Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This Pass handles loop interchange transform.
// This pass interchanges loops to provide a more cache-friendly memory access
// patterns.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <cassert>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-interchange"

STATISTIC(LoopsInterchanged, "Number of loops interchanged");

static cl::opt<int> LoopInterchangeCostThreshold(
    "loop-interchange-threshold", cl::init(0), cl::Hidden,
    cl::desc("Interchange if you gain more than this number"));

namespace {

using LoopVector = SmallVector<Loop *, 8>;

// TODO: Check if we can use a sparse matrix here.
using CharMatrix = std::vector<std::vector<char>>;

} // end anonymous namespace

// Maximum number of dependencies that can be handled in the dependency matrix.
static const unsigned MaxMemInstrCount = 100;

// Maximum loop depth supported.
static const unsigned MaxLoopNestDepth = 10;

#ifdef DUMP_DEP_MATRICIES
static void printDepMatrix(CharMatrix &DepMatrix) {
  for (auto &Row : DepMatrix) {
    for (auto D : Row)
      LLVM_DEBUG(dbgs() << D << " ");
    LLVM_DEBUG(dbgs() << "\n");
  }
}
#endif

static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
                                     Loop *L, DependenceInfo *DI) {
  using ValueVector = SmallVector<Value *, 16>;

  ValueVector MemInstr;

  // For each block.
  for (BasicBlock *BB : L->blocks()) {
    // Scan the BB and collect legal loads and stores.
    for (Instruction &I : *BB) {
      if (!isa<Instruction>(I))
        return false;
      if (auto *Ld = dyn_cast<LoadInst>(&I)) {
        if (!Ld->isSimple())
          return false;
        MemInstr.push_back(&I);
      } else if (auto *St = dyn_cast<StoreInst>(&I)) {
        if (!St->isSimple())
          return false;
        MemInstr.push_back(&I);
      }
    }
  }

  LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
                    << " Loads and Stores to analyze\n");

  ValueVector::iterator I, IE, J, JE;

  for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
    for (J = I, JE = MemInstr.end(); J != JE; ++J) {
      std::vector<char> Dep;
      Instruction *Src = cast<Instruction>(*I);
      Instruction *Dst = cast<Instruction>(*J);
      if (Src == Dst)
        continue;
      // Ignore Input dependencies.
      if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
        continue;
      // Track Output, Flow, and Anti dependencies.
      if (auto D = DI->depends(Src, Dst, true)) {
        assert(D->isOrdered() && "Expected an output, flow or anti dep.");
        LLVM_DEBUG(StringRef DepType =
                       D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
                   dbgs() << "Found " << DepType
                          << " dependency between Src and Dst\n"
                          << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
        unsigned Levels = D->getLevels();
        char Direction;
        for (unsigned II = 1; II <= Levels; ++II) {
          const SCEV *Distance = D->getDistance(II);
          const SCEVConstant *SCEVConst =
              dyn_cast_or_null<SCEVConstant>(Distance);
          if (SCEVConst) {
            const ConstantInt *CI = SCEVConst->getValue();
            if (CI->isNegative())
              Direction = '<';
            else if (CI->isZero())
              Direction = '=';
            else
              Direction = '>';
            Dep.push_back(Direction);
          } else if (D->isScalar(II)) {
            Direction = 'S';
            Dep.push_back(Direction);
          } else {
            unsigned Dir = D->getDirection(II);
            if (Dir == Dependence::DVEntry::LT ||
                Dir == Dependence::DVEntry::LE)
              Direction = '<';
            else if (Dir == Dependence::DVEntry::GT ||
                     Dir == Dependence::DVEntry::GE)
              Direction = '>';
            else if (Dir == Dependence::DVEntry::EQ)
              Direction = '=';
            else
              Direction = '*';
            Dep.push_back(Direction);
          }
        }
        while (Dep.size() != Level) {
          Dep.push_back('I');
        }

        DepMatrix.push_back(Dep);
        if (DepMatrix.size() > MaxMemInstrCount) {
          LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
                            << " dependencies inside loop\n");
          return false;
        }
      }
    }
  }

  return true;
}

// A loop is moved from index 'from' to an index 'to'. Update the Dependence
// matrix by exchanging the two columns.
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
                                    unsigned ToIndx) {
  unsigned numRows = DepMatrix.size();
  for (unsigned i = 0; i < numRows; ++i) {
    char TmpVal = DepMatrix[i][ToIndx];
    DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
    DepMatrix[i][FromIndx] = TmpVal;
  }
}

// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
// '>'
static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
                                   unsigned Column) {
  for (unsigned i = 0; i <= Column; ++i) {
    if (DepMatrix[Row][i] == '<')
      return false;
    if (DepMatrix[Row][i] == '>')
      return true;
  }
  // All dependencies were '=','S' or 'I'
  return false;
}

// Checks if no dependence exist in the dependency matrix in Row before Column.
static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
                                 unsigned Column) {
  for (unsigned i = 0; i < Column; ++i) {
    if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
        DepMatrix[Row][i] != 'I')
      return false;
  }
  return true;
}

static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
                                unsigned OuterLoopId, char InnerDep,
                                char OuterDep) {
  if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
    return false;

  if (InnerDep == OuterDep)
    return true;

  // It is legal to interchange if and only if after interchange no row has a
  // '>' direction as the leftmost non-'='.

  if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
    return true;

  if (InnerDep == '<')
    return true;

  if (InnerDep == '>') {
    // If OuterLoopId represents outermost loop then interchanging will make the
    // 1st dependency as '>'
    if (OuterLoopId == 0)
      return false;

    // If all dependencies before OuterloopId are '=','S'or 'I'. Then
    // interchanging will result in this row having an outermost non '='
    // dependency of '>'
    if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
      return true;
  }

  return false;
}

// Checks if it is legal to interchange 2 loops.
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
// if the direction matrix, after the same permutation is applied to its
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
                                      unsigned InnerLoopId,
                                      unsigned OuterLoopId) {
  unsigned NumRows = DepMatrix.size();
  // For each row check if it is valid to interchange.
  for (unsigned Row = 0; Row < NumRows; ++Row) {
    char InnerDep = DepMatrix[Row][InnerLoopId];
    char OuterDep = DepMatrix[Row][OuterLoopId];
    if (InnerDep == '*' || OuterDep == '*')
      return false;
    if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
      return false;
  }
  return true;
}

static LoopVector populateWorklist(Loop &L) {
  LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
                    << L.getHeader()->getParent()->getName() << " Loop: %"
                    << L.getHeader()->getName() << '\n');
  LoopVector LoopList;
  Loop *CurrentLoop = &L;
  const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
  while (!Vec->empty()) {
    // The current loop has multiple subloops in it hence it is not tightly
    // nested.
    // Discard all loops above it added into Worklist.
    if (Vec->size() != 1)
      return {};

    LoopList.push_back(CurrentLoop);
    CurrentLoop = Vec->front();
    Vec = &CurrentLoop->getSubLoops();
  }
  LoopList.push_back(CurrentLoop);
  return LoopList;
}

static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
  PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
  if (InnerIndexVar)
    return InnerIndexVar;
  if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
    return nullptr;
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    PHINode *PhiVar = cast<PHINode>(I);
    Type *PhiTy = PhiVar->getType();
    if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
        !PhiTy->isPointerTy())
      return nullptr;
    const SCEVAddRecExpr *AddRec =
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
    if (!AddRec || !AddRec->isAffine())
      continue;
    const SCEV *Step = AddRec->getStepRecurrence(*SE);
    if (!isa<SCEVConstant>(Step))
      continue;
    // Found the induction variable.
    // FIXME: Handle loops with more than one induction variable. Note that,
    // currently, legality makes sure we have only one induction variable.
    return PhiVar;
  }
  return nullptr;
}

namespace {

/// LoopInterchangeLegality checks if it is legal to interchange the loop.
class LoopInterchangeLegality {
public:
  LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
                          OptimizationRemarkEmitter *ORE)
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}

  /// Check if the loops can be interchanged.
  bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
                           CharMatrix &DepMatrix);

  /// Check if the loop structure is understood. We do not handle triangular
  /// loops for now.
  bool isLoopStructureUnderstood(PHINode *InnerInductionVar);

  bool currentLimitations();

  const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
    return OuterInnerReductions;
  }

private:
  bool tightlyNested(Loop *Outer, Loop *Inner);
  bool containsUnsafeInstructions(BasicBlock *BB);

  /// Discover induction and reduction PHIs in the header of \p L. Induction
  /// PHIs are added to \p Inductions, reductions are added to
  /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
  /// to be passed as \p InnerLoop.
  bool findInductionAndReductions(Loop *L,
                                  SmallVector<PHINode *, 8> &Inductions,
                                  Loop *InnerLoop);

  Loop *OuterLoop;
  Loop *InnerLoop;

  ScalarEvolution *SE;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  /// Set of reduction PHIs taking part of a reduction across the inner and
  /// outer loop.
  SmallPtrSet<PHINode *, 4> OuterInnerReductions;
};

/// LoopInterchangeProfitability checks if it is profitable to interchange the
/// loop.
class LoopInterchangeProfitability {
public:
  LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
                               OptimizationRemarkEmitter *ORE)
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}

  /// Check if the loop interchange is profitable.
  bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
                    CharMatrix &DepMatrix);

private:
  int getInstrOrderCost();

  Loop *OuterLoop;
  Loop *InnerLoop;

  /// Scev analysis.
  ScalarEvolution *SE;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;
};

/// LoopInterchangeTransform interchanges the loop.
class LoopInterchangeTransform {
public:
  LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
                           LoopInfo *LI, DominatorTree *DT,
                           BasicBlock *LoopNestExit,
                           const LoopInterchangeLegality &LIL)
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
        LoopExit(LoopNestExit), LIL(LIL) {}

  /// Interchange OuterLoop and InnerLoop.
  bool transform();
  void restructureLoops(Loop *NewInner, Loop *NewOuter,
                        BasicBlock *OrigInnerPreHeader,
                        BasicBlock *OrigOuterPreHeader);
  void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);

private:
  bool adjustLoopLinks();
  bool adjustLoopBranches();

  Loop *OuterLoop;
  Loop *InnerLoop;

  /// Scev analysis.
  ScalarEvolution *SE;

  LoopInfo *LI;
  DominatorTree *DT;
  BasicBlock *LoopExit;

  const LoopInterchangeLegality &LIL;
};

// Main LoopInterchange Pass.
struct LoopInterchange : public LoopPass {
  static char ID;
  ScalarEvolution *SE = nullptr;
  LoopInfo *LI = nullptr;
  DependenceInfo *DI = nullptr;
  DominatorTree *DT = nullptr;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  LoopInterchange() : LoopPass(ID) {
    initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DependenceAnalysisWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();

    getLoopAnalysisUsage(AU);
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L) || L->getParentLoop())
      return false;

    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    return processLoopList(populateWorklist(*L));
  }

  bool isComputableLoopNest(LoopVector LoopList) {
    for (Loop *L : LoopList) {
      const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
      if (ExitCountOuter == SE->getCouldNotCompute()) {
        LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
        return false;
      }
      if (L->getNumBackEdges() != 1) {
        LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
        return false;
      }
      if (!L->getExitingBlock()) {
        LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
        return false;
      }
    }
    return true;
  }

  unsigned selectLoopForInterchange(const LoopVector &LoopList) {
    // TODO: Add a better heuristic to select the loop to be interchanged based
    // on the dependence matrix. Currently we select the innermost loop.
    return LoopList.size() - 1;
  }

  bool processLoopList(LoopVector LoopList) {
    bool Changed = false;
    unsigned LoopNestDepth = LoopList.size();
    if (LoopNestDepth < 2) {
      LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
      return false;
    }
    if (LoopNestDepth > MaxLoopNestDepth) {
      LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
                        << MaxLoopNestDepth << "\n");
      return false;
    }
    if (!isComputableLoopNest(LoopList)) {
      LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
      return false;
    }

    LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
                      << "\n");

    CharMatrix DependencyMatrix;
    Loop *OuterMostLoop = *(LoopList.begin());
    if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
                                  OuterMostLoop, DI)) {
      LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
      return false;
    }
#ifdef DUMP_DEP_MATRICIES
    LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
    printDepMatrix(DependencyMatrix);
#endif

    // Get the Outermost loop exit.
    BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
    if (!LoopNestExit) {
      LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
      return false;
    }

    unsigned SelecLoopId = selectLoopForInterchange(LoopList);
    // Move the selected loop outwards to the best possible position.
    for (unsigned i = SelecLoopId; i > 0; i--) {
      bool Interchanged =
          processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
      if (!Interchanged)
        return Changed;
      // Loops interchanged reflect the same in LoopList
      std::swap(LoopList[i - 1], LoopList[i]);

      // Update the DependencyMatrix
      interChangeDependencies(DependencyMatrix, i, i - 1);
#ifdef DUMP_DEP_MATRICIES
      LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
      printDepMatrix(DependencyMatrix);
#endif
      Changed |= Interchanged;
    }
    return Changed;
  }

  bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
                   unsigned OuterLoopId, BasicBlock *LoopNestExit,
                   std::vector<std::vector<char>> &DependencyMatrix) {
    LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
                      << " and OuterLoopId = " << OuterLoopId << "\n");
    Loop *InnerLoop = LoopList[InnerLoopId];
    Loop *OuterLoop = LoopList[OuterLoopId];

    LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
    if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
      LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
      return false;
    }
    LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
    LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
    if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
      LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
      return false;
    }

    ORE->emit([&]() {
      return OptimizationRemark(DEBUG_TYPE, "Interchanged",
                                InnerLoop->getStartLoc(),
                                InnerLoop->getHeader())
             << "Loop interchanged with enclosing loop.";
    });

    LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
                                 LIL);
    LIT.transform();
    LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
    LoopsInterchanged++;

    assert(InnerLoop->isLCSSAForm(*DT) &&
           "Inner loop not left in LCSSA form after loop interchange!");
    assert(OuterLoop->isLCSSAForm(*DT) &&
           "Outer loop not left in LCSSA form after loop interchange!");

    return true;
  }
};

} // end anonymous namespace

bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
  return any_of(*BB, [](const Instruction &I) {
    return I.mayHaveSideEffects() || I.mayReadFromMemory();
  });
}

bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();

  LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");

  // A perfectly nested loop will not have any branch in between the outer and
  // inner block i.e. outer header will branch to either inner preheader and
  // outerloop latch.
  BranchInst *OuterLoopHeaderBI =
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
  if (!OuterLoopHeaderBI)
    return false;

  for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
    if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
        Succ != OuterLoopLatch)
      return false;

  LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
  // We do not have any basic block in between now make sure the outer header
  // and outer loop latch doesn't contain any unsafe instructions.
  if (containsUnsafeInstructions(OuterLoopHeader) ||
      containsUnsafeInstructions(OuterLoopLatch))
    return false;

  LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
  // We have a perfect loop nest.
  return true;
}

bool LoopInterchangeLegality::isLoopStructureUnderstood(
    PHINode *InnerInduction) {
  unsigned Num = InnerInduction->getNumOperands();
  BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
  for (unsigned i = 0; i < Num; ++i) {
    Value *Val = InnerInduction->getOperand(i);
    if (isa<Constant>(Val))
      continue;
    Instruction *I = dyn_cast<Instruction>(Val);
    if (!I)
      return false;
    // TODO: Handle triangular loops.
    // e.g. for(int i=0;i<N;i++)
    //        for(int j=i;j<N;j++)
    unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
    if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
            InnerLoopPreheader &&
        !OuterLoop->isLoopInvariant(I)) {
      return false;
    }
  }
  return true;
}

// If SV is a LCSSA PHI node with a single incoming value, return the incoming
// value.
static Value *followLCSSA(Value *SV) {
  PHINode *PHI = dyn_cast<PHINode>(SV);
  if (!PHI)
    return SV;

  if (PHI->getNumIncomingValues() != 1)
    return SV;
  return followLCSSA(PHI->getIncomingValue(0));
}

// Check V's users to see if it is involved in a reduction in L.
static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
  for (Value *User : V->users()) {
    if (PHINode *PHI = dyn_cast<PHINode>(User)) {
      if (PHI->getNumIncomingValues() == 1)
        continue;
      RecurrenceDescriptor RD;
      if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
        return PHI;
      return nullptr;
    }
  }

  return nullptr;
}

bool LoopInterchangeLegality::findInductionAndReductions(
    Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
  if (!L->getLoopLatch() || !L->getLoopPredecessor())
    return false;
  for (PHINode &PHI : L->getHeader()->phis()) {
    RecurrenceDescriptor RD;
    InductionDescriptor ID;
    if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
      Inductions.push_back(&PHI);
    else {
      // PHIs in inner loops need to be part of a reduction in the outer loop,
      // discovered when checking the PHIs of the outer loop earlier.
      if (!InnerLoop) {
        if (!OuterInnerReductions.count(&PHI)) {
          LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
                               "across the outer loop.\n");
          return false;
        }
      } else {
        assert(PHI.getNumIncomingValues() == 2 &&
               "Phis in loop header should have exactly 2 incoming values");
        // Check if we have a PHI node in the outer loop that has a reduction
        // result from the inner loop as an incoming value.
        Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
        PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
        if (!InnerRedPhi ||
            !llvm::any_of(InnerRedPhi->incoming_values(),
                          [&PHI](Value *V) { return V == &PHI; })) {
          LLVM_DEBUG(
              dbgs()
              << "Failed to recognize PHI as an induction or reduction.\n");
          return false;
        }
        OuterInnerReductions.insert(&PHI);
        OuterInnerReductions.insert(InnerRedPhi);
      }
    }
  }
  return true;
}

// This function indicates the current limitations in the transform as a result
// of which we do not proceed.
bool LoopInterchangeLegality::currentLimitations() {
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();

  // transform currently expects the loop latches to also be the exiting
  // blocks.
  if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
      OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
      !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
      !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
    LLVM_DEBUG(
        dbgs() << "Loops where the latch is not the exiting block are not"
               << " supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Loops where the latch is not the exiting block cannot be"
                " interchange currently.";
    });
    return true;
  }

  PHINode *InnerInductionVar;
  SmallVector<PHINode *, 8> Inductions;
  if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
    LLVM_DEBUG(
        dbgs() << "Only outer loops with induction or reduction PHI nodes "
               << "are supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Only outer loops with induction or reduction PHI nodes can be"
                " interchanged currently.";
    });
    return true;
  }

  // TODO: Currently we handle only loops with 1 induction variable.
  if (Inductions.size() != 1) {
    LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
                      << "supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Only outer loops with 1 induction variable can be "
                "interchanged currently.";
    });
    return true;
  }

  Inductions.clear();
  if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
    LLVM_DEBUG(
        dbgs() << "Only inner loops with induction or reduction PHI nodes "
               << "are supported currently.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Only inner loops with induction or reduction PHI nodes can be"
                " interchange currently.";
    });
    return true;
  }

  // TODO: Currently we handle only loops with 1 induction variable.
  if (Inductions.size() != 1) {
    LLVM_DEBUG(
        dbgs() << "We currently only support loops with 1 induction variable."
               << "Failed to interchange due to current limitation\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Only inner loops with 1 induction variable can be "
                "interchanged currently.";
    });
    return true;
  }
  InnerInductionVar = Inductions.pop_back_val();

  // TODO: Triangular loops are not handled for now.
  if (!isLoopStructureUnderstood(InnerInductionVar)) {
    LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Inner loop structure not understood currently.";
    });
    return true;
  }

  // TODO: Current limitation: Since we split the inner loop latch at the point
  // were induction variable is incremented (induction.next); We cannot have
  // more than 1 user of induction.next since it would result in broken code
  // after split.
  // e.g.
  // for(i=0;i<N;i++) {
  //    for(j = 0;j<M;j++) {
  //      A[j+1][i+2] = A[j][i]+k;
  //  }
  // }
  Instruction *InnerIndexVarInc = nullptr;
  if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
    InnerIndexVarInc =
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
  else
    InnerIndexVarInc =
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));

  if (!InnerIndexVarInc) {
    LLVM_DEBUG(
        dbgs() << "Did not find an instruction to increment the induction "
               << "variable.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "The inner loop does not increment the induction variable.";
    });
    return true;
  }

  // Since we split the inner loop latch on this induction variable. Make sure
  // we do not have any instruction between the induction variable and branch
  // instruction.

  bool FoundInduction = false;
  for (const Instruction &I :
       llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
    if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
        isa<ZExtInst>(I))
      continue;

    // We found an instruction. If this is not induction variable then it is not
    // safe to split this loop latch.
    if (!I.isIdenticalTo(InnerIndexVarInc)) {
      LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
                        << "variable increment and branch.\n");
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "UnsupportedInsBetweenInduction",
                   InnerLoop->getStartLoc(), InnerLoop->getHeader())
               << "Found unsupported instruction between induction variable "
                  "increment and branch.";
      });
      return true;
    }

    FoundInduction = true;
    break;
  }
  // The loop latch ended and we didn't find the induction variable return as
  // current limitation.
  if (!FoundInduction) {
    LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Did not find the induction variable.";
    });
    return true;
  }
  return false;
}

// We currently only support LCSSA PHI nodes in the inner loop exit, if their
// users are either reduction PHIs or PHIs outside the outer loop (which means
// the we are only interested in the final value after the loop).
static bool
areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
                              SmallPtrSetImpl<PHINode *> &Reductions) {
  BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
  for (PHINode &PHI : InnerExit->phis()) {
    // Reduction lcssa phi will have only 1 incoming block that from loop latch.
    if (PHI.getNumIncomingValues() > 1)
      return false;
    if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
          PHINode *PN = dyn_cast<PHINode>(U);
          return !PN ||
                 (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
        })) {
      return false;
    }
  }
  return true;
}

// We currently support LCSSA PHI nodes in the outer loop exit, if their
// incoming values do not come from the outer loop latch or if the
// outer loop latch has a single predecessor. In that case, the value will
// be available if both the inner and outer loop conditions are true, which
// will still be true after interchanging. If we have multiple predecessor,
// that may not be the case, e.g. because the outer loop latch may be executed
// if the inner loop is not executed.
static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
  BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
  for (PHINode &PHI : LoopNestExit->phis()) {
    //  FIXME: We currently are not able to detect floating point reductions
    //         and have to use floating point PHIs as a proxy to prevent
    //         interchanging in the presence of floating point reductions.
    if (PHI.getType()->isFloatingPointTy())
      return false;
    for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
     Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
     if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
       continue;

     // The incoming value is defined in the outer loop latch. Currently we
     // only support that in case the outer loop latch has a single predecessor.
     // This guarantees that the outer loop latch is executed if and only if
     // the inner loop is executed (because tightlyNested() guarantees that the
     // outer loop header only branches to the inner loop or the outer loop
     // latch).
     // FIXME: We could weaken this logic and allow multiple predecessors,
     //        if the values are produced outside the loop latch. We would need
     //        additional logic to update the PHI nodes in the exit block as
     //        well.
     if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
       return false;
    }
  }
  return true;
}

bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
                                                  unsigned OuterLoopId,
                                                  CharMatrix &DepMatrix) {
  if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
    LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
                      << " and OuterLoopId = " << OuterLoopId
                      << " due to dependence\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Cannot interchange loops due to dependences.";
    });
    return false;
  }
  // Check if outer and inner loop contain legal instructions only.
  for (auto *BB : OuterLoop->blocks())
    for (Instruction &I : BB->instructionsWithoutDebug())
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
        // readnone functions do not prevent interchanging.
        if (CI->doesNotReadMemory())
          continue;
        LLVM_DEBUG(
            dbgs() << "Loops with call instructions cannot be interchanged "
                   << "safely.");
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
                                          CI->getDebugLoc(),
                                          CI->getParent())
                 << "Cannot interchange loops due to call instruction.";
        });

        return false;
      }

  // TODO: The loops could not be interchanged due to current limitations in the
  // transform module.
  if (currentLimitations()) {
    LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
    return false;
  }

  // Check if the loops are tightly nested.
  if (!tightlyNested(OuterLoop, InnerLoop)) {
    LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Cannot interchange loops because they are not tightly "
                "nested.";
    });
    return false;
  }

  if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
                                     OuterInnerReductions)) {
    LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
                                      InnerLoop->getStartLoc(),
                                      InnerLoop->getHeader())
             << "Found unsupported PHI node in loop exit.";
    });
    return false;
  }

  if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
    LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
    ORE->emit([&]() {
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
                                      OuterLoop->getStartLoc(),
                                      OuterLoop->getHeader())
             << "Found unsupported PHI node in loop exit.";
    });
    return false;
  }

  return true;
}

int LoopInterchangeProfitability::getInstrOrderCost() {
  unsigned GoodOrder, BadOrder;
  BadOrder = GoodOrder = 0;
  for (BasicBlock *BB : InnerLoop->blocks()) {
    for (Instruction &Ins : *BB) {
      if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
        unsigned NumOp = GEP->getNumOperands();
        bool FoundInnerInduction = false;
        bool FoundOuterInduction = false;
        for (unsigned i = 0; i < NumOp; ++i) {
          const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
          const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
          if (!AR)
            continue;

          // If we find the inner induction after an outer induction e.g.
          // for(int i=0;i<N;i++)
          //   for(int j=0;j<N;j++)
          //     A[i][j] = A[i-1][j-1]+k;
          // then it is a good order.
          if (AR->getLoop() == InnerLoop) {
            // We found an InnerLoop induction after OuterLoop induction. It is
            // a good order.
            FoundInnerInduction = true;
            if (FoundOuterInduction) {
              GoodOrder++;
              break;
            }
          }
          // If we find the outer induction after an inner induction e.g.
          // for(int i=0;i<N;i++)
          //   for(int j=0;j<N;j++)
          //     A[j][i] = A[j-1][i-1]+k;
          // then it is a bad order.
          if (AR->getLoop() == OuterLoop) {
            // We found an OuterLoop induction after InnerLoop induction. It is
            // a bad order.
            FoundOuterInduction = true;
            if (FoundInnerInduction) {
              BadOrder++;
              break;
            }
          }
        }
      }
    }
  }
  return GoodOrder - BadOrder;
}

static bool isProfitableForVectorization(unsigned InnerLoopId,
                                         unsigned OuterLoopId,
                                         CharMatrix &DepMatrix) {
  // TODO: Improve this heuristic to catch more cases.
  // If the inner loop is loop independent or doesn't carry any dependency it is
  // profitable to move this to outer position.
  for (auto &Row : DepMatrix) {
    if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
      return false;
    // TODO: We need to improve this heuristic.
    if (Row[OuterLoopId] != '=')
      return false;
  }
  // If outer loop has dependence and inner loop is loop independent then it is
  // profitable to interchange to enable parallelism.
  // If there are no dependences, interchanging will not improve anything.
  return !DepMatrix.empty();
}

bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
                                                unsigned OuterLoopId,
                                                CharMatrix &DepMatrix) {
  // TODO: Add better profitability checks.
  // e.g
  // 1) Construct dependency matrix and move the one with no loop carried dep
  //    inside to enable vectorization.

  // This is rough cost estimation algorithm. It counts the good and bad order
  // of induction variables in the instruction and allows reordering if number
  // of bad orders is more than good.
  int Cost = getInstrOrderCost();
  LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
  if (Cost < -LoopInterchangeCostThreshold)
    return true;

  // It is not profitable as per current cache profitability model. But check if
  // we can move this loop outside to improve parallelism.
  if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
    return true;

  ORE->emit([&]() {
    return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
                                    InnerLoop->getStartLoc(),
                                    InnerLoop->getHeader())
           << "Interchanging loops is too costly (cost="
           << ore::NV("Cost", Cost) << ", threshold="
           << ore::NV("Threshold", LoopInterchangeCostThreshold)
           << ") and it does not improve parallelism.";
  });
  return false;
}

void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
                                               Loop *InnerLoop) {
  for (Loop *L : *OuterLoop)
    if (L == InnerLoop) {
      OuterLoop->removeChildLoop(L);
      return;
    }
  llvm_unreachable("Couldn't find loop");
}

/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
/// new inner and outer loop after interchanging: NewInner is the original
/// outer loop and NewOuter is the original inner loop.
///
/// Before interchanging, we have the following structure
/// Outer preheader
//  Outer header
//    Inner preheader
//    Inner header
//      Inner body
//      Inner latch
//   outer bbs
//   Outer latch
//
// After interchanging:
// Inner preheader
// Inner header
//   Outer preheader
//   Outer header
//     Inner body
//     outer bbs
//     Outer latch
//   Inner latch
void LoopInterchangeTransform::restructureLoops(
    Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
    BasicBlock *OrigOuterPreHeader) {
  Loop *OuterLoopParent = OuterLoop->getParentLoop();
  // The original inner loop preheader moves from the new inner loop to
  // the parent loop, if there is one.
  NewInner->removeBlockFromLoop(OrigInnerPreHeader);
  LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);

  // Switch the loop levels.
  if (OuterLoopParent) {
    // Remove the loop from its parent loop.
    removeChildLoop(OuterLoopParent, NewInner);
    removeChildLoop(NewInner, NewOuter);
    OuterLoopParent->addChildLoop(NewOuter);
  } else {
    removeChildLoop(NewInner, NewOuter);
    LI->changeTopLevelLoop(NewInner, NewOuter);
  }
  while (!NewOuter->empty())
    NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
  NewOuter->addChildLoop(NewInner);

  // BBs from the original inner loop.
  SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());

  // Add BBs from the original outer loop to the original inner loop (excluding
  // BBs already in inner loop)
  for (BasicBlock *BB : NewInner->blocks())
    if (LI->getLoopFor(BB) == NewInner)
      NewOuter->addBlockEntry(BB);

  // Now remove inner loop header and latch from the new inner loop and move
  // other BBs (the loop body) to the new inner loop.
  BasicBlock *OuterHeader = NewOuter->getHeader();
  BasicBlock *OuterLatch = NewOuter->getLoopLatch();
  for (BasicBlock *BB : OrigInnerBBs) {
    // Nothing will change for BBs in child loops.
    if (LI->getLoopFor(BB) != NewOuter)
      continue;
    // Remove the new outer loop header and latch from the new inner loop.
    if (BB == OuterHeader || BB == OuterLatch)
      NewInner->removeBlockFromLoop(BB);
    else
      LI->changeLoopFor(BB, NewInner);
  }

  // The preheader of the original outer loop becomes part of the new
  // outer loop.
  NewOuter->addBlockEntry(OrigOuterPreHeader);
  LI->changeLoopFor(OrigOuterPreHeader, NewOuter);

  // Tell SE that we move the loops around.
  SE->forgetLoop(NewOuter);
  SE->forgetLoop(NewInner);
}

bool LoopInterchangeTransform::transform() {
  bool Transformed = false;
  Instruction *InnerIndexVar;

  if (InnerLoop->getSubLoops().empty()) {
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
    LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
    PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
    if (!InductionPHI) {
      LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
      return false;
    }

    if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
    else
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));

    // Ensure that InductionPHI is the first Phi node.
    if (&InductionPHI->getParent()->front() != InductionPHI)
      InductionPHI->moveBefore(&InductionPHI->getParent()->front());

    // Create a new latch block for the inner loop. We split at the
    // current latch's terminator and then move the condition and all
    // operands that are not either loop-invariant or the induction PHI into the
    // new latch block.
    BasicBlock *NewLatch =
        SplitBlock(InnerLoop->getLoopLatch(),
                   InnerLoop->getLoopLatch()->getTerminator(), DT, LI);

    SmallSetVector<Instruction *, 4> WorkList;
    unsigned i = 0;
    auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
      for (; i < WorkList.size(); i++) {
        // Duplicate instruction and move it the new latch. Update uses that
        // have been moved.
        Instruction *NewI = WorkList[i]->clone();
        NewI->insertBefore(NewLatch->getFirstNonPHI());
        assert(!NewI->mayHaveSideEffects() &&
               "Moving instructions with side-effects may change behavior of "
               "the loop nest!");
        for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end();
             UI != UE;) {
          Use &U = *UI++;
          Instruction *UserI = cast<Instruction>(U.getUser());
          if (!InnerLoop->contains(UserI->getParent()) ||
              UserI->getParent() == NewLatch || UserI == InductionPHI)
            U.set(NewI);
        }
        // Add operands of moved instruction to the worklist, except if they are
        // outside the inner loop or are the induction PHI.
        for (Value *Op : WorkList[i]->operands()) {
          Instruction *OpI = dyn_cast<Instruction>(Op);
          if (!OpI ||
              this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
              OpI == InductionPHI)
            continue;
          WorkList.insert(OpI);
        }
      }
    };

    // FIXME: Should we interchange when we have a constant condition?
    Instruction *CondI = dyn_cast<Instruction>(
        cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
            ->getCondition());
    if (CondI)
      WorkList.insert(CondI);
    MoveInstructions();
    WorkList.insert(cast<Instruction>(InnerIndexVar));
    MoveInstructions();

    // Splits the inner loops phi nodes out into a separate basic block.
    BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
    SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
    LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
  }

  Transformed |= adjustLoopLinks();
  if (!Transformed) {
    LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
    return false;
  }

  return true;
}

/// \brief Move all instructions except the terminator from FromBB right before
/// InsertBefore
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
  auto &ToList = InsertBefore->getParent()->getInstList();
  auto &FromList = FromBB->getInstList();

  ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
                FromBB->getTerminator()->getIterator());
}

/// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
  // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
  // from BB1 afterwards.
  auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
  SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
  for (Instruction *I : TempInstrs)
    I->removeFromParent();

  // Move instructions from BB2 to BB1.
  moveBBContents(BB2, BB1->getTerminator());

  // Move instructions from TempInstrs to BB2.
  for (Instruction *I : TempInstrs)
    I->insertBefore(BB2->getTerminator());
}

// Update BI to jump to NewBB instead of OldBB. Records updates to the
// dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
// \p OldBB  is exactly once in BI's successor list.
static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
                            BasicBlock *NewBB,
                            std::vector<DominatorTree::UpdateType> &DTUpdates,
                            bool MustUpdateOnce = true) {
  assert((!MustUpdateOnce ||
          llvm::count_if(successors(BI),
                         [OldBB](BasicBlock *BB) {
                           return BB == OldBB;
                         }) == 1) && "BI must jump to OldBB exactly once.");
  bool Changed = false;
  for (Use &Op : BI->operands())
    if (Op == OldBB) {
      Op.set(NewBB);
      Changed = true;
    }

  if (Changed) {
    DTUpdates.push_back(
        {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
    DTUpdates.push_back(
        {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
  }
  assert(Changed && "Expected a successor to be updated");
}

// Move Lcssa PHIs to the right place.
static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
                          BasicBlock *InnerLatch, BasicBlock *OuterHeader,
                          BasicBlock *OuterLatch, BasicBlock *OuterExit,
                          Loop *InnerLoop, LoopInfo *LI) {

  // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
  // defined either in the header or latch. Those blocks will become header and
  // latch of the new outer loop, and the only possible users can PHI nodes
  // in the exit block of the loop nest or the outer loop header (reduction
  // PHIs, in that case, the incoming value must be defined in the inner loop
  // header). We can just substitute the user with the incoming value and remove
  // the PHI.
  for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
    assert(P.getNumIncomingValues() == 1 &&
           "Only loops with a single exit are supported!");

    // Incoming values are guaranteed be instructions currently.
    auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
    // Skip phis with incoming values from the inner loop body, excluding the
    // header and latch.
    if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
      continue;

    assert(all_of(P.users(),
                  [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
                    return (cast<PHINode>(U)->getParent() == OuterHeader &&
                            IncI->getParent() == InnerHeader) ||
                           cast<PHINode>(U)->getParent() == OuterExit;
                  }) &&
           "Can only replace phis iff the uses are in the loop nest exit or "
           "the incoming value is defined in the inner header (it will "
           "dominate all loop blocks after interchanging)");
    P.replaceAllUsesWith(IncI);
    P.eraseFromParent();
  }

  SmallVector<PHINode *, 8> LcssaInnerExit;
  for (PHINode &P : InnerExit->phis())
    LcssaInnerExit.push_back(&P);

  SmallVector<PHINode *, 8> LcssaInnerLatch;
  for (PHINode &P : InnerLatch->phis())
    LcssaInnerLatch.push_back(&P);

  // Lcssa PHIs for values used outside the inner loop are in InnerExit.
  // If a PHI node has users outside of InnerExit, it has a use outside the
  // interchanged loop and we have to preserve it. We move these to
  // InnerLatch, which will become the new exit block for the innermost
  // loop after interchanging.
  for (PHINode *P : LcssaInnerExit)
    P->moveBefore(InnerLatch->getFirstNonPHI());

  // If the inner loop latch contains LCSSA PHIs, those come from a child loop
  // and we have to move them to the new inner latch.
  for (PHINode *P : LcssaInnerLatch)
    P->moveBefore(InnerExit->getFirstNonPHI());

  // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
  // incoming values defined in the outer loop, we have to add a new PHI
  // in the inner loop latch, which became the exit block of the outer loop,
  // after interchanging.
  if (OuterExit) {
    for (PHINode &P : OuterExit->phis()) {
      if (P.getNumIncomingValues() != 1)
        continue;
      // Skip Phis with incoming values defined in the inner loop. Those should
      // already have been updated.
      auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
      if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
        continue;

      PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
      NewPhi->setIncomingValue(0, P.getIncomingValue(0));
      NewPhi->setIncomingBlock(0, OuterLatch);
      NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
      P.setIncomingValue(0, NewPhi);
    }
  }

  // Now adjust the incoming blocks for the LCSSA PHIs.
  // For PHIs moved from Inner's exit block, we need to replace Inner's latch
  // with the new latch.
  InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
}

bool LoopInterchangeTransform::adjustLoopBranches() {
  LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
  std::vector<DominatorTree::UpdateType> DTUpdates;

  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();

  assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
         InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
         InnerLoopPreHeader && "Guaranteed by loop-simplify form");
  // Ensure that both preheaders do not contain PHI nodes and have single
  // predecessors. This allows us to move them easily. We use
  // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
  // preheaders do not satisfy those conditions.
  if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
      !OuterLoopPreHeader->getUniquePredecessor())
    OuterLoopPreHeader =
        InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
  if (InnerLoopPreHeader == OuterLoop->getHeader())
    InnerLoopPreHeader =
        InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);

  // Adjust the loop preheader
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
  BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
  BasicBlock *InnerLoopLatchPredecessor =
      InnerLoopLatch->getUniquePredecessor();
  BasicBlock *InnerLoopLatchSuccessor;
  BasicBlock *OuterLoopLatchSuccessor;

  BranchInst *OuterLoopLatchBI =
      dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
  BranchInst *InnerLoopLatchBI =
      dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
  BranchInst *OuterLoopHeaderBI =
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
  BranchInst *InnerLoopHeaderBI =
      dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());

  if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
      !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
      !InnerLoopHeaderBI)
    return false;

  BranchInst *InnerLoopLatchPredecessorBI =
      dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
  BranchInst *OuterLoopPredecessorBI =
      dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());

  if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
    return false;
  BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
  if (!InnerLoopHeaderSuccessor)
    return false;

  // Adjust Loop Preheader and headers.
  // The branches in the outer loop predecessor and the outer loop header can
  // be unconditional branches or conditional branches with duplicates. Consider
  // this when updating the successors.
  updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
                  InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
  // The outer loop header might or might not branch to the outer latch.
  // We are guaranteed to branch to the inner loop preheader.
  if (std::find(succ_begin(OuterLoopHeaderBI), succ_end(OuterLoopHeaderBI),
                OuterLoopLatch) != succ_end(OuterLoopHeaderBI))
    updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates,
                    /*MustUpdateOnce=*/false);
  updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
                  InnerLoopHeaderSuccessor, DTUpdates,
                  /*MustUpdateOnce=*/false);

  // Adjust reduction PHI's now that the incoming block has changed.
  InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
                                               OuterLoopHeader);

  updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
                  OuterLoopPreHeader, DTUpdates);

  // -------------Adjust loop latches-----------
  if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
  else
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);

  updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
                  InnerLoopLatchSuccessor, DTUpdates);


  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
  else
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);

  updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
                  OuterLoopLatchSuccessor, DTUpdates);
  updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
                  DTUpdates);

  DT->applyUpdates(DTUpdates);
  restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
                   OuterLoopPreHeader);

  moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
                OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
                InnerLoop, LI);
  // For PHIs in the exit block of the outer loop, outer's latch has been
  // replaced by Inners'.
  OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);

  // Now update the reduction PHIs in the inner and outer loop headers.
  SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
  for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
    InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
  for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
    OuterLoopPHIs.push_back(cast<PHINode>(&PHI));

  auto &OuterInnerReductions = LIL.getOuterInnerReductions();
  (void)OuterInnerReductions;

  // Now move the remaining reduction PHIs from outer to inner loop header and
  // vice versa. The PHI nodes must be part of a reduction across the inner and
  // outer loop and all the remains to do is and updating the incoming blocks.
  for (PHINode *PHI : OuterLoopPHIs) {
    PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
    assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
  }
  for (PHINode *PHI : InnerLoopPHIs) {
    PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
    assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
  }

  // Update the incoming blocks for moved PHI nodes.
  OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
  OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
  InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
  InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);

  return true;
}

bool LoopInterchangeTransform::adjustLoopLinks() {
  // Adjust all branches in the inner and outer loop.
  bool Changed = adjustLoopBranches();
  if (Changed) {
    // We have interchanged the preheaders so we need to interchange the data in
    // the preheaders as well. This is because the content of the inner
    // preheader was previously executed inside the outer loop.
    BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
    swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
  }
  return Changed;
}

char LoopInterchange::ID = 0;

INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
                      "Interchanges loops for cache reuse", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)

INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
                    "Interchanges loops for cache reuse", false, false)

Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }