Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/*
 * Copyright 2004-2019 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include <string.h>

#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/engine.h>
#include <openssl/evp.h>
#include <openssl/aes.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/modes.h>

#ifndef OPENSSL_NO_HW
# ifndef OPENSSL_NO_HW_PADLOCK

/* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */
#  if (OPENSSL_VERSION_NUMBER >= 0x00908000L)
#   ifndef OPENSSL_NO_DYNAMIC_ENGINE
#    define DYNAMIC_ENGINE
#   endif
#  elif (OPENSSL_VERSION_NUMBER >= 0x00907000L)
#   ifdef ENGINE_DYNAMIC_SUPPORT
#    define DYNAMIC_ENGINE
#   endif
#  else
#   error "Only OpenSSL >= 0.9.7 is supported"
#  endif

/*
 * VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it
 * doesn't exist elsewhere, but it even can't be compiled on other platforms!
 */

#  undef COMPILE_HW_PADLOCK
#  if defined(PADLOCK_ASM)
#   define COMPILE_HW_PADLOCK
#   ifdef OPENSSL_NO_DYNAMIC_ENGINE
static ENGINE *ENGINE_padlock(void);
#   endif
#  endif

#  ifdef OPENSSL_NO_DYNAMIC_ENGINE
void engine_load_padlock_int(void);
void engine_load_padlock_int(void)
{
/* On non-x86 CPUs it just returns. */
#   ifdef COMPILE_HW_PADLOCK
    ENGINE *toadd = ENGINE_padlock();
    if (!toadd)
        return;
    ENGINE_add(toadd);
    ENGINE_free(toadd);
    ERR_clear_error();
#   endif
}

#  endif

#  ifdef COMPILE_HW_PADLOCK

/* Function for ENGINE detection and control */
static int padlock_available(void);
static int padlock_init(ENGINE *e);

/* RNG Stuff */
static RAND_METHOD padlock_rand;

/* Cipher Stuff */
static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
                           const int **nids, int nid);

/* Engine names */
static const char *padlock_id = "padlock";
static char padlock_name[100];

/* Available features */
static int padlock_use_ace = 0; /* Advanced Cryptography Engine */
static int padlock_use_rng = 0; /* Random Number Generator */

/* ===== Engine "management" functions ===== */

/* Prepare the ENGINE structure for registration */
static int padlock_bind_helper(ENGINE *e)
{
    /* Check available features */
    padlock_available();

    /*
     * RNG is currently disabled for reasons discussed in commentary just
     * before padlock_rand_bytes function.
     */
    padlock_use_rng = 0;

    /* Generate a nice engine name with available features */
    BIO_snprintf(padlock_name, sizeof(padlock_name),
                 "VIA PadLock (%s, %s)",
                 padlock_use_rng ? "RNG" : "no-RNG",
                 padlock_use_ace ? "ACE" : "no-ACE");

    /* Register everything or return with an error */
    if (!ENGINE_set_id(e, padlock_id) ||
        !ENGINE_set_name(e, padlock_name) ||
        !ENGINE_set_init_function(e, padlock_init) ||
        (padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) ||
        (padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) {
        return 0;
    }

    /* Everything looks good */
    return 1;
}

#   ifdef OPENSSL_NO_DYNAMIC_ENGINE
/* Constructor */
static ENGINE *ENGINE_padlock(void)
{
    ENGINE *eng = ENGINE_new();

    if (eng == NULL) {
        return NULL;
    }

    if (!padlock_bind_helper(eng)) {
        ENGINE_free(eng);
        return NULL;
    }

    return eng;
}
#   endif

/* Check availability of the engine */
static int padlock_init(ENGINE *e)
{
    return (padlock_use_rng || padlock_use_ace);
}

/*
 * This stuff is needed if this ENGINE is being compiled into a
 * self-contained shared-library.
 */
#   ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int padlock_bind_fn(ENGINE *e, const char *id)
{
    if (id && (strcmp(id, padlock_id) != 0)) {
        return 0;
    }

    if (!padlock_bind_helper(e)) {
        return 0;
    }

    return 1;
}

IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn)
#   endif                       /* !OPENSSL_NO_DYNAMIC_ENGINE */
/* ===== Here comes the "real" engine ===== */

/* Some AES-related constants */
#   define AES_BLOCK_SIZE          16
#   define AES_KEY_SIZE_128        16
#   define AES_KEY_SIZE_192        24
#   define AES_KEY_SIZE_256        32
    /*
     * Here we store the status information relevant to the current context.
     */
    /*
     * BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on
     * the order of items in this structure.  Don't blindly modify, reorder,
     * etc!
     */
struct padlock_cipher_data {
    unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */
    union {
        unsigned int pad[4];
        struct {
            int rounds:4;
            int dgst:1;         /* n/a in C3 */
            int align:1;        /* n/a in C3 */
            int ciphr:1;        /* n/a in C3 */
            unsigned int keygen:1;
            int interm:1;
            unsigned int encdec:1;
            int ksize:2;
        } b;
    } cword;                    /* Control word */
    AES_KEY ks;                 /* Encryption key */
};

/* Interface to assembler module */
unsigned int padlock_capability(void);
void padlock_key_bswap(AES_KEY *key);
void padlock_verify_context(struct padlock_cipher_data *ctx);
void padlock_reload_key(void);
void padlock_aes_block(void *out, const void *inp,
                       struct padlock_cipher_data *ctx);
int padlock_ecb_encrypt(void *out, const void *inp,
                        struct padlock_cipher_data *ctx, size_t len);
int padlock_cbc_encrypt(void *out, const void *inp,
                        struct padlock_cipher_data *ctx, size_t len);
int padlock_cfb_encrypt(void *out, const void *inp,
                        struct padlock_cipher_data *ctx, size_t len);
int padlock_ofb_encrypt(void *out, const void *inp,
                        struct padlock_cipher_data *ctx, size_t len);
int padlock_ctr32_encrypt(void *out, const void *inp,
                          struct padlock_cipher_data *ctx, size_t len);
int padlock_xstore(void *out, int edx);
void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len);
void padlock_sha1(void *ctx, const void *inp, size_t len);
void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len);
void padlock_sha256(void *ctx, const void *inp, size_t len);

/*
 * Load supported features of the CPU to see if the PadLock is available.
 */
static int padlock_available(void)
{
    unsigned int edx = padlock_capability();

    /* Fill up some flags */
    padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6));
    padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2));

    return padlock_use_ace + padlock_use_rng;
}

/* ===== AES encryption/decryption ===== */

#   if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb)
#    define NID_aes_128_cfb NID_aes_128_cfb128
#   endif

#   if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb)
#    define NID_aes_128_ofb NID_aes_128_ofb128
#   endif

#   if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb)
#    define NID_aes_192_cfb NID_aes_192_cfb128
#   endif

#   if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb)
#    define NID_aes_192_ofb NID_aes_192_ofb128
#   endif

#   if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb)
#    define NID_aes_256_cfb NID_aes_256_cfb128
#   endif

#   if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb)
#    define NID_aes_256_ofb NID_aes_256_ofb128
#   endif

/* List of supported ciphers. */
static const int padlock_cipher_nids[] = {
    NID_aes_128_ecb,
    NID_aes_128_cbc,
    NID_aes_128_cfb,
    NID_aes_128_ofb,
    NID_aes_128_ctr,

    NID_aes_192_ecb,
    NID_aes_192_cbc,
    NID_aes_192_cfb,
    NID_aes_192_ofb,
    NID_aes_192_ctr,

    NID_aes_256_ecb,
    NID_aes_256_cbc,
    NID_aes_256_cfb,
    NID_aes_256_ofb,
    NID_aes_256_ctr
};

static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) /
                                      sizeof(padlock_cipher_nids[0]));

/* Function prototypes ... */
static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
                                const unsigned char *iv, int enc);

#   define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) +         \
        ( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F )      )
#   define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\
        NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx)))

static int
padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
                   const unsigned char *in_arg, size_t nbytes)
{
    return padlock_ecb_encrypt(out_arg, in_arg,
                               ALIGNED_CIPHER_DATA(ctx), nbytes);
}

static int
padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
                   const unsigned char *in_arg, size_t nbytes)
{
    struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
    int ret;

    memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
    if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes)))
        memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
    return ret;
}

static int
padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
                   const unsigned char *in_arg, size_t nbytes)
{
    struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
    size_t chunk;

    if ((chunk = EVP_CIPHER_CTX_num(ctx))) {   /* borrow chunk variable */
        unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);

        if (chunk >= AES_BLOCK_SIZE)
            return 0;           /* bogus value */

        if (EVP_CIPHER_CTX_encrypting(ctx))
            while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
                ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk];
                chunk++, nbytes--;
        } else
            while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
                unsigned char c = *(in_arg++);
                *(out_arg++) = c ^ ivp[chunk];
                ivp[chunk++] = c, nbytes--;
            }

        EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
    }

    if (nbytes == 0)
        return 1;

    memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);

    if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
        if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk))
            return 0;
        nbytes -= chunk;
    }

    if (nbytes) {
        unsigned char *ivp = cdata->iv;

        out_arg += chunk;
        in_arg += chunk;
        EVP_CIPHER_CTX_set_num(ctx, nbytes);
        if (cdata->cword.b.encdec) {
            cdata->cword.b.encdec = 0;
            padlock_reload_key();
            padlock_aes_block(ivp, ivp, cdata);
            cdata->cword.b.encdec = 1;
            padlock_reload_key();
            while (nbytes) {
                unsigned char c = *(in_arg++);
                *(out_arg++) = c ^ *ivp;
                *(ivp++) = c, nbytes--;
            }
        } else {
            padlock_reload_key();
            padlock_aes_block(ivp, ivp, cdata);
            padlock_reload_key();
            while (nbytes) {
                *ivp = *(out_arg++) = *(in_arg++) ^ *ivp;
                ivp++, nbytes--;
            }
        }
    }

    memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);

    return 1;
}

static int
padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
                   const unsigned char *in_arg, size_t nbytes)
{
    struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
    size_t chunk;

    /*
     * ctx->num is maintained in byte-oriented modes, such as CFB and OFB...
     */
    if ((chunk = EVP_CIPHER_CTX_num(ctx))) {   /* borrow chunk variable */
        unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);

        if (chunk >= AES_BLOCK_SIZE)
            return 0;           /* bogus value */

        while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
            *(out_arg++) = *(in_arg++) ^ ivp[chunk];
            chunk++, nbytes--;
        }

        EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
    }

    if (nbytes == 0)
        return 1;

    memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);

    if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
        if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk))
            return 0;
        nbytes -= chunk;
    }

    if (nbytes) {
        unsigned char *ivp = cdata->iv;

        out_arg += chunk;
        in_arg += chunk;
        EVP_CIPHER_CTX_set_num(ctx, nbytes);
        padlock_reload_key();   /* empirically found */
        padlock_aes_block(ivp, ivp, cdata);
        padlock_reload_key();   /* empirically found */
        while (nbytes) {
            *(out_arg++) = *(in_arg++) ^ *ivp;
            ivp++, nbytes--;
        }
    }

    memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);

    return 1;
}

static void padlock_ctr32_encrypt_glue(const unsigned char *in,
                                       unsigned char *out, size_t blocks,
                                       struct padlock_cipher_data *ctx,
                                       const unsigned char *ivec)
{
    memcpy(ctx->iv, ivec, AES_BLOCK_SIZE);
    padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks);
}

static int
padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
                   const unsigned char *in_arg, size_t nbytes)
{
    struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
    unsigned int num = EVP_CIPHER_CTX_num(ctx);

    CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes,
                                cdata, EVP_CIPHER_CTX_iv_noconst(ctx),
                                EVP_CIPHER_CTX_buf_noconst(ctx), &num,
                                (ctr128_f) padlock_ctr32_encrypt_glue);

    EVP_CIPHER_CTX_set_num(ctx, (size_t)num);
    return 1;
}

#   define EVP_CIPHER_block_size_ECB       AES_BLOCK_SIZE
#   define EVP_CIPHER_block_size_CBC       AES_BLOCK_SIZE
#   define EVP_CIPHER_block_size_OFB       1
#   define EVP_CIPHER_block_size_CFB       1
#   define EVP_CIPHER_block_size_CTR       1

/*
 * Declaring so many ciphers by hand would be a pain. Instead introduce a bit
 * of preprocessor magic :-)
 */
#   define DECLARE_AES_EVP(ksize,lmode,umode)      \
static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \
static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \
{                                                                       \
    if (_hidden_aes_##ksize##_##lmode == NULL                           \
        && ((_hidden_aes_##ksize##_##lmode =                            \
             EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode,             \
                                 EVP_CIPHER_block_size_##umode,         \
                                 AES_KEY_SIZE_##ksize)) == NULL         \
            || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \
                                              AES_BLOCK_SIZE)           \
            || !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \
                                          0 | EVP_CIPH_##umode##_MODE)  \
            || !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \
                                         padlock_aes_init_key)          \
            || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \
                                              padlock_##lmode##_cipher) \
            || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \
                                                  sizeof(struct padlock_cipher_data) + 16) \
            || !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \
                                                    EVP_CIPHER_set_asn1_iv) \
            || !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \
                                                    EVP_CIPHER_get_asn1_iv))) { \
        EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode);            \
        _hidden_aes_##ksize##_##lmode = NULL;                           \
    }                                                                   \
    return _hidden_aes_##ksize##_##lmode;                               \
}

DECLARE_AES_EVP(128, ecb, ECB)
DECLARE_AES_EVP(128, cbc, CBC)
DECLARE_AES_EVP(128, cfb, CFB)
DECLARE_AES_EVP(128, ofb, OFB)
DECLARE_AES_EVP(128, ctr, CTR)

DECLARE_AES_EVP(192, ecb, ECB)
DECLARE_AES_EVP(192, cbc, CBC)
DECLARE_AES_EVP(192, cfb, CFB)
DECLARE_AES_EVP(192, ofb, OFB)
DECLARE_AES_EVP(192, ctr, CTR)

DECLARE_AES_EVP(256, ecb, ECB)
DECLARE_AES_EVP(256, cbc, CBC)
DECLARE_AES_EVP(256, cfb, CFB)
DECLARE_AES_EVP(256, ofb, OFB)
DECLARE_AES_EVP(256, ctr, CTR)

static int
padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids,
                int nid)
{
    /* No specific cipher => return a list of supported nids ... */
    if (!cipher) {
        *nids = padlock_cipher_nids;
        return padlock_cipher_nids_num;
    }

    /* ... or the requested "cipher" otherwise */
    switch (nid) {
    case NID_aes_128_ecb:
        *cipher = padlock_aes_128_ecb();
        break;
    case NID_aes_128_cbc:
        *cipher = padlock_aes_128_cbc();
        break;
    case NID_aes_128_cfb:
        *cipher = padlock_aes_128_cfb();
        break;
    case NID_aes_128_ofb:
        *cipher = padlock_aes_128_ofb();
        break;
    case NID_aes_128_ctr:
        *cipher = padlock_aes_128_ctr();
        break;

    case NID_aes_192_ecb:
        *cipher = padlock_aes_192_ecb();
        break;
    case NID_aes_192_cbc:
        *cipher = padlock_aes_192_cbc();
        break;
    case NID_aes_192_cfb:
        *cipher = padlock_aes_192_cfb();
        break;
    case NID_aes_192_ofb:
        *cipher = padlock_aes_192_ofb();
        break;
    case NID_aes_192_ctr:
        *cipher = padlock_aes_192_ctr();
        break;

    case NID_aes_256_ecb:
        *cipher = padlock_aes_256_ecb();
        break;
    case NID_aes_256_cbc:
        *cipher = padlock_aes_256_cbc();
        break;
    case NID_aes_256_cfb:
        *cipher = padlock_aes_256_cfb();
        break;
    case NID_aes_256_ofb:
        *cipher = padlock_aes_256_ofb();
        break;
    case NID_aes_256_ctr:
        *cipher = padlock_aes_256_ctr();
        break;

    default:
        /* Sorry, we don't support this NID */
        *cipher = NULL;
        return 0;
    }

    return 1;
}

/* Prepare the encryption key for PadLock usage */
static int
padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
                     const unsigned char *iv, int enc)
{
    struct padlock_cipher_data *cdata;
    int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8;
    unsigned long mode = EVP_CIPHER_CTX_mode(ctx);

    if (key == NULL)
        return 0;               /* ERROR */

    cdata = ALIGNED_CIPHER_DATA(ctx);
    memset(cdata, 0, sizeof(*cdata));

    /* Prepare Control word. */
    if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE)
        cdata->cword.b.encdec = 0;
    else
        cdata->cword.b.encdec = (EVP_CIPHER_CTX_encrypting(ctx) == 0);
    cdata->cword.b.rounds = 10 + (key_len - 128) / 32;
    cdata->cword.b.ksize = (key_len - 128) / 64;

    switch (key_len) {
    case 128:
        /*
         * PadLock can generate an extended key for AES128 in hardware
         */
        memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128);
        cdata->cword.b.keygen = 0;
        break;

    case 192:
    case 256:
        /*
         * Generate an extended AES key in software. Needed for AES192/AES256
         */
        /*
         * Well, the above applies to Stepping 8 CPUs and is listed as
         * hardware errata. They most likely will fix it at some point and
         * then a check for stepping would be due here.
         */
        if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
            && !enc)
            AES_set_decrypt_key(key, key_len, &cdata->ks);
        else
            AES_set_encrypt_key(key, key_len, &cdata->ks);
#   ifndef AES_ASM
        /*
         * OpenSSL C functions use byte-swapped extended key.
         */
        padlock_key_bswap(&cdata->ks);
#   endif
        cdata->cword.b.keygen = 1;
        break;

    default:
        /* ERROR */
        return 0;
    }

    /*
     * This is done to cover for cases when user reuses the
     * context for new key. The catch is that if we don't do
     * this, padlock_eas_cipher might proceed with old key...
     */
    padlock_reload_key();

    return 1;
}

/* ===== Random Number Generator ===== */
/*
 * This code is not engaged. The reason is that it does not comply
 * with recommendations for VIA RNG usage for secure applications
 * (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it
 * provide meaningful error control...
 */
/*
 * Wrapper that provides an interface between the API and the raw PadLock
 * RNG
 */
static int padlock_rand_bytes(unsigned char *output, int count)
{
    unsigned int eax, buf;

    while (count >= 8) {
        eax = padlock_xstore(output, 0);
        if (!(eax & (1 << 6)))
            return 0;           /* RNG disabled */
        /* this ---vv--- covers DC bias, Raw Bits and String Filter */
        if (eax & (0x1F << 10))
            return 0;
        if ((eax & 0x1F) == 0)
            continue;           /* no data, retry... */
        if ((eax & 0x1F) != 8)
            return 0;           /* fatal failure...  */
        output += 8;
        count -= 8;
    }
    while (count > 0) {
        eax = padlock_xstore(&buf, 3);
        if (!(eax & (1 << 6)))
            return 0;           /* RNG disabled */
        /* this ---vv--- covers DC bias, Raw Bits and String Filter */
        if (eax & (0x1F << 10))
            return 0;
        if ((eax & 0x1F) == 0)
            continue;           /* no data, retry... */
        if ((eax & 0x1F) != 1)
            return 0;           /* fatal failure...  */
        *output++ = (unsigned char)buf;
        count--;
    }
    OPENSSL_cleanse(&buf, sizeof(buf));

    return 1;
}

/* Dummy but necessary function */
static int padlock_rand_status(void)
{
    return 1;
}

/* Prepare structure for registration */
static RAND_METHOD padlock_rand = {
    NULL,                       /* seed */
    padlock_rand_bytes,         /* bytes */
    NULL,                       /* cleanup */
    NULL,                       /* add */
    padlock_rand_bytes,         /* pseudorand */
    padlock_rand_status,        /* rand status */
};

#  endif                        /* COMPILE_HW_PADLOCK */
# endif                         /* !OPENSSL_NO_HW_PADLOCK */
#endif                          /* !OPENSSL_NO_HW */

#if defined(OPENSSL_NO_HW) || defined(OPENSSL_NO_HW_PADLOCK) \
        || !defined(COMPILE_HW_PADLOCK)
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
OPENSSL_EXPORT
    int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns);
OPENSSL_EXPORT
    int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns)
{
    return 0;
}

IMPLEMENT_DYNAMIC_CHECK_FN()
# endif
#endif