Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*-
 * Copyright (c) 2014 Chelsio Communications, Inc.
 * All rights reserved.
 * Written by: Navdeep Parhar <np@FreeBSD.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <machine/cpu.h>
#include <net/mp_ring.h>

union ring_state {
	struct {
		uint16_t pidx_head;
		uint16_t pidx_tail;
		uint16_t cidx;
		uint16_t flags;
	};
	uint64_t state;
};

enum {
	IDLE = 0,	/* consumer ran to completion, nothing more to do. */
	BUSY,		/* consumer is running already, or will be shortly. */
	STALLED,	/* consumer stopped due to lack of resources. */
	ABDICATED,	/* consumer stopped even though there was work to be
			   done because it wants another thread to take over. */
};

static inline uint16_t
space_available(struct ifmp_ring *r, union ring_state s)
{
	uint16_t x = r->size - 1;

	if (s.cidx == s.pidx_head)
		return (x);
	else if (s.cidx > s.pidx_head)
		return (s.cidx - s.pidx_head - 1);
	else
		return (x - s.pidx_head + s.cidx);
}

static inline uint16_t
increment_idx(struct ifmp_ring *r, uint16_t idx, uint16_t n)
{
	int x = r->size - idx;

	MPASS(x > 0);
	return (x > n ? idx + n : n - x);
}

/* Consumer is about to update the ring's state to s */
static inline uint16_t
state_to_flags(union ring_state s, int abdicate)
{

	if (s.cidx == s.pidx_tail)
		return (IDLE);
	else if (abdicate && s.pidx_tail != s.pidx_head)
		return (ABDICATED);

	return (BUSY);
}

#ifdef MP_RING_NO_64BIT_ATOMICS
static void
drain_ring_locked(struct ifmp_ring *r, union ring_state os, uint16_t prev, int budget)
{
	union ring_state ns;
	int n, pending, total;
	uint16_t cidx = os.cidx;
	uint16_t pidx = os.pidx_tail;

	MPASS(os.flags == BUSY);
	MPASS(cidx != pidx);

	if (prev == IDLE)
		counter_u64_add(r->starts, 1);
	pending = 0;
	total = 0;

	while (cidx != pidx) {
		/* Items from cidx to pidx are available for consumption. */
		n = r->drain(r, cidx, pidx);
		if (n == 0) {
			os.state = ns.state = r->state;
			ns.cidx = cidx;
			ns.flags = STALLED;
			r->state = ns.state;
			if (prev != STALLED)
				counter_u64_add(r->stalls, 1);
			else if (total > 0) {
				counter_u64_add(r->restarts, 1);
				counter_u64_add(r->stalls, 1);
			}
			break;
		}
		cidx = increment_idx(r, cidx, n);
		pending += n;
		total += n;

		/*
		 * We update the cidx only if we've caught up with the pidx, the
		 * real cidx is getting too far ahead of the one visible to
		 * everyone else, or we have exceeded our budget.
		 */
		if (cidx != pidx && pending < 64 && total < budget)
			continue;

		os.state = ns.state = r->state;
		ns.cidx = cidx;
		ns.flags = state_to_flags(ns, total >= budget);
		r->state = ns.state;

		if (ns.flags == ABDICATED)
			counter_u64_add(r->abdications, 1);
		if (ns.flags != BUSY) {
			/* Wrong loop exit if we're going to stall. */
			MPASS(ns.flags != STALLED);
			if (prev == STALLED) {
				MPASS(total > 0);
				counter_u64_add(r->restarts, 1);
			}
			break;
		}

		/*
		 * The acquire style atomic above guarantees visibility of items
		 * associated with any pidx change that we notice here.
		 */
		pidx = ns.pidx_tail;
		pending = 0;
	}
}
#else
/*
 * Caller passes in a state, with a guarantee that there is work to do and that
 * all items up to the pidx_tail in the state are visible.
 */
static void
drain_ring_lockless(struct ifmp_ring *r, union ring_state os, uint16_t prev, int budget)
{
	union ring_state ns;
	int n, pending, total;
	uint16_t cidx = os.cidx;
	uint16_t pidx = os.pidx_tail;

	MPASS(os.flags == BUSY);
	MPASS(cidx != pidx);

	if (prev == IDLE)
		counter_u64_add(r->starts, 1);
	pending = 0;
	total = 0;

	while (cidx != pidx) {
		/* Items from cidx to pidx are available for consumption. */
		n = r->drain(r, cidx, pidx);
		if (n == 0) {
			critical_enter();
			os.state = r->state;
			do {
				ns.state = os.state;
				ns.cidx = cidx;
				ns.flags = STALLED;
			} while (atomic_fcmpset_64(&r->state, &os.state,
			    ns.state) == 0);
			critical_exit();
			if (prev != STALLED)
				counter_u64_add(r->stalls, 1);
			else if (total > 0) {
				counter_u64_add(r->restarts, 1);
				counter_u64_add(r->stalls, 1);
			}
			break;
		}
		cidx = increment_idx(r, cidx, n);
		pending += n;
		total += n;

		/*
		 * We update the cidx only if we've caught up with the pidx, the
		 * real cidx is getting too far ahead of the one visible to
		 * everyone else, or we have exceeded our budget.
		 */
		if (cidx != pidx && pending < 64 && total < budget)
			continue;
		critical_enter();
		os.state = r->state;
		do {
			ns.state = os.state;
			ns.cidx = cidx;
			ns.flags = state_to_flags(ns, total >= budget);
		} while (atomic_fcmpset_acq_64(&r->state, &os.state,
		    ns.state) == 0);
		critical_exit();

		if (ns.flags == ABDICATED)
			counter_u64_add(r->abdications, 1);
		if (ns.flags != BUSY) {
			/* Wrong loop exit if we're going to stall. */
			MPASS(ns.flags != STALLED);
			if (prev == STALLED) {
				MPASS(total > 0);
				counter_u64_add(r->restarts, 1);
			}
			break;
		}

		/*
		 * The acquire style atomic above guarantees visibility of items
		 * associated with any pidx change that we notice here.
		 */
		pidx = ns.pidx_tail;
		pending = 0;
	}
}
#endif

int
ifmp_ring_alloc(struct ifmp_ring **pr, int size, void *cookie, mp_ring_drain_t drain,
    mp_ring_can_drain_t can_drain, struct malloc_type *mt, int flags)
{
	struct ifmp_ring *r;

	/* All idx are 16b so size can be 65536 at most */
	if (pr == NULL || size < 2 || size > 65536 || drain == NULL ||
	    can_drain == NULL)
		return (EINVAL);
	*pr = NULL;
	flags &= M_NOWAIT | M_WAITOK;
	MPASS(flags != 0);

	r = malloc(__offsetof(struct ifmp_ring, items[size]), mt, flags | M_ZERO);
	if (r == NULL)
		return (ENOMEM);
	r->size = size;
	r->cookie = cookie;
	r->mt = mt;
	r->drain = drain;
	r->can_drain = can_drain;
	r->enqueues = counter_u64_alloc(flags);
	r->drops = counter_u64_alloc(flags);
	r->starts = counter_u64_alloc(flags);
	r->stalls = counter_u64_alloc(flags);
	r->restarts = counter_u64_alloc(flags);
	r->abdications = counter_u64_alloc(flags);
	if (r->enqueues == NULL || r->drops == NULL || r->starts == NULL ||
	    r->stalls == NULL || r->restarts == NULL ||
	    r->abdications == NULL) {
		ifmp_ring_free(r);
		return (ENOMEM);
	}

	*pr = r;
#ifdef MP_RING_NO_64BIT_ATOMICS
	mtx_init(&r->lock, "mp_ring lock", NULL, MTX_DEF);
#endif
	return (0);
}

void
ifmp_ring_free(struct ifmp_ring *r)
{

	if (r == NULL)
		return;

	if (r->enqueues != NULL)
		counter_u64_free(r->enqueues);
	if (r->drops != NULL)
		counter_u64_free(r->drops);
	if (r->starts != NULL)
		counter_u64_free(r->starts);
	if (r->stalls != NULL)
		counter_u64_free(r->stalls);
	if (r->restarts != NULL)
		counter_u64_free(r->restarts);
	if (r->abdications != NULL)
		counter_u64_free(r->abdications);

	free(r, r->mt);
}

/*
 * Enqueue n items and maybe drain the ring for some time.
 *
 * Returns an errno.
 */
#ifdef MP_RING_NO_64BIT_ATOMICS
int
ifmp_ring_enqueue(struct ifmp_ring *r, void **items, int n, int budget, int abdicate)
{
	union ring_state os, ns;
	uint16_t pidx_start, pidx_stop;
	int i;

	MPASS(items != NULL);
	MPASS(n > 0);

	mtx_lock(&r->lock);
	/*
	 * Reserve room for the new items.  Our reservation, if successful, is
	 * from 'pidx_start' to 'pidx_stop'.
	 */
	os.state = r->state;
	if (n >= space_available(r, os)) {
		counter_u64_add(r->drops, n);
		MPASS(os.flags != IDLE);
		mtx_unlock(&r->lock);
		if (os.flags == STALLED)
			ifmp_ring_check_drainage(r, 0);
		return (ENOBUFS);
	}
	ns.state = os.state;
	ns.pidx_head = increment_idx(r, os.pidx_head, n);
	r->state = ns.state;
	pidx_start = os.pidx_head;
	pidx_stop = ns.pidx_head;

	/*
	 * Wait for other producers who got in ahead of us to enqueue their
	 * items, one producer at a time.  It is our turn when the ring's
	 * pidx_tail reaches the beginning of our reservation (pidx_start).
	 */
	while (ns.pidx_tail != pidx_start) {
		cpu_spinwait();
		ns.state = r->state;
	}

	/* Now it is our turn to fill up the area we reserved earlier. */
	i = pidx_start;
	do {
		r->items[i] = *items++;
		if (__predict_false(++i == r->size))
			i = 0;
	} while (i != pidx_stop);

	/*
	 * Update the ring's pidx_tail.  The release style atomic guarantees
	 * that the items are visible to any thread that sees the updated pidx.
	 */
	os.state = ns.state = r->state;
	ns.pidx_tail = pidx_stop;
	if (abdicate) {
		if (os.flags == IDLE)
			ns.flags = ABDICATED;
	} else
		ns.flags = BUSY;
	r->state = ns.state;
	counter_u64_add(r->enqueues, n);

	if (!abdicate) {
		/*
		 * Turn into a consumer if some other thread isn't active as a consumer
		 * already.
		 */
		if (os.flags != BUSY)
			drain_ring_locked(r, ns, os.flags, budget);
	}

	mtx_unlock(&r->lock);
	return (0);
}
#else
int
ifmp_ring_enqueue(struct ifmp_ring *r, void **items, int n, int budget, int abdicate)
{
	union ring_state os, ns;
	uint16_t pidx_start, pidx_stop;
	int i;

	MPASS(items != NULL);
	MPASS(n > 0);

	/*
	 * Reserve room for the new items.  Our reservation, if successful, is
	 * from 'pidx_start' to 'pidx_stop'.
	 */
	os.state = r->state;
	for (;;) {
		if (n >= space_available(r, os)) {
			counter_u64_add(r->drops, n);
			MPASS(os.flags != IDLE);
			if (os.flags == STALLED)
				ifmp_ring_check_drainage(r, 0);
			return (ENOBUFS);
		}
		ns.state = os.state;
		ns.pidx_head = increment_idx(r, os.pidx_head, n);
		critical_enter();
		if (atomic_fcmpset_64(&r->state, &os.state, ns.state))
			break;
		critical_exit();
		cpu_spinwait();
	}
	pidx_start = os.pidx_head;
	pidx_stop = ns.pidx_head;

	/*
	 * Wait for other producers who got in ahead of us to enqueue their
	 * items, one producer at a time.  It is our turn when the ring's
	 * pidx_tail reaches the beginning of our reservation (pidx_start).
	 */
	while (ns.pidx_tail != pidx_start) {
		cpu_spinwait();
		ns.state = r->state;
	}

	/* Now it is our turn to fill up the area we reserved earlier. */
	i = pidx_start;
	do {
		r->items[i] = *items++;
		if (__predict_false(++i == r->size))
			i = 0;
	} while (i != pidx_stop);

	/*
	 * Update the ring's pidx_tail.  The release style atomic guarantees
	 * that the items are visible to any thread that sees the updated pidx.
	 */
	os.state = r->state;
	do {
		ns.state = os.state;
		ns.pidx_tail = pidx_stop;
		if (abdicate) {
			if (os.flags == IDLE)
				ns.flags = ABDICATED;
		} else
			ns.flags = BUSY;
	} while (atomic_fcmpset_rel_64(&r->state, &os.state, ns.state) == 0);
	critical_exit();
	counter_u64_add(r->enqueues, n);

	if (!abdicate) {
		/*
		 * Turn into a consumer if some other thread isn't active as a consumer
		 * already.
		 */
		if (os.flags != BUSY)
			drain_ring_lockless(r, ns, os.flags, budget);
	}

	return (0);
}
#endif

void
ifmp_ring_check_drainage(struct ifmp_ring *r, int budget)
{
	union ring_state os, ns;

	os.state = r->state;
	if ((os.flags != STALLED && os.flags != ABDICATED) ||	// Only continue in STALLED and ABDICATED
	    os.pidx_head != os.pidx_tail ||			// Require work to be available
	    (os.flags != ABDICATED && r->can_drain(r) == 0))	// Can either drain, or everyone left
		return;

	MPASS(os.cidx != os.pidx_tail);	/* implied by STALLED */
	ns.state = os.state;
	ns.flags = BUSY;

#ifdef MP_RING_NO_64BIT_ATOMICS
	mtx_lock(&r->lock);
	if (r->state != os.state) {
		mtx_unlock(&r->lock);
		return;
	}
	r->state = ns.state;
	drain_ring_locked(r, ns, os.flags, budget);
	mtx_unlock(&r->lock);
#else
	/*
	 * The acquire style atomic guarantees visibility of items associated
	 * with the pidx that we read here.
	 */
	if (!atomic_cmpset_acq_64(&r->state, os.state, ns.state))
		return;

	drain_ring_lockless(r, ns, os.flags, budget);
#endif
}

void
ifmp_ring_reset_stats(struct ifmp_ring *r)
{

	counter_u64_zero(r->enqueues);
	counter_u64_zero(r->drops);
	counter_u64_zero(r->starts);
	counter_u64_zero(r->stalls);
	counter_u64_zero(r->restarts);
	counter_u64_zero(r->abdications);
}

int
ifmp_ring_is_idle(struct ifmp_ring *r)
{
	union ring_state s;

	s.state = r->state;
	if (s.pidx_head == s.pidx_tail && s.pidx_tail == s.cidx &&
	    s.flags == IDLE)
		return (1);

	return (0);
}

int
ifmp_ring_is_stalled(struct ifmp_ring *r)
{
	union ring_state s;

	s.state = r->state;
	if (s.pidx_head == s.pidx_tail && s.flags == STALLED)
		return (1);

	return (0);
}