/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vmparam.h 5.9 (Berkeley) 5/12/91
* $FreeBSD$
*/
#ifndef _MACHINE_VMPARAM_H_
#define _MACHINE_VMPARAM_H_ 1
/*
* Machine dependent constants for 386.
*/
/*
* Virtual memory related constants, all in bytes
*/
#define MAXTSIZ (128UL*1024*1024) /* max text size */
#ifndef DFLDSIZ
#define DFLDSIZ (128UL*1024*1024) /* initial data size limit */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (512UL*1024*1024) /* max data size */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (8UL*1024*1024) /* initial stack size limit */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ (64UL*1024*1024) /* max stack size */
#endif
#ifndef SGROWSIZ
#define SGROWSIZ (128UL*1024) /* amount to grow stack */
#endif
/*
* Choose between DENSE and SPARSE based on whether lower execution time or
* lower kernel address space consumption is desired. Under PAE, kernel
* address space is often in short supply.
*/
#ifdef PAE
#define VM_PHYSSEG_SPARSE
#else
#define VM_PHYSSEG_DENSE
#endif
/*
* The number of PHYSSEG entries must be one greater than the number
* of phys_avail entries because the phys_avail entry that spans the
* largest physical address that is accessible by ISA DMA is split
* into two PHYSSEG entries.
*/
#define VM_PHYSSEG_MAX 17
/*
* Create one free page pool. Since the i386 kernel virtual address
* space does not include a mapping onto the machine's entire physical
* memory, VM_FREEPOOL_DIRECT is defined as an alias for the default
* pool, VM_FREEPOOL_DEFAULT.
*/
#define VM_NFREEPOOL 1
#define VM_FREEPOOL_DEFAULT 0
#define VM_FREEPOOL_DIRECT 0
/*
* Create up to three free page lists: VM_FREELIST_DMA32 is for physical pages
* that have physical addresses below 4G but are not accessible by ISA DMA,
* and VM_FREELIST_ISADMA is for physical pages that are accessible by ISA
* DMA.
*/
#define VM_NFREELIST 3
#define VM_FREELIST_DEFAULT 0
#define VM_FREELIST_DMA32 1
#define VM_FREELIST_LOWMEM 2
#define VM_LOWMEM_BOUNDARY (16 << 20) /* 16MB ISA DMA limit */
/*
* Always create DMA32 freelist if there is any memory above 4G.
* Bounce dma is extremely fragile and simultaneously intensively
* used.
*/
#define VM_DMA32_NPAGES_THRESHOLD 1
/*
* The largest allocation size is 2MB under PAE and 4MB otherwise.
*/
#define VM_NFREEORDER_PAE 10
#define VM_NFREEORDER_NOPAE 11
#define VM_NFREEORDER_MAX VM_NFREEORDER_NOPAE
#define VM_NFREEORDER i386_pmap_VM_NFREEORDER
/*
* Enable superpage reservations: 1 level.
*/
#ifndef VM_NRESERVLEVEL
#define VM_NRESERVLEVEL 1
#endif
/*
* Level 0 reservations consist of 512 pages when PAE pagetables are
* used, and 1024 pages otherwise.
*/
#ifndef VM_LEVEL_0_ORDER
#define VM_LEVEL_0_ORDER_PAE 9
#define VM_LEVEL_0_ORDER_NOPAE 10
#define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER_NOPAE
#define VM_LEVEL_0_ORDER i386_pmap_VM_LEVEL_0_ORDER
#else
#define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER
#endif
/*
* Kernel physical load address.
*/
#ifndef KERNLOAD
#define KERNLOAD (8 * 1024 * 1024)
#endif /* !defined(KERNLOAD) */
/*
* Virtual addresses of things. Derived from the page directory and
* page table indexes from pmap.h for precision.
* Because of the page that is both a PD and PT, it looks a little
* messy at times, but hey, we'll do anything to save a page :-)
*/
#define VM_MAX_KERNEL_ADDRESS (0xffffffffU - 16 * 1024 * 1024 + 1)
#define VM_MIN_KERNEL_ADDRESS 0
#define KERNBASE KERNLOAD
#define UPT_MAX_ADDRESS VADDR(PTDPTDI, PTDPTDI)
#define UPT_MIN_ADDRESS VADDR(PTDPTDI, 0)
#define VM_MAXUSER_ADDRESS (0xffffffff - 4 * 1024 * 1024 + 1)
#define SHAREDPAGE (VM_MAXUSER_ADDRESS - PAGE_SIZE)
#define USRSTACK SHAREDPAGE
#define VM_MAX_ADDRESS VADDR(PTDPTDI, 0)
#define VM_MIN_ADDRESS ((vm_offset_t)0)
#define PMAP_TRM_MIN_ADDRESS VM_MAXUSER_ADDRESS
#define PMAP_TRM_MAX_ADDRESS 0xffffffff
#define PMAP_MAP_LOW (4 * 1024 * 1024)
/*
* KVA layout. The unit of the system allocation is single PDE, which
* represents NBPDR bytes, aligned to NBPDR. NBPDR is 4M for non-PAE
* page tables, and 2M for PAE, so PAE mode requires twice as many PTDs
* to create the same memory map as non-PAE.
*
* 0x00000000 - 0x003fffff Transient identity map of low memory (0-4M),
* normally disabled to catch NULL derefs.
* 0x00400000 - 0x007fffff Fixed mapping of the low memory (4-8M).
* 0x00800000 - 0xffbfffff KERNBASE (VA) == KERNLOAD (PA), kernel
* text + data and all kernel maps. Managed
* by MI VM.
* 0xffc00000 - 0xffdfffff Recursive kernel page table mapping, pointed
* to by PTmap. PTD[] recursively points
* into PTmap.
* 0xffe00000 - 0xffffffff Kernel/User mode shared PDE, contains GDT,
* IDT, TSS, LDT, trampoline code and stacks.
* Managed by pmap_trm_alloc().
*/
/*
* How many physical pages per kmem arena virtual page.
*/
#ifndef VM_KMEM_SIZE_SCALE
#define VM_KMEM_SIZE_SCALE (1)
#endif
/*
* Optional floor (in bytes) on the size of the kmem arena.
*/
#ifndef VM_KMEM_SIZE_MIN
#define VM_KMEM_SIZE_MIN (12 * 1024 * 1024)
#endif
/*
* Optional ceiling (in bytes) on the size of the kmem arena: 40% of the
* kernel map rounded to the nearest multiple of the superpage size.
*/
#ifndef VM_KMEM_SIZE_MAX
#define VM_KMEM_SIZE_MAX (((((VM_MAX_KERNEL_ADDRESS - \
VM_MIN_KERNEL_ADDRESS) >> (PDRSHIFT - 2)) + 5) / 10) << PDRSHIFT)
#endif
/* initial pagein size of beginning of executable file */
#ifndef VM_INITIAL_PAGEIN
#define VM_INITIAL_PAGEIN 16
#endif
#define ZERO_REGION_SIZE (64 * 1024) /* 64KB */
#ifndef VM_MAX_AUTOTUNE_MAXUSERS
#define VM_MAX_AUTOTUNE_MAXUSERS 384
#endif
#define SFBUF
#define SFBUF_MAP
#define SFBUF_CPUSET
#define SFBUF_PROCESS_PAGE
#define PMAP_HAS_DMAP 0
#define PHYS_TO_DMAP(x) ({ panic("No direct map exists"); 0; })
#define DMAP_TO_PHYS(x) ({ panic("No direct map exists"); 0; })
/*
* No non-transparent large page support in the pmap.
*/
#define PMAP_HAS_LARGEPAGES 0
/*
* Need a page dump array for minidump.
*/
#define MINIDUMP_PAGE_TRACKING 1
#endif /* _MACHINE_VMPARAM_H_ */