Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/*
 * ---------------------------------------------------------------------------
 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
 *
 * LICENSE TERMS
 *
 * The free distribution and use of this software is allowed (with or without
 * changes) provided that:
 *
 *  1. source code distributions include the above copyright notice, this
 *	list of conditions and the following disclaimer;
 *
 *  2. binary distributions include the above copyright notice, this list
 *	of conditions and the following disclaimer in their documentation;
 *
 *  3. the name of the copyright holder is not used to endorse products
 *	built using this software without specific written permission.
 *
 * DISCLAIMER
 *
 * This software is provided 'as is' with no explicit or implied warranties
 * in respect of its properties, including, but not limited to, correctness
 * and/or fitness for purpose.
 * ---------------------------------------------------------------------------
 * Issue Date: 20/12/2007
 *
 * This file contains the compilation options for AES (Rijndael) and code
 * that is common across encryption, key scheduling and table generation.
 *
 * OPERATION
 *
 * These source code files implement the AES algorithm Rijndael designed by
 * Joan Daemen and Vincent Rijmen. This version is designed for the standard
 * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
 * and 32 bytes).
 *
 * This version is designed for flexibility and speed using operations on
 * 32-bit words rather than operations on bytes.  It can be compiled with
 * either big or little endian internal byte order but is faster when the
 * native byte order for the processor is used.
 *
 * THE CIPHER INTERFACE
 *
 * The cipher interface is implemented as an array of bytes in which lower
 * AES bit sequence indexes map to higher numeric significance within bytes.
 */

/*
 * OpenSolaris changes
 * 1. Added __cplusplus and _AESTAB_H header guards
 * 2. Added header files sys/types.h and aes_impl.h
 * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C
 * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER
 *    from brg_endian.h
 * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT
 * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t
 * 7. Defined aes_sw32 as htonl() for byte swapping
 * 8. Cstyled and hdrchk code
 *
 */

#ifndef _AESOPT_H
#define	_AESOPT_H

#ifdef	__cplusplus
extern "C" {
#endif

#include <sys/zfs_context.h>
#include <aes/aes_impl.h>

/*  SUPPORT FEATURES */
#define	AES_ENCRYPT /* if support for encryption is needed */
#define	AES_DECRYPT /* if support for decryption is needed */

/*  PLATFORM-SPECIFIC FEATURES */
#define	IS_BIG_ENDIAN		4321 /* byte 0 is most significant (mc68k) */
#define	IS_LITTLE_ENDIAN	1234 /* byte 0 is least significant (i386) */
#define	PLATFORM_BYTE_ORDER	IS_LITTLE_ENDIAN
#define	AES_REV_DKS /* define to reverse decryption key schedule */


/*
 *  CONFIGURATION - THE USE OF DEFINES
 *	Later in this section there are a number of defines that control the
 *	operation of the code.  In each section, the purpose of each define is
 *	explained so that the relevant form can be included or excluded by
 *	setting either 1's or 0's respectively on the branches of the related
 *	#if clauses.  The following local defines should not be changed.
 */

#define	ENCRYPTION_IN_C	1
#define	DECRYPTION_IN_C	2
#define	ENC_KEYING_IN_C	4
#define	DEC_KEYING_IN_C	8

#define	NO_TABLES	0
#define	ONE_TABLE	1
#define	FOUR_TABLES	4
#define	NONE		0
#define	PARTIAL		1
#define	FULL		2

/*  --- START OF USER CONFIGURED OPTIONS --- */

/*
 *  1. BYTE ORDER WITHIN 32 BIT WORDS
 *
 *	The fundamental data processing units in Rijndael are 8-bit bytes. The
 *	input, output and key input are all enumerated arrays of bytes in which
 *	bytes are numbered starting at zero and increasing to one less than the
 *	number of bytes in the array in question. This enumeration is only used
 *	for naming bytes and does not imply any adjacency or order relationship
 *	from one byte to another. When these inputs and outputs are considered
 *	as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
 *	byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
 *	In this implementation bits are numbered from 0 to 7 starting at the
 *	numerically least significant end of each byte.  Bit n represents 2^n.
 *
 *	However, Rijndael can be implemented more efficiently using 32-bit
 *	words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
 *	into word[n]. While in principle these bytes can be assembled into words
 *	in any positions, this implementation only supports the two formats in
 *	which bytes in adjacent positions within words also have adjacent byte
 *	numbers. This order is called big-endian if the lowest numbered bytes
 *	in words have the highest numeric significance and little-endian if the
 *	opposite applies.
 *
 *	This code can work in either order irrespective of the order used by the
 *	machine on which it runs. Normally the internal byte order will be set
 *	to the order of the processor on which the code is to be run but this
 *	define	can be used to reverse this in special situations
 *
 *	WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
 *	This define will hence be redefined later (in section 4) if necessary
 */

#if 1
#define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
#elif 0
#define	ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
#elif 0
#define	ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
#else
#error The algorithm byte order is not defined
#endif

/*  2. VIA ACE SUPPORT */

#if defined(__GNUC__) && defined(__i386__) || \
	defined(_WIN32) && defined(_M_IX86) && \
	!(defined(_WIN64) || defined(_WIN32_WCE) || \
	defined(_MSC_VER) && (_MSC_VER <= 800))
#define	VIA_ACE_POSSIBLE
#endif

/*
 *  Define this option if support for the VIA ACE is required. This uses
 *  inline assembler instructions and is only implemented for the Microsoft,
 *  Intel and GCC compilers.  If VIA ACE is known to be present, then defining
 *  ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
 *  code.  If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
 *  it is detected (both present and enabled) but the normal AES code will
 *  also be present.
 *
 *  When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
 *  aligned; other input/output buffers do not need to be 16 byte aligned
 *  but there are very large performance gains if this can be arranged.
 *  VIA ACE also requires the decryption key schedule to be in reverse
 *  order (which later checks below ensure).
 */

/*  VIA ACE is not used here for OpenSolaris: */
#undef	VIA_ACE_POSSIBLE
#undef	ASSUME_VIA_ACE_PRESENT

#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT)
#define	USE_VIA_ACE_IF_PRESENT
#endif

#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT)
#define	ASSUME_VIA_ACE_PRESENT
#endif


/*
 *  3. ASSEMBLER SUPPORT
 *
 *	This define (which can be on the command line) enables the use of the
 *	assembler code routines for encryption, decryption and key scheduling
 *	as follows:
 *
 *	ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
 *		encryption and decryption and but with key scheduling in C
 *	ASM_X86_V2  uses assembler (aes_x86_v2.asm) with compressed tables for
 *		encryption, decryption and key scheduling
 *	ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
 *		encryption and decryption and but with key scheduling in C
 *	ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
 *		encryption and decryption and but with key scheduling in C
 *
 *	Change one 'if 0' below to 'if 1' to select the version or define
 *	as a compilation option.
 */

#if 0 && !defined(ASM_X86_V1C)
#define	ASM_X86_V1C
#elif 0 && !defined(ASM_X86_V2)
#define	ASM_X86_V2
#elif 0 && !defined(ASM_X86_V2C)
#define	ASM_X86_V2C
#elif 1 && !defined(ASM_AMD64_C)
#define	ASM_AMD64_C
#endif

#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \
	!defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \
	!defined(__amd64)
#error Assembler code is only available for x86 and AMD64 systems
#endif

/*
 *  4. FAST INPUT/OUTPUT OPERATIONS.
 *
 *	On some machines it is possible to improve speed by transferring the
 *	bytes in the input and output arrays to and from the internal 32-bit
 *	variables by addressing these arrays as if they are arrays of 32-bit
 *	words.  On some machines this will always be possible but there may
 *	be a large performance penalty if the byte arrays are not aligned on
 *	the normal word boundaries. On other machines this technique will
 *	lead to memory access errors when such 32-bit word accesses are not
 *	properly aligned. The option SAFE_IO avoids such problems but will
 *	often be slower on those machines that support misaligned access
 *	(especially so if care is taken to align the input  and output byte
 *	arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
 *	assumed that access to byte arrays as if they are arrays of 32-bit
 *	words will not cause problems when such accesses are misaligned.
 */
#if 1 && !defined(_MSC_VER)
#define	SAFE_IO
#endif

/*
 *  5. LOOP UNROLLING
 *
 *	The code for encryption and decryption cycles through a number of rounds
 *	that can be implemented either in a loop or by expanding the code into a
 *	long sequence of instructions, the latter producing a larger program but
 *	one that will often be much faster. The latter is called loop unrolling.
 *	There are also potential speed advantages in expanding two iterations in
 *	a loop with half the number of iterations, which is called partial loop
 *	unrolling.  The following options allow partial or full loop unrolling
 *	to be set independently for encryption and decryption
 */
#if 1
#define	ENC_UNROLL  FULL
#elif 0
#define	ENC_UNROLL  PARTIAL
#else
#define	ENC_UNROLL  NONE
#endif

#if 1
#define	DEC_UNROLL  FULL
#elif 0
#define	DEC_UNROLL  PARTIAL
#else
#define	DEC_UNROLL  NONE
#endif

#if 1
#define	ENC_KS_UNROLL
#endif

#if 1
#define	DEC_KS_UNROLL
#endif

/*
 *  6. FAST FINITE FIELD OPERATIONS
 *
 *	If this section is included, tables are used to provide faster finite
 *	field arithmetic.  This has no effect if FIXED_TABLES is defined.
 */
#if 1
#define	FF_TABLES
#endif

/*
 *  7. INTERNAL STATE VARIABLE FORMAT
 *
 *	The internal state of Rijndael is stored in a number of local 32-bit
 *	word variables which can be defined either as an array or as individual
 *	names variables. Include this section if you want to store these local
 *	variables in arrays. Otherwise individual local variables will be used.
 */
#if 1
#define	ARRAYS
#endif

/*
 *  8. FIXED OR DYNAMIC TABLES
 *
 *	When this section is included the tables used by the code are compiled
 *	statically into the binary file.  Otherwise the subroutine aes_init()
 *	must be called to compute them before the code is first used.
 */
#if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800))
#define	FIXED_TABLES
#endif

/*
 *  9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
 *
 *	In some systems it is better to mask longer values to extract bytes
 *	rather than using a cast. This option allows this choice.
 */
#if 0
#define	to_byte(x)  ((uint8_t)(x))
#else
#define	to_byte(x)  ((x) & 0xff)
#endif

/*
 *  10. TABLE ALIGNMENT
 *
 *	On some systems speed will be improved by aligning the AES large lookup
 *	tables on particular boundaries. This define should be set to a power of
 *	two giving the desired alignment. It can be left undefined if alignment
 *	is not needed.  This option is specific to the Microsoft VC++ compiler -
 *	it seems to sometimes cause trouble for the VC++ version 6 compiler.
 */

#if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300)
#define	TABLE_ALIGN 32
#endif

/*
 *  11.  REDUCE CODE AND TABLE SIZE
 *
 *	This replaces some expanded macros with function calls if AES_ASM_V2 or
 *	AES_ASM_V2C are defined
 */

#if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C))
#define	REDUCE_CODE_SIZE
#endif

/*
 *  12. TABLE OPTIONS
 *
 *	This cipher proceeds by repeating in a number of cycles known as rounds
 *	which are implemented by a round function which is optionally be speeded
 *	up using tables.  The basic tables are 256 32-bit words, with either
 *	one or four tables being required for each round function depending on
 *	how much speed is required. Encryption and decryption round functions
 *	are different and the last encryption and decryption round functions are
 *	different again making four different round functions in all.
 *
 *	This means that:
 *	1. Normal encryption and decryption rounds can each use either 0, 1
 *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
 *	2. The last encryption and decryption rounds can also use either 0, 1
 *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
 *
 *	Include or exclude the appropriate definitions below to set the number
 *	of tables used by this implementation.
 */

#if 1   /* set tables for the normal encryption round */
#define	ENC_ROUND   FOUR_TABLES
#elif 0
#define	ENC_ROUND   ONE_TABLE
#else
#define	ENC_ROUND   NO_TABLES
#endif

#if 1   /* set tables for the last encryption round */
#define	LAST_ENC_ROUND  FOUR_TABLES
#elif 0
#define	LAST_ENC_ROUND  ONE_TABLE
#else
#define	LAST_ENC_ROUND  NO_TABLES
#endif

#if 1   /* set tables for the normal decryption round */
#define	DEC_ROUND   FOUR_TABLES
#elif 0
#define	DEC_ROUND   ONE_TABLE
#else
#define	DEC_ROUND   NO_TABLES
#endif

#if 1   /* set tables for the last decryption round */
#define	LAST_DEC_ROUND  FOUR_TABLES
#elif 0
#define	LAST_DEC_ROUND  ONE_TABLE
#else
#define	LAST_DEC_ROUND  NO_TABLES
#endif

/*
 *  The decryption key schedule can be speeded up with tables in the same
 *	way that the round functions can.  Include or exclude the following
 *	defines to set this requirement.
 */
#if 1
#define	KEY_SCHED   FOUR_TABLES
#elif 0
#define	KEY_SCHED   ONE_TABLE
#else
#define	KEY_SCHED   NO_TABLES
#endif

/*  ---- END OF USER CONFIGURED OPTIONS ---- */

/* VIA ACE support is only available for VC++ and GCC */

#if !defined(_MSC_VER) && !defined(__GNUC__)
#if defined(ASSUME_VIA_ACE_PRESENT)
#undef ASSUME_VIA_ACE_PRESENT
#endif
#if defined(USE_VIA_ACE_IF_PRESENT)
#undef USE_VIA_ACE_IF_PRESENT
#endif
#endif

#if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT)
#define	USE_VIA_ACE_IF_PRESENT
#endif

#if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS)
#define	AES_REV_DKS
#endif

/* Assembler support requires the use of platform byte order */

#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \
	(ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
#undef  ALGORITHM_BYTE_ORDER
#define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
#endif

/*
 * In this implementation the columns of the state array are each held in
 *	32-bit words. The state array can be held in various ways: in an array
 *	of words, in a number of individual word variables or in a number of
 *	processor registers. The following define maps a variable name x and
 *	a column number c to the way the state array variable is to be held.
 *	The first define below maps the state into an array x[c] whereas the
 *	second form maps the state into a number of individual variables x0,
 *	x1, etc.  Another form could map individual state columns to machine
 *	register names.
 */

#if defined(ARRAYS)
#define	s(x, c) x[c]
#else
#define	s(x, c) x##c
#endif

/*
 *  This implementation provides subroutines for encryption, decryption
 *	and for setting the three key lengths (separately) for encryption
 *	and decryption. Since not all functions are needed, masks are set
 *	up here to determine which will be implemented in C
 */

#if !defined(AES_ENCRYPT)
#define	EFUNCS_IN_C   0
#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
#define	EFUNCS_IN_C   ENC_KEYING_IN_C
#elif !defined(ASM_X86_V2)
#define	EFUNCS_IN_C   (ENCRYPTION_IN_C | ENC_KEYING_IN_C)
#else
#define	EFUNCS_IN_C   0
#endif

#if !defined(AES_DECRYPT)
#define	DFUNCS_IN_C   0
#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
#define	DFUNCS_IN_C   DEC_KEYING_IN_C
#elif !defined(ASM_X86_V2)
#define	DFUNCS_IN_C   (DECRYPTION_IN_C | DEC_KEYING_IN_C)
#else
#define	DFUNCS_IN_C   0
#endif

#define	FUNCS_IN_C  (EFUNCS_IN_C | DFUNCS_IN_C)

/* END OF CONFIGURATION OPTIONS */

/* Disable or report errors on some combinations of options */

#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
#undef  LAST_ENC_ROUND
#define	LAST_ENC_ROUND  NO_TABLES
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
#undef  LAST_ENC_ROUND
#define	LAST_ENC_ROUND  ONE_TABLE
#endif

#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
#undef  ENC_UNROLL
#define	ENC_UNROLL  NONE
#endif

#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
#undef  LAST_DEC_ROUND
#define	LAST_DEC_ROUND  NO_TABLES
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
#undef  LAST_DEC_ROUND
#define	LAST_DEC_ROUND  ONE_TABLE
#endif

#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
#undef  DEC_UNROLL
#define	DEC_UNROLL  NONE
#endif

#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
#define	aes_sw32	htonl
#elif defined(bswap32)
#define	aes_sw32	bswap32
#elif defined(bswap_32)
#define	aes_sw32	bswap_32
#else
#define	brot(x, n)  (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
#define	aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00))
#endif


/*
 *	upr(x, n):  rotates bytes within words by n positions, moving bytes to
 *		higher index positions with wrap around into low positions
 *	ups(x, n):  moves bytes by n positions to higher index positions in
 *		words but without wrap around
 *	bval(x, n): extracts a byte from a word
 *
 *	WARNING:   The definitions given here are intended only for use with
 *		unsigned variables and with shift counts that are compile
 *		time constants
 */

#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
#define	upr(x, n)	(((uint32_t)(x) << (8 * (n))) | \
			((uint32_t)(x) >> (32 - 8 * (n))))
#define	ups(x, n)	((uint32_t)(x) << (8 * (n)))
#define	bval(x, n)	to_byte((x) >> (8 * (n)))
#define	bytes2word(b0, b1, b2, b3)  \
		(((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \
		((uint32_t)(b1) << 8) | (b0))
#endif

#if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN)
#define	upr(x, n)	(((uint32_t)(x) >> (8 * (n))) | \
			((uint32_t)(x) << (32 - 8 * (n))))
#define	ups(x, n)	((uint32_t)(x) >> (8 * (n)))
#define	bval(x, n)	to_byte((x) >> (24 - 8 * (n)))
#define	bytes2word(b0, b1, b2, b3)  \
		(((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \
		((uint32_t)(b2) << 8) | (b3))
#endif

#if defined(SAFE_IO)
#define	word_in(x, c)	bytes2word(((const uint8_t *)(x) + 4 * c)[0], \
				((const uint8_t *)(x) + 4 * c)[1], \
				((const uint8_t *)(x) + 4 * c)[2], \
				((const uint8_t *)(x) + 4 * c)[3])
#define	word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \
			((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \
			((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \
			((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); }
#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
#define	word_in(x, c)	(*((uint32_t *)(x) + (c)))
#define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v))
#else
#define	word_in(x, c)	aes_sw32(*((uint32_t *)(x) + (c)))
#define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v))
#endif

/* the finite field modular polynomial and elements */

#define	WPOLY   0x011b
#define	BPOLY	0x1b

/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */

#define	m1  0x80808080
#define	m2  0x7f7f7f7f
#define	gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))

/*
 * The following defines provide alternative definitions of gf_mulx that might
 * give improved performance if a fast 32-bit multiply is not available. Note
 * that a temporary variable u needs to be defined where gf_mulx is used.
 *
 * #define	gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \
 *			((u >> 3) | (u >> 6))
 * #define	m4  (0x01010101 * BPOLY)
 * #define	gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \
 *			& m4)
 */

/* Work out which tables are needed for the different options   */

#if defined(ASM_X86_V1C)
#if defined(ENC_ROUND)
#undef  ENC_ROUND
#endif
#define	ENC_ROUND   FOUR_TABLES
#if defined(LAST_ENC_ROUND)
#undef  LAST_ENC_ROUND
#endif
#define	LAST_ENC_ROUND  FOUR_TABLES
#if defined(DEC_ROUND)
#undef  DEC_ROUND
#endif
#define	DEC_ROUND   FOUR_TABLES
#if defined(LAST_DEC_ROUND)
#undef  LAST_DEC_ROUND
#endif
#define	LAST_DEC_ROUND  FOUR_TABLES
#if defined(KEY_SCHED)
#undef  KEY_SCHED
#define	KEY_SCHED   FOUR_TABLES
#endif
#endif

#if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C)
#if ENC_ROUND == ONE_TABLE
#define	FT1_SET
#elif ENC_ROUND == FOUR_TABLES
#define	FT4_SET
#else
#define	SBX_SET
#endif
#if LAST_ENC_ROUND == ONE_TABLE
#define	FL1_SET
#elif LAST_ENC_ROUND == FOUR_TABLES
#define	FL4_SET
#elif !defined(SBX_SET)
#define	SBX_SET
#endif
#endif

#if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C)
#if DEC_ROUND == ONE_TABLE
#define	IT1_SET
#elif DEC_ROUND == FOUR_TABLES
#define	IT4_SET
#else
#define	ISB_SET
#endif
#if LAST_DEC_ROUND == ONE_TABLE
#define	IL1_SET
#elif LAST_DEC_ROUND == FOUR_TABLES
#define	IL4_SET
#elif !defined(ISB_SET)
#define	ISB_SET
#endif
#endif


#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
	defined(ASM_X86_V2C)))
#if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
#if KEY_SCHED == ONE_TABLE
#if !defined(FL1_SET) && !defined(FL4_SET)
#define	LS1_SET
#endif
#elif KEY_SCHED == FOUR_TABLES
#if !defined(FL4_SET)
#define	LS4_SET
#endif
#elif !defined(SBX_SET)
#define	SBX_SET
#endif
#endif
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
#if KEY_SCHED == ONE_TABLE
#define	IM1_SET
#elif KEY_SCHED == FOUR_TABLES
#define	IM4_SET
#elif !defined(SBX_SET)
#define	SBX_SET
#endif
#endif
#endif

/* generic definitions of Rijndael macros that use tables */

#define	no_table(x, box, vf, rf, c) bytes2word(\
	box[bval(vf(x, 0, c), rf(0, c))], \
	box[bval(vf(x, 1, c), rf(1, c))], \
	box[bval(vf(x, 2, c), rf(2, c))], \
	box[bval(vf(x, 3, c), rf(3, c))])

#define	one_table(x, op, tab, vf, rf, c) \
	(tab[bval(vf(x, 0, c), rf(0, c))] \
	^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \
	^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \
	^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3))

#define	four_tables(x, tab, vf, rf, c) \
	(tab[0][bval(vf(x, 0, c), rf(0, c))] \
	^ tab[1][bval(vf(x, 1, c), rf(1, c))] \
	^ tab[2][bval(vf(x, 2, c), rf(2, c))] \
	^ tab[3][bval(vf(x, 3, c), rf(3, c))])

#define	vf1(x, r, c)	(x)
#define	rf1(r, c)	(r)
#define	rf2(r, c)	((8+r-c)&3)

/*
 * Perform forward and inverse column mix operation on four bytes in long word
 * x in parallel. NOTE: x must be a simple variable, NOT an expression in
 * these macros.
 */

#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
	defined(ASM_X86_V2C)))

#if defined(FM4_SET)	/* not currently used */
#define	fwd_mcol(x)	four_tables(x, t_use(f, m), vf1, rf1, 0)
#elif defined(FM1_SET)	/* not currently used */
#define	fwd_mcol(x)	one_table(x, upr, t_use(f, m), vf1, rf1, 0)
#else
#define	dec_fmvars	uint32_t g2
#define	fwd_mcol(x)	(g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \
				upr((x), 2) ^ upr((x), 1))
#endif

#if defined(IM4_SET)
#define	inv_mcol(x)	four_tables(x, t_use(i, m), vf1, rf1, 0)
#elif defined(IM1_SET)
#define	inv_mcol(x)	one_table(x, upr, t_use(i, m), vf1, rf1, 0)
#else
#define	dec_imvars	uint32_t g2, g4, g9
#define	inv_mcol(x)	(g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \
				(x) ^ gf_mulx(g4), g4 ^= g9, \
				(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \
				upr(g4, 2) ^ upr(g9, 1))
#endif

#if defined(FL4_SET)
#define	ls_box(x, c)	four_tables(x, t_use(f, l), vf1, rf2, c)
#elif defined(LS4_SET)
#define	ls_box(x, c)	four_tables(x, t_use(l, s), vf1, rf2, c)
#elif defined(FL1_SET)
#define	ls_box(x, c)	one_table(x, upr, t_use(f, l), vf1, rf2, c)
#elif defined(LS1_SET)
#define	ls_box(x, c)	one_table(x, upr, t_use(l, s), vf1, rf2, c)
#else
#define	ls_box(x, c)	no_table(x, t_use(s, box), vf1, rf2, c)
#endif

#endif

#if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET)
#define	ISB_SET
#endif

#ifdef	__cplusplus
}
#endif

#endif	/* _AESOPT_H */