPhys(MO.getReg())) {
    Register PhysReg = VRM->getPhys(MO.getReg());
    if (SystemZ::GR32BitRegClass.contains(PhysReg))
      return &SystemZ::GR32BitRegClass;
    assert (SystemZ::GRH32BitRegClass.contains(PhysReg) &&
            "Phys reg not in GR32 or GRH32?");
    return &SystemZ::GRH32BitRegClass;
  }

  assert (RC == &SystemZ::GRX32BitRegClass);
  return RC;
}

// Pass the registers of RC as hints while making sure that if any of these
// registers are copy hints (and therefore already in Hints), hint them
// first.
static void addHints(ArrayRef<MCPhysReg> Order,
                     SmallVectorImpl<MCPhysReg> &Hints,
                     const TargetRegisterClass *RC,
                     const MachineRegisterInfo *MRI) {
  SmallSet<unsigned, 4> CopyHints;
  CopyHints.insert(Hints.begin(), Hints.end());
  Hints.clear();
  for (MCPhysReg Reg : Order)
    if (CopyHints.count(Reg) &&
        RC->contains(Reg) && !MRI->isReserved(Reg))
      Hints.push_back(Reg);
  for (MCPhysReg Reg : Order)
    if (!CopyHints.count(Reg) &&
        RC->contains(Reg) && !MRI->isReserved(Reg))
      Hints.push_back(Reg);
}

bool SystemZRegisterInfo::getRegAllocationHints(
    Register VirtReg, ArrayRef<MCPhysReg> Order,
    SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
    const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
  const MachineRegisterInfo *MRI = &MF.getRegInfo();
  const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();

  bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
      VirtReg, Order, Hints, MF, VRM, Matrix);

  if (VRM != nullptr) {
    // Add any two address hints after any copy hints.
    SmallSet<unsigned, 4> TwoAddrHints;
    for (auto &Use : MRI->reg_nodbg_instructions(VirtReg))
      if (SystemZ::getTwoOperandOpcode(Use.getOpcode()) != -1) {
        const MachineOperand *VRRegMO = nullptr;
        const MachineOperand *OtherMO = nullptr;
        const MachineOperand *CommuMO = nullptr;
        if (VirtReg == Use.getOperand(0).getReg()) {
          VRRegMO = &Use.getOperand(0);
          OtherMO = &Use.getOperand(1);
          if (Use.isCommutable())
            CommuMO = &Use.getOperand(2);
        } else if (VirtReg == Use.getOperand(1).getReg()) {
          VRRegMO = &Use.getOperand(1);
          OtherMO = &Use.getOperand(0);
        } else if (VirtReg == Use.getOperand(2).getReg() &&
                   Use.isCommutable()) {
          VRRegMO = &Use.getOperand(2);
          OtherMO = &Use.getOperand(0);
        } else
          continue;

        auto tryAddHint = [&](const MachineOperand *MO) -> void {
          Register Reg = MO->getReg();
          Register PhysReg =
            Register::isPhysicalRegister(Reg) ? Reg : VRM->getPhys(Reg);
          if (PhysReg) {
            if (MO->getSubReg())
              PhysReg = getSubReg(PhysReg, MO->getSubReg());
            if (VRRegMO->getSubReg())
              PhysReg = getMatchingSuperReg(PhysReg, VRRegMO->getSubReg(),
                                            MRI->getRegClass(VirtReg));
            if (!MRI->isReserved(PhysReg) && !is_contained(Hints, PhysReg))
              TwoAddrHints.insert(PhysReg);
          }
        };
        tryAddHint(OtherMO);
        if (CommuMO)
          tryAddHint(CommuMO);
      }
    for (MCPhysReg OrderReg : Order)
      if (TwoAddrHints.count(OrderReg))
        Hints.push_back(OrderReg);
  }

  if (MRI->getRegClass(VirtReg) == &SystemZ::GRX32BitRegClass) {
    SmallVector<Register, 8> Worklist;
    SmallSet<Register, 4> DoneRegs;
    Worklist.push_back(VirtReg);
    while (Worklist.size()) {
      Register Reg = Worklist.pop_back_val();
      if (!DoneRegs.insert(Reg).second)
        continue;

      for (auto &Use : MRI->reg_instructions(Reg)) {
        // For LOCRMux, see if the other operand is already a high or low
        // register, and in that case give the corresponding hints for
        // VirtReg. LOCR instructions need both operands in either high or
        // low parts. Same handling for SELRMux.
        if (Use.getOpcode() == SystemZ::LOCRMux ||
            Use.getOpcode() == SystemZ::SELRMux) {
          MachineOperand &TrueMO = Use.getOperand(1);
          MachineOperand &FalseMO = Use.getOperand(2);
          const TargetRegisterClass *RC =
            TRI->getCommonSubClass(getRC32(FalseMO, VRM, MRI),
                                   getRC32(TrueMO, VRM, MRI));
          if (Use.getOpcode() == SystemZ::SELRMux)
            RC = TRI->getCommonSubClass(RC,
                                        getRC32(Use.getOperand(0), VRM, MRI));
          if (RC && RC != &SystemZ::GRX32BitRegClass) {
            addHints(Order, Hints, RC, MRI);
            // Return true to make these hints the only regs available to
            // RA. This may mean extra spilling but since the alternative is
            // a jump sequence expansion of the LOCRMux, it is preferred.
            return true;
          }

          // Add the other operand of the LOCRMux to the worklist.
          Register OtherReg =
              (TrueMO.getReg() == Reg ? FalseMO.getReg() : TrueMO.getReg());
          if (MRI->getRegClass(OtherReg) == &SystemZ::GRX32BitRegClass)
            Worklist.push_back(OtherReg);
        } // end LOCRMux
        else if (Use.getOpcode() == SystemZ::CHIMux ||
                 Use.getOpcode() == SystemZ::CFIMux) {
          if (Use.getOperand(1).getImm() == 0) {
            bool OnlyLMuxes = true;
            for (MachineInstr &DefMI : MRI->def_instructions(VirtReg))
              if (DefMI.getOpcode() != SystemZ::LMux)
                OnlyLMuxes = false;
            if (OnlyLMuxes) {
              addHints(Order, Hints, &SystemZ::GR32BitRegClass, MRI);
              // Return false to make these hints preferred but not obligatory.
              return false;
            }
          }
        } // end CHIMux / CFIMux
      }
    }
  }

  return BaseImplRetVal;
}

const MCPhysReg *
SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
  if (MF->getFunction().getCallingConv() == CallingConv::GHC)
    return CSR_SystemZ_NoRegs_SaveList;
  if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
    return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_SaveList
                                : CSR_SystemZ_AllRegs_SaveList;
  if (MF->getSubtarget().getTargetLowering()->supportSwiftError() &&
      MF->getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_SystemZ_SwiftError_SaveList;
  return CSR_SystemZ_SaveList;
}

const uint32_t *
SystemZRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                          CallingConv::ID CC) const {
  const SystemZSubtarget &Subtarget = MF.getSubtarget<SystemZSubtarget>();
  if (CC == CallingConv::GHC)
    return CSR_SystemZ_NoRegs_RegMask;
  if (CC == CallingConv::AnyReg)
    return Subtarget.hasVector()? CSR_SystemZ_AllRegs_Vector_RegMask
                                : CSR_SystemZ_AllRegs_RegMask;
  if (MF.getSubtarget().getTargetLowering()->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(
          Attribute::SwiftError))
    return CSR_SystemZ_SwiftError_RegMask;
  return CSR_SystemZ_RegMask;
}

BitVector
SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  BitVector Reserved(getNumRegs());
  const SystemZFrameLowering *TFI = getFrameLowering(MF);

  if (TFI->hasFP(MF)) {
    // R11D is the frame pointer.  Reserve all aliases.
    Reserved.set(SystemZ::R11D);
    Reserved.set(SystemZ::R11L);
    Reserved.set(SystemZ::R11H);
    Reserved.set(SystemZ::R10Q);
  }

  // R15D is the stack pointer.  Reserve all aliases.
  Reserved.set(SystemZ::R15D);
  Reserved.set(SystemZ::R15L);
  Reserved.set(SystemZ::R15H);
  Reserved.set(SystemZ::R14Q);

  // A0 and A1 hold the thread pointer.
  Reserved.set(SystemZ::A0);
  Reserved.set(SystemZ::A1);

  // FPC is the floating-point control register.
  Reserved.set(SystemZ::FPC);

  return Reserved;
}

void
SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
                                         int SPAdj, unsigned FIOperandNum,
                                         RegScavenger *RS) const {
  assert(SPAdj == 0 && "Outgoing arguments should be part of the frame");

  MachineBasicBlock &MBB = *MI->getParent();
  MachineFunction &MF = *MBB.getParent();
  auto *TII =
      static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo());
  const SystemZFrameLowering *TFI = getFrameLowering(MF);
  DebugLoc DL = MI->getDebugLoc();

  // Decompose the frame index into a base and offset.
  int FrameIndex = MI->getOperand(FIOperandNum).getIndex();
  Register BasePtr;
  int64_t Offset = (TFI->getFrameIndexReference(MF, FrameIndex, BasePtr) +
                    MI->getOperand(FIOperandNum + 1).getImm());

  // Special handling of dbg_value instructions.
  if (MI->isDebugValue()) {
    MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, /*isDef*/ false);
    MI->getDebugOffset().ChangeToImmediate(Offset);
    return;
  }

  // See if the offset is in range, or if an equivalent instruction that
  // accepts the offset exists.
  unsigned Opcode = MI->getOpcode();
  unsigned OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
  if (OpcodeForOffset) {
    if (OpcodeForOffset == SystemZ::LE &&
        MF.getSubtarget<SystemZSubtarget>().hasVector()) {
      // If LE is ok for offset, use LDE instead on z13.
      OpcodeForOffset = SystemZ::LDE32;
    }
    MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
  }
  else {
    // Create an anchor point that is in range.  Start at 0xffff so that
    // can use LLILH to load the immediate.
    int64_t OldOffset = Offset;
    int64_t Mask = 0xffff;
    do {
      Offset = OldOffset & Mask;
      OpcodeForOffset = TII->getOpcodeForOffset(Opcode, Offset);
      Mask >>= 1;
      assert(Mask && "One offset must be OK");
    } while (!OpcodeForOffset);

    Register ScratchReg =
        MF.getRegInfo().createVirtualRegister(&SystemZ::ADDR64BitRegClass);
    int64_t HighOffset = OldOffset - Offset;

    if (MI->getDesc().TSFlags & SystemZII::HasIndex
        && MI->getOperand(FIOperandNum + 2).getReg() == 0) {
      // Load the offset into the scratch register and use it as an index.
      // The scratch register then dies here.
      TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
      MI->getOperand(FIOperandNum).ChangeToRegister(BasePtr, false);
      MI->getOperand(FIOperandNum + 2).ChangeToRegister(ScratchReg,
                                                        false, false, true);
    } else {
      // Load the anchor address into a scratch register.
      unsigned LAOpcode = TII->getOpcodeForOffset(SystemZ::LA, HighOffset);
      if (LAOpcode)
        BuildMI(MBB, MI, DL, TII->get(LAOpcode),ScratchReg)
          .addReg(BasePtr).addImm(HighOffset).addReg(0);
      else {
        // Load the high offset into the scratch register and use it as
        // an index.
        TII->loadImmediate(MBB, MI, ScratchReg, HighOffset);
        BuildMI(MBB, MI, DL, TII->get(SystemZ::AGR),ScratchReg)
          .addReg(ScratchReg, RegState::Kill).addReg(BasePtr);
      }

      // Use the scratch register as the base.  It then dies here.
      MI->getOperand(FIOperandNum).ChangeToRegister(ScratchReg,
                                                    false, false, true);
    }
  }
  MI->setDesc(TII->get(OpcodeForOffset));
  MI->getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
}

bool SystemZRegisterInfo::shouldCoalesce(MachineInstr *MI,
                                  const TargetRegisterClass *SrcRC,
                                  unsigned SubReg,
                                  const TargetRegisterClass *DstRC,
                                  unsigned DstSubReg,
                                  const TargetRegisterClass *NewRC,
                                  LiveIntervals &LIS) const {
  assert (MI->isCopy() && "Only expecting COPY instructions");

  // Coalesce anything which is not a COPY involving a subreg to/from GR128.
  if (!(NewRC->hasSuperClassEq(&SystemZ::GR128BitRegClass) &&
        (getRegSizeInBits(*SrcRC) <= 64 || getRegSizeInBits(*DstRC) <= 64)))
    return true;

  // Allow coalescing of a GR128 subreg COPY only if the live ranges are small
  // and local to one MBB with not too much interferring registers. Otherwise
  // regalloc may run out of registers.

  unsigned WideOpNo = (getRegSizeInBits(*SrcRC) == 128 ? 1 : 0);
  Register GR128Reg = MI->getOperand(WideOpNo).getReg();
  Register GRNarReg = MI->getOperand((WideOpNo == 1) ? 0 : 1).getReg();
  LiveInterval &IntGR128 = LIS.getInterval(GR128Reg);
  LiveInterval &IntGRNar = LIS.getInterval(GRNarReg);

  // Check that the two virtual registers are local to MBB.
  MachineBasicBlock *MBB = MI->getParent();
  MachineInstr *FirstMI_GR128 =
    LIS.getInstructionFromIndex(IntGR128.beginIndex());
  MachineInstr *FirstMI_GRNar =
    LIS.getInstructionFromIndex(IntGRNar.beginIndex());
  MachineInstr *LastMI_GR128 = LIS.getInstructionFromIndex(IntGR128.endIndex());
  MachineInstr *LastMI_GRNar = LIS.getInstructionFromIndex(IntGRNar.endIndex());
  if ((!FirstMI_GR128 || FirstMI_GR128->getParent() != MBB) ||
      (!FirstMI_GRNar || FirstMI_GRNar->getParent() != MBB) ||
      (!LastMI_GR128 || LastMI_GR128->getParent() != MBB) ||
      (!LastMI_GRNar || LastMI_GRNar->getParent() != MBB))
    return false;

  MachineBasicBlock::iterator MII = nullptr, MEE = nullptr;
  if (WideOpNo == 1) {
    MII = FirstMI_GR128;
    MEE = LastMI_GRNar;
  } else {
    MII = FirstMI_GRNar;
    MEE = LastMI_GR128;
  }

  // Check if coalescing seems safe by finding the set of clobbered physreg
  // pairs in the region.
  BitVector PhysClobbered(getNumRegs());
  MEE++;
  for (; MII != MEE; ++MII) {
    for (const MachineOperand &MO : MII->operands())
      if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
        for (MCSuperRegIterator SI(MO.getReg(), this, true/*IncludeSelf*/);
             SI.isValid(); ++SI)
          if (NewRC->contains(*SI)) {
            PhysClobbered.set(*SI);
            break;
          }
      }
  }

  // Demand an arbitrary margin of free regs.
  unsigned const DemandedFreeGR128 = 3;
  if (PhysClobbered.count() > (NewRC->getNumRegs() - DemandedFreeGR128))
    return false;

  return true;
}

Register
SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const SystemZFrameLowering *TFI = getFrameLowering(MF);
  return TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D;
}

const TargetRegisterClass *
SystemZRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &SystemZ::CCRRegClass)
    return &SystemZ::GR32BitRegClass;
  return RC;
}