/* * Copyright (c) 1997, 2006 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <config.h> #include "roken.h" static int is_leap(unsigned y) { y += 1900; return (y % 4) == 0 && ((y % 100) != 0 || (y % 400) == 0); } /* * XXX This is a simplifed version of timegm, it needs to support out of * bounds values. */ time_t rk_timegm (struct tm *tm) { static const unsigned ndays[2][12] ={ {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}}; time_t res = 0; unsigned i; if (tm->tm_year < 0) return -1; if (tm->tm_mon < 0 || tm->tm_mon > 11) return -1; if (tm->tm_mday < 1 || tm->tm_mday > ndays[is_leap(tm->tm_year)][tm->tm_mon]) return -1; if (tm->tm_hour < 0 || tm->tm_hour > 23) return -1; if (tm->tm_min < 0 || tm->tm_min > 59) return -1; if (tm->tm_sec < 0 || tm->tm_sec > 59) return -1; for (i = 70; i < tm->tm_year; ++i) res += is_leap(i) ? 366 : 365; for (i = 0; i < tm->tm_mon; ++i) res += ndays[is_leap(tm->tm_year)][i]; res += tm->tm_mday - 1; res *= 24; res += tm->tm_hour; res *= 60; res += tm->tm_min; res *= 60; res += tm->tm_sec; return res; } |