/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
*/
#include <sys/dataset_kstats.h>
#include <sys/dbuf.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/zap.h>
#include <sys/zfeature.h>
#include <sys/zil_impl.h>
#include <sys/dmu_tx.h>
#include <sys/zio.h>
#include <sys/zfs_rlock.h>
#include <sys/spa_impl.h>
#include <sys/zvol.h>
#include <sys/zvol_impl.h>
#include <linux/blkdev_compat.h>
#include <linux/task_io_accounting_ops.h>
unsigned int zvol_major = ZVOL_MAJOR;
unsigned int zvol_request_sync = 0;
unsigned int zvol_prefetch_bytes = (128 * 1024);
unsigned long zvol_max_discard_blocks = 16384;
unsigned int zvol_threads = 32;
struct zvol_state_os {
struct gendisk *zvo_disk; /* generic disk */
struct request_queue *zvo_queue; /* request queue */
dev_t zvo_dev; /* device id */
};
taskq_t *zvol_taskq;
static struct ida zvol_ida;
typedef struct zv_request {
zvol_state_t *zv;
struct bio *bio;
taskq_ent_t ent;
} zv_request_t;
/*
* Given a path, return TRUE if path is a ZVOL.
*/
static boolean_t
zvol_is_zvol_impl(const char *device)
{
struct block_device *bdev;
unsigned int major;
bdev = vdev_lookup_bdev(device);
if (IS_ERR(bdev))
return (B_FALSE);
major = MAJOR(bdev->bd_dev);
bdput(bdev);
if (major == zvol_major)
return (B_TRUE);
return (B_FALSE);
}
static void
uio_from_bio(uio_t *uio, struct bio *bio)
{
uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
uio->uio_segflg = UIO_BVEC;
uio->uio_limit = MAXOFFSET_T;
uio->uio_resid = BIO_BI_SIZE(bio);
uio->uio_skip = BIO_BI_SKIP(bio);
}
static void
zvol_write(void *arg)
{
int error = 0;
zv_request_t *zvr = arg;
struct bio *bio = zvr->bio;
uio_t uio = { { 0 }, 0 };
uio_from_bio(&uio, bio);
zvol_state_t *zv = zvr->zv;
ASSERT(zv && zv->zv_open_count > 0);
ASSERT(zv->zv_zilog != NULL);
/* bio marked as FLUSH need to flush before write */
if (bio_is_flush(bio))
zil_commit(zv->zv_zilog, ZVOL_OBJ);
/* Some requests are just for flush and nothing else. */
if (uio.uio_resid == 0) {
rw_exit(&zv->zv_suspend_lock);
BIO_END_IO(bio, 0);
kmem_free(zvr, sizeof (zv_request_t));
return;
}
ssize_t start_resid = uio.uio_resid;
unsigned long start_jif = jiffies;
blk_generic_start_io_acct(zv->zv_zso->zvo_queue, WRITE,
bio_sectors(bio), &zv->zv_zso->zvo_disk->part0);
boolean_t sync =
bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
uio.uio_loffset, uio.uio_resid, RL_WRITER);
uint64_t volsize = zv->zv_volsize;
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
uint64_t off = uio.uio_loffset;
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
if (bytes > volsize - off) /* don't write past the end */
bytes = volsize - off;
dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
/* This will only fail for ENOSPC */
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
break;
}
error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
if (error == 0) {
zvol_log_write(zv, tx, off, bytes, sync);
}
dmu_tx_commit(tx);
if (error)
break;
}
zfs_rangelock_exit(lr);
int64_t nwritten = start_resid - uio.uio_resid;
dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
task_io_account_write(nwritten);
if (sync)
zil_commit(zv->zv_zilog, ZVOL_OBJ);
rw_exit(&zv->zv_suspend_lock);
blk_generic_end_io_acct(zv->zv_zso->zvo_queue,
WRITE, &zv->zv_zso->zvo_disk->part0, start_jif);
BIO_END_IO(bio, -error);
kmem_free(zvr, sizeof (zv_request_t));
}
static void
zvol_discard(void *arg)
{
zv_request_t *zvr = arg;
struct bio *bio = zvr->bio;
zvol_state_t *zv = zvr->zv;
uint64_t start = BIO_BI_SECTOR(bio) << 9;
uint64_t size = BIO_BI_SIZE(bio);
uint64_t end = start + size;
boolean_t sync;
int error = 0;
dmu_tx_t *tx;
unsigned long start_jif;
ASSERT(zv && zv->zv_open_count > 0);
ASSERT(zv->zv_zilog != NULL);
start_jif = jiffies;
blk_generic_start_io_acct(zv->zv_zso->zvo_queue, WRITE,
bio_sectors(bio), &zv->zv_zso->zvo_disk->part0);
sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
if (end > zv->zv_volsize) {
error = SET_ERROR(EIO);
goto unlock;
}
/*
* Align the request to volume block boundaries when a secure erase is
* not required. This will prevent dnode_free_range() from zeroing out
* the unaligned parts which is slow (read-modify-write) and useless
* since we are not freeing any space by doing so.
*/
if (!bio_is_secure_erase(bio)) {
start = P2ROUNDUP(start, zv->zv_volblocksize);
end = P2ALIGN(end, zv->zv_volblocksize);
size = end - start;
}
if (start >= end)
goto unlock;
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
start, size, RL_WRITER);
tx = dmu_tx_create(zv->zv_objset);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error != 0) {
dmu_tx_abort(tx);
} else {
zvol_log_truncate(zv, tx, start, size, B_TRUE);
dmu_tx_commit(tx);
error = dmu_free_long_range(zv->zv_objset,
ZVOL_OBJ, start, size);
}
zfs_rangelock_exit(lr);
if (error == 0 && sync)
zil_commit(zv->zv_zilog, ZVOL_OBJ);
unlock:
rw_exit(&zv->zv_suspend_lock);
blk_generic_end_io_acct(zv->zv_zso->zvo_queue, WRITE,
&zv->zv_zso->zvo_disk->part0, start_jif);
BIO_END_IO(bio, -error);
kmem_free(zvr, sizeof (zv_request_t));
}
static void
zvol_read(void *arg)
{
int error = 0;
zv_request_t *zvr = arg;
struct bio *bio = zvr->bio;
uio_t uio = { { 0 }, 0 };
uio_from_bio(&uio, bio);
zvol_state_t *zv = zvr->zv;
ASSERT(zv && zv->zv_open_count > 0);
ssize_t start_resid = uio.uio_resid;
unsigned long start_jif = jiffies;
blk_generic_start_io_acct(zv->zv_zso->zvo_queue, READ, bio_sectors(bio),
&zv->zv_zso->zvo_disk->part0);
zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
uio.uio_loffset, uio.uio_resid, RL_READER);
uint64_t volsize = zv->zv_volsize;
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
/* don't read past the end */
if (bytes > volsize - uio.uio_loffset)
bytes = volsize - uio.uio_loffset;
error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
if (error) {
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = SET_ERROR(EIO);
break;
}
}
zfs_rangelock_exit(lr);
int64_t nread = start_resid - uio.uio_resid;
dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
task_io_account_read(nread);
rw_exit(&zv->zv_suspend_lock);
blk_generic_end_io_acct(zv->zv_zso->zvo_queue, READ,
&zv->zv_zso->zvo_disk->part0, start_jif);
BIO_END_IO(bio, -error);
kmem_free(zvr, sizeof (zv_request_t));
}
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
static blk_qc_t
zvol_submit_bio(struct bio *bio)
#else
static MAKE_REQUEST_FN_RET
zvol_request(struct request_queue *q, struct bio *bio)
#endif
{
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
struct request_queue *q = bio->bi_disk->queue;
#endif
zvol_state_t *zv = q->queuedata;
fstrans_cookie_t cookie = spl_fstrans_mark();
uint64_t offset = BIO_BI_SECTOR(bio) << 9;
uint64_t size = BIO_BI_SIZE(bio);
int rw = bio_data_dir(bio);
zv_request_t *zvr;
if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
printk(KERN_INFO
"%s: bad access: offset=%llu, size=%lu\n",
zv->zv_zso->zvo_disk->disk_name,
(long long unsigned)offset,
(long unsigned)size);
BIO_END_IO(bio, -SET_ERROR(EIO));
goto out;
}
if (rw == WRITE) {
if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
BIO_END_IO(bio, -SET_ERROR(EROFS));
goto out;
}
/*
* Prevents the zvol from being suspended, or the ZIL being
* concurrently opened. Will be released after the i/o
* completes.
*/
rw_enter(&zv->zv_suspend_lock, RW_READER);
/*
* Open a ZIL if this is the first time we have written to this
* zvol. We protect zv->zv_zilog with zv_suspend_lock rather
* than zv_state_lock so that we don't need to acquire an
* additional lock in this path.
*/
if (zv->zv_zilog == NULL) {
rw_exit(&zv->zv_suspend_lock);
rw_enter(&zv->zv_suspend_lock, RW_WRITER);
if (zv->zv_zilog == NULL) {
zv->zv_zilog = zil_open(zv->zv_objset,
zvol_get_data);
zv->zv_flags |= ZVOL_WRITTEN_TO;
}
rw_downgrade(&zv->zv_suspend_lock);
}
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
zvr->zv = zv;
zvr->bio = bio;
taskq_init_ent(&zvr->ent);
/*
* We don't want this thread to be blocked waiting for i/o to
* complete, so we instead wait from a taskq callback. The
* i/o may be a ZIL write (via zil_commit()), or a read of an
* indirect block, or a read of a data block (if this is a
* partial-block write). We will indicate that the i/o is
* complete by calling BIO_END_IO() from the taskq callback.
*
* This design allows the calling thread to continue and
* initiate more concurrent operations by calling
* zvol_request() again. There are typically only a small
* number of threads available to call zvol_request() (e.g.
* one per iSCSI target), so keeping the latency of
* zvol_request() low is important for performance.
*
* The zvol_request_sync module parameter allows this
* behavior to be altered, for performance evaluation
* purposes. If the callback blocks, setting
* zvol_request_sync=1 will result in much worse performance.
*
* We can have up to zvol_threads concurrent i/o's being
* processed for all zvols on the system. This is typically
* a vast improvement over the zvol_request_sync=1 behavior
* of one i/o at a time per zvol. However, an even better
* design would be for zvol_request() to initiate the zio
* directly, and then be notified by the zio_done callback,
* which would call BIO_END_IO(). Unfortunately, the DMU/ZIL
* interfaces lack this functionality (they block waiting for
* the i/o to complete).
*/
if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
if (zvol_request_sync) {
zvol_discard(zvr);
} else {
taskq_dispatch_ent(zvol_taskq,
zvol_discard, zvr, 0, &zvr->ent);
}
} else {
if (zvol_request_sync) {
zvol_write(zvr);
} else {
taskq_dispatch_ent(zvol_taskq,
zvol_write, zvr, 0, &zvr->ent);
}
}
} else {
/*
* The SCST driver, and possibly others, may issue READ I/Os
* with a length of zero bytes. These empty I/Os contain no
* data and require no additional handling.
*/
if (size == 0) {
BIO_END_IO(bio, 0);
goto out;
}
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
zvr->zv = zv;
zvr->bio = bio;
taskq_init_ent(&zvr->ent);
rw_enter(&zv->zv_suspend_lock, RW_READER);
/* See comment in WRITE case above. */
if (zvol_request_sync) {
zvol_read(zvr);
} else {
taskq_dispatch_ent(zvol_taskq,
zvol_read, zvr, 0, &zvr->ent);
}
}
out:
spl_fstrans_unmark(cookie);
#if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
return (BLK_QC_T_NONE);
#endif
}
static int
zvol_open(struct block_device *bdev, fmode_t flag)
{
zvol_state_t *zv;
int error = 0;
boolean_t drop_suspend = B_TRUE;
rw_enter(&zvol_state_lock, RW_READER);
/*
* Obtain a copy of private_data under the zvol_state_lock to make
* sure that either the result of zvol free code path setting
* bdev->bd_disk->private_data to NULL is observed, or zvol_free()
* is not called on this zv because of the positive zv_open_count.
*/
zv = bdev->bd_disk->private_data;
if (zv == NULL) {
rw_exit(&zvol_state_lock);
return (SET_ERROR(-ENXIO));
}
mutex_enter(&zv->zv_state_lock);
/*
* make sure zvol is not suspended during first open
* (hold zv_suspend_lock) and respect proper lock acquisition
* ordering - zv_suspend_lock before zv_state_lock
*/
if (zv->zv_open_count == 0) {
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
mutex_exit(&zv->zv_state_lock);
rw_enter(&zv->zv_suspend_lock, RW_READER);
mutex_enter(&zv->zv_state_lock);
/* check to see if zv_suspend_lock is needed */
if (zv->zv_open_count != 0) {
rw_exit(&zv->zv_suspend_lock);
drop_suspend = B_FALSE;
}
}
} else {
drop_suspend = B_FALSE;
}
rw_exit(&zvol_state_lock);
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
ASSERT(zv->zv_open_count != 0 || RW_READ_HELD(&zv->zv_suspend_lock));
if (zv->zv_open_count == 0) {
error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
if (error)
goto out_mutex;
}
if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
error = -EROFS;
goto out_open_count;
}
zv->zv_open_count++;
mutex_exit(&zv->zv_state_lock);
if (drop_suspend)
rw_exit(&zv->zv_suspend_lock);
check_disk_change(bdev);
return (0);
out_open_count:
if (zv->zv_open_count == 0)
zvol_last_close(zv);
out_mutex:
mutex_exit(&zv->zv_state_lock);
if (drop_suspend)
rw_exit(&zv->zv_suspend_lock);
if (error == -EINTR) {
error = -ERESTARTSYS;
schedule();
}
return (SET_ERROR(error));
}
static void
zvol_release(struct gendisk *disk, fmode_t mode)
{
zvol_state_t *zv;
boolean_t drop_suspend = B_TRUE;
rw_enter(&zvol_state_lock, RW_READER);
zv = disk->private_data;
mutex_enter(&zv->zv_state_lock);
ASSERT(zv->zv_open_count > 0);
/*
* make sure zvol is not suspended during last close
* (hold zv_suspend_lock) and respect proper lock acquisition
* ordering - zv_suspend_lock before zv_state_lock
*/
if (zv->zv_open_count == 1) {
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
mutex_exit(&zv->zv_state_lock);
rw_enter(&zv->zv_suspend_lock, RW_READER);
mutex_enter(&zv->zv_state_lock);
/* check to see if zv_suspend_lock is needed */
if (zv->zv_open_count != 1) {
rw_exit(&zv->zv_suspend_lock);
drop_suspend = B_FALSE;
}
}
} else {
drop_suspend = B_FALSE;
}
rw_exit(&zvol_state_lock);
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
ASSERT(zv->zv_open_count != 1 || RW_READ_HELD(&zv->zv_suspend_lock));
zv->zv_open_count--;
if (zv->zv_open_count == 0)
zvol_last_close(zv);
mutex_exit(&zv->zv_state_lock);
if (drop_suspend)
rw_exit(&zv->zv_suspend_lock);
}
static int
zvol_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
zvol_state_t *zv = bdev->bd_disk->private_data;
int error = 0;
ASSERT3U(zv->zv_open_count, >, 0);
switch (cmd) {
case BLKFLSBUF:
fsync_bdev(bdev);
invalidate_bdev(bdev);
rw_enter(&zv->zv_suspend_lock, RW_READER);
if (!(zv->zv_flags & ZVOL_RDONLY))
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
rw_exit(&zv->zv_suspend_lock);
break;
case BLKZNAME:
mutex_enter(&zv->zv_state_lock);
error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
mutex_exit(&zv->zv_state_lock);
break;
default:
error = -ENOTTY;
break;
}
return (SET_ERROR(error));
}
#ifdef CONFIG_COMPAT
static int
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned cmd, unsigned long arg)
{
return (zvol_ioctl(bdev, mode, cmd, arg));
}
#else
#define zvol_compat_ioctl NULL
#endif
static unsigned int
zvol_check_events(struct gendisk *disk, unsigned int clearing)
{
unsigned int mask = 0;
rw_enter(&zvol_state_lock, RW_READER);
zvol_state_t *zv = disk->private_data;
if (zv != NULL) {
mutex_enter(&zv->zv_state_lock);
mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
zv->zv_changed = 0;
mutex_exit(&zv->zv_state_lock);
}
rw_exit(&zvol_state_lock);
return (mask);
}
static int
zvol_revalidate_disk(struct gendisk *disk)
{
rw_enter(&zvol_state_lock, RW_READER);
zvol_state_t *zv = disk->private_data;
if (zv != NULL) {
mutex_enter(&zv->zv_state_lock);
set_capacity(zv->zv_zso->zvo_disk,
zv->zv_volsize >> SECTOR_BITS);
mutex_exit(&zv->zv_state_lock);
}
rw_exit(&zvol_state_lock);
return (0);
}
static int
zvol_update_volsize(zvol_state_t *zv, uint64_t volsize)
{
revalidate_disk(zv->zv_zso->zvo_disk);
return (0);
}
static void
zvol_clear_private(zvol_state_t *zv)
{
/*
* Cleared while holding zvol_state_lock as a writer
* which will prevent zvol_open() from opening it.
*/
zv->zv_zso->zvo_disk->private_data = NULL;
}
/*
* Provide a simple virtual geometry for legacy compatibility. For devices
* smaller than 1 MiB a small head and sector count is used to allow very
* tiny devices. For devices over 1 Mib a standard head and sector count
* is used to keep the cylinders count reasonable.
*/
static int
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
zvol_state_t *zv = bdev->bd_disk->private_data;
sector_t sectors;
ASSERT3U(zv->zv_open_count, >, 0);
sectors = get_capacity(zv->zv_zso->zvo_disk);
if (sectors > 2048) {
geo->heads = 16;
geo->sectors = 63;
} else {
geo->heads = 2;
geo->sectors = 4;
}
geo->start = 0;
geo->cylinders = sectors / (geo->heads * geo->sectors);
return (0);
}
/*
* Find a zvol_state_t given the full major+minor dev_t. If found,
* return with zv_state_lock taken, otherwise, return (NULL) without
* taking zv_state_lock.
*/
static zvol_state_t *
zvol_find_by_dev(dev_t dev)
{
zvol_state_t *zv;
rw_enter(&zvol_state_lock, RW_READER);
for (zv = list_head(&zvol_state_list); zv != NULL;
zv = list_next(&zvol_state_list, zv)) {
mutex_enter(&zv->zv_state_lock);
if (zv->zv_zso->zvo_dev == dev) {
rw_exit(&zvol_state_lock);
return (zv);
}
mutex_exit(&zv->zv_state_lock);
}
rw_exit(&zvol_state_lock);
return (NULL);
}
static struct kobject *
zvol_probe(dev_t dev, int *part, void *arg)
{
zvol_state_t *zv;
struct kobject *kobj;
zv = zvol_find_by_dev(dev);
kobj = zv ? get_disk_and_module(zv->zv_zso->zvo_disk) : NULL;
ASSERT(zv == NULL || MUTEX_HELD(&zv->zv_state_lock));
if (zv)
mutex_exit(&zv->zv_state_lock);
return (kobj);
}
static struct block_device_operations zvol_ops = {
.open = zvol_open,
.release = zvol_release,
.ioctl = zvol_ioctl,
.compat_ioctl = zvol_compat_ioctl,
.check_events = zvol_check_events,
.revalidate_disk = zvol_revalidate_disk,
.getgeo = zvol_getgeo,
.owner = THIS_MODULE,
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
.submit_bio = zvol_submit_bio,
#endif
};
/*
* Allocate memory for a new zvol_state_t and setup the required
* request queue and generic disk structures for the block device.
*/
static zvol_state_t *
zvol_alloc(dev_t dev, const char *name)
{
zvol_state_t *zv;
struct zvol_state_os *zso;
uint64_t volmode;
if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
return (NULL);
if (volmode == ZFS_VOLMODE_DEFAULT)
volmode = zvol_volmode;
if (volmode == ZFS_VOLMODE_NONE)
return (NULL);
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
zv->zv_zso = zso;
list_link_init(&zv->zv_next);
mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
#ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
#else
zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
#endif
if (zso->zvo_queue == NULL)
goto out_kmem;
blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
/* Limit read-ahead to a single page to prevent over-prefetching. */
blk_queue_set_read_ahead(zso->zvo_queue, 1);
/* Disable write merging in favor of the ZIO pipeline. */
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
zso->zvo_disk = alloc_disk(ZVOL_MINORS);
if (zso->zvo_disk == NULL)
goto out_queue;
zso->zvo_queue->queuedata = zv;
zso->zvo_dev = dev;
zv->zv_open_count = 0;
strlcpy(zv->zv_name, name, MAXNAMELEN);
zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
zso->zvo_disk->major = zvol_major;
zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
if (volmode == ZFS_VOLMODE_DEV) {
/*
* ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
* gendisk->minors = 1 as noted in include/linux/genhd.h.
* Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
* and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
* setting gendisk->flags accordingly.
*/
zso->zvo_disk->minors = 1;
#if defined(GENHD_FL_EXT_DEVT)
zso->zvo_disk->flags &= ~GENHD_FL_EXT_DEVT;
#endif
#if defined(GENHD_FL_NO_PART_SCAN)
zso->zvo_disk->flags |= GENHD_FL_NO_PART_SCAN;
#endif
}
zso->zvo_disk->first_minor = (dev & MINORMASK);
zso->zvo_disk->fops = &zvol_ops;
zso->zvo_disk->private_data = zv;
zso->zvo_disk->queue = zso->zvo_queue;
snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
ZVOL_DEV_NAME, (dev & MINORMASK));
return (zv);
out_queue:
blk_cleanup_queue(zso->zvo_queue);
out_kmem:
kmem_free(zso, sizeof (struct zvol_state_os));
kmem_free(zv, sizeof (zvol_state_t));
return (NULL);
}
/*
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
* At this time, the structure is not opened by anyone, is taken off
* the zvol_state_list, and has its private data set to NULL.
* The zvol_state_lock is dropped.
*
* This function may take many milliseconds to complete (e.g. we've seen
* it take over 256ms), due to the calls to "blk_cleanup_queue" and
* "del_gendisk". Thus, consumers need to be careful to account for this
* latency when calling this function.
*/
static void
zvol_free(zvol_state_t *zv)
{
ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
ASSERT(zv->zv_open_count == 0);
ASSERT(zv->zv_zso->zvo_disk->private_data == NULL);
rw_destroy(&zv->zv_suspend_lock);
zfs_rangelock_fini(&zv->zv_rangelock);
del_gendisk(zv->zv_zso->zvo_disk);
blk_cleanup_queue(zv->zv_zso->zvo_queue);
put_disk(zv->zv_zso->zvo_disk);
ida_simple_remove(&zvol_ida,
MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
mutex_destroy(&zv->zv_state_lock);
dataset_kstats_destroy(&zv->zv_kstat);
kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
kmem_free(zv, sizeof (zvol_state_t));
}
/*
* Create a block device minor node and setup the linkage between it
* and the specified volume. Once this function returns the block
* device is live and ready for use.
*/
static int
zvol_os_create_minor(const char *name)
{
zvol_state_t *zv;
objset_t *os;
dmu_object_info_t *doi;
uint64_t volsize;
uint64_t len;
unsigned minor = 0;
int error = 0;
int idx;
uint64_t hash = zvol_name_hash(name);
if (zvol_inhibit_dev)
return (0);
idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
if (idx < 0)
return (SET_ERROR(-idx));
minor = idx << ZVOL_MINOR_BITS;
zv = zvol_find_by_name_hash(name, hash, RW_NONE);
if (zv) {
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
mutex_exit(&zv->zv_state_lock);
ida_simple_remove(&zvol_ida, idx);
return (SET_ERROR(EEXIST));
}
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
if (error)
goto out_doi;
error = dmu_object_info(os, ZVOL_OBJ, doi);
if (error)
goto out_dmu_objset_disown;
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
if (error)
goto out_dmu_objset_disown;
zv = zvol_alloc(MKDEV(zvol_major, minor), name);
if (zv == NULL) {
error = SET_ERROR(EAGAIN);
goto out_dmu_objset_disown;
}
zv->zv_hash = hash;
if (dmu_objset_is_snapshot(os))
zv->zv_flags |= ZVOL_RDONLY;
zv->zv_volblocksize = doi->doi_data_block_size;
zv->zv_volsize = volsize;
zv->zv_objset = os;
set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
(DMU_MAX_ACCESS / 4) >> 9);
blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
zv->zv_volblocksize);
blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
zv->zv_volblocksize);
blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
#ifdef QUEUE_FLAG_NONROT
blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
#endif
#ifdef QUEUE_FLAG_ADD_RANDOM
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
#endif
/* This flag was introduced in kernel version 4.12. */
#ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
#endif
if (spa_writeable(dmu_objset_spa(os))) {
if (zil_replay_disable)
zil_destroy(dmu_objset_zil(os), B_FALSE);
else
zil_replay(os, zv, zvol_replay_vector);
}
ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
/*
* When udev detects the addition of the device it will immediately
* invoke blkid(8) to determine the type of content on the device.
* Prefetching the blocks commonly scanned by blkid(8) will speed
* up this process.
*/
len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
if (len > 0) {
dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
ZIO_PRIORITY_SYNC_READ);
}
zv->zv_objset = NULL;
out_dmu_objset_disown:
dmu_objset_disown(os, B_TRUE, FTAG);
out_doi:
kmem_free(doi, sizeof (dmu_object_info_t));
/*
* Keep in mind that once add_disk() is called, the zvol is
* announced to the world, and zvol_open()/zvol_release() can
* be called at any time. Incidentally, add_disk() itself calls
* zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
* directly as well.
*/
if (error == 0) {
rw_enter(&zvol_state_lock, RW_WRITER);
zvol_insert(zv);
rw_exit(&zvol_state_lock);
add_disk(zv->zv_zso->zvo_disk);
} else {
ida_simple_remove(&zvol_ida, idx);
}
return (error);
}
static void
zvol_rename_minor(zvol_state_t *zv, const char *newname)
{
int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
ASSERT(RW_LOCK_HELD(&zvol_state_lock));
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
/* move to new hashtable entry */
zv->zv_hash = zvol_name_hash(zv->zv_name);
hlist_del(&zv->zv_hlink);
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
/*
* The block device's read-only state is briefly changed causing
* a KOBJ_CHANGE uevent to be issued. This ensures udev detects
* the name change and fixes the symlinks. This does not change
* ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
* changes. This would normally be done using kobject_uevent() but
* that is a GPL-only symbol which is why we need this workaround.
*/
set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
set_disk_ro(zv->zv_zso->zvo_disk, readonly);
}
static void
zvol_set_disk_ro_impl(zvol_state_t *zv, int flags)
{
set_disk_ro(zv->zv_zso->zvo_disk, flags);
}
static void
zvol_set_capacity_impl(zvol_state_t *zv, uint64_t capacity)
{
set_capacity(zv->zv_zso->zvo_disk, capacity);
}
const static zvol_platform_ops_t zvol_linux_ops = {
.zv_free = zvol_free,
.zv_rename_minor = zvol_rename_minor,
.zv_create_minor = zvol_os_create_minor,
.zv_update_volsize = zvol_update_volsize,
.zv_clear_private = zvol_clear_private,
.zv_is_zvol = zvol_is_zvol_impl,
.zv_set_disk_ro = zvol_set_disk_ro_impl,
.zv_set_capacity = zvol_set_capacity_impl,
};
int
zvol_init(void)
{
int error;
int threads = MIN(MAX(zvol_threads, 1), 1024);
error = register_blkdev(zvol_major, ZVOL_DRIVER);
if (error) {
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
return (error);
}
zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
if (zvol_taskq == NULL) {
unregister_blkdev(zvol_major, ZVOL_DRIVER);
return (-ENOMEM);
}
zvol_init_impl();
blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
THIS_MODULE, zvol_probe, NULL, NULL);
ida_init(&zvol_ida);
zvol_register_ops(&zvol_linux_ops);
return (0);
}
void
zvol_fini(void)
{
zvol_fini_impl();
blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
unregister_blkdev(zvol_major, ZVOL_DRIVER);
taskq_destroy(zvol_taskq);
ida_destroy(&zvol_ida);
}
/* BEGIN CSTYLED */
module_param(zvol_inhibit_dev, uint, 0644);
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
module_param(zvol_major, uint, 0444);
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
module_param(zvol_threads, uint, 0444);
MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
module_param(zvol_request_sync, uint, 0644);
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
module_param(zvol_max_discard_blocks, ulong, 0444);
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
module_param(zvol_prefetch_bytes, uint, 0644);
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
module_param(zvol_volmode, uint, 0644);
MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
/* END CSTYLED */