Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1982, 1986, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)ffs_subr.c	8.5 (Berkeley) 3/21/95
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>

#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys/errno.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ffs/fs.h>

uint32_t calculate_crc32c(uint32_t, const void *, size_t);
uint32_t ffs_calc_sbhash(struct fs *);
struct malloc_type;
#define UFS_MALLOC(size, type, flags) malloc(size)
#define UFS_FREE(ptr, type) free(ptr)
/*
 * Request standard superblock location in ffs_sbget
 */
#define	STDSB			-1	/* Fail if check-hash is bad */
#define	STDSB_NOHASHFAIL	-2	/* Ignore check-hash failure */

#else /* _KERNEL */
#include <sys/systm.h>
#include <sys/gsb_crc32.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/ucred.h>

#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ffs/fs.h>

#define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
#define UFS_FREE(ptr, type) free(ptr, type)

#endif /* _KERNEL */

/*
 * Verify an inode check-hash.
 */
int
ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{
	uint32_t ckhash, save_ckhash;

	/*
	 * Return success if unallocated or we are not doing inode check-hash.
	 */
	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
		return (0);
	/*
	 * Exclude di_ckhash from the crc32 calculation, e.g., always use
	 * a check-hash value of zero when calculating the check-hash.
	 */
	save_ckhash = dip->di_ckhash;
	dip->di_ckhash = 0;
	ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
	dip->di_ckhash = save_ckhash;
	if (save_ckhash == ckhash)
		return (0);
	return (EINVAL);
}

/*
 * Update an inode check-hash.
 */
void
ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
{

	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
		return;
	/*
	 * Exclude old di_ckhash from the crc32 calculation, e.g., always use
	 * a check-hash value of zero when calculating the new check-hash.
	 */
	dip->di_ckhash = 0;
	dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
}

/*
 * These are the low-level functions that actually read and write
 * the superblock and its associated data.
 */
static off_t sblock_try[] = SBLOCKSEARCH;
static int readsuper(void *, struct fs **, off_t, int, int,
	int (*)(void *, off_t, void **, int));

/*
 * Read a superblock from the devfd device.
 *
 * If an alternate superblock is specified, it is read. Otherwise the
 * set of locations given in the SBLOCKSEARCH list is searched for a
 * superblock. Memory is allocated for the superblock by the readfunc and
 * is returned. If filltype is non-NULL, additional memory is allocated
 * of type filltype and filled in with the superblock summary information.
 * All memory is freed when any error is returned.
 *
 * If a superblock is found, zero is returned. Otherwise one of the
 * following error values is returned:
 *     EIO: non-existent or truncated superblock.
 *     EIO: error reading summary information.
 *     ENOENT: no usable known superblock found.
 *     ENOSPC: failed to allocate space for the superblock.
 *     EINVAL: The previous newfs operation on this volume did not complete.
 *         The administrator must complete newfs before using this volume.
 */
int
ffs_sbget(void *devfd, struct fs **fsp, off_t altsblock,
    struct malloc_type *filltype,
    int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
	struct fs *fs;
	struct fs_summary_info *fs_si;
	int i, error, size, blks;
	uint8_t *space;
	int32_t *lp;
	int chkhash;
	char *buf;

	fs = NULL;
	*fsp = NULL;
	if (altsblock >= 0) {
		if ((error = readsuper(devfd, &fs, altsblock, 1, 0,
		     readfunc)) != 0) {
			if (fs != NULL)
				UFS_FREE(fs, filltype);
			return (error);
		}
	} else {
		chkhash = 1;
		if (altsblock == STDSB_NOHASHFAIL)
			chkhash = 0;
		for (i = 0; sblock_try[i] != -1; i++) {
			if ((error = readsuper(devfd, &fs, sblock_try[i], 0,
			     chkhash, readfunc)) == 0)
				break;
			if (fs != NULL) {
				UFS_FREE(fs, filltype);
				fs = NULL;
			}
			if (error == ENOENT)
				continue;
			return (error);
		}
		if (sblock_try[i] == -1)
			return (ENOENT);
	}
	/*
	 * Read in the superblock summary information.
	 */
	size = fs->fs_cssize;
	blks = howmany(size, fs->fs_fsize);
	if (fs->fs_contigsumsize > 0)
		size += fs->fs_ncg * sizeof(int32_t);
	size += fs->fs_ncg * sizeof(u_int8_t);
	/* When running in libufs or libsa, UFS_MALLOC may fail */
	if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_WAITOK)) == NULL) {
		UFS_FREE(fs, filltype);
		return (ENOSPC);
	}
	bzero(fs_si, sizeof(*fs_si));
	fs->fs_si = fs_si;
	if ((space = UFS_MALLOC(size, filltype, M_WAITOK)) == NULL) {
		UFS_FREE(fs->fs_si, filltype);
		UFS_FREE(fs, filltype);
		return (ENOSPC);
	}
	fs->fs_csp = (struct csum *)space;
	for (i = 0; i < blks; i += fs->fs_frag) {
		size = fs->fs_bsize;
		if (i + fs->fs_frag > blks)
			size = (blks - i) * fs->fs_fsize;
		buf = NULL;
		error = (*readfunc)(devfd,
		    dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
		if (error) {
			if (buf != NULL)
				UFS_FREE(buf, filltype);
			UFS_FREE(fs->fs_csp, filltype);
			UFS_FREE(fs->fs_si, filltype);
			UFS_FREE(fs, filltype);
			return (error);
		}
		memcpy(space, buf, size);
		UFS_FREE(buf, filltype);
		space += size;
	}
	if (fs->fs_contigsumsize > 0) {
		fs->fs_maxcluster = lp = (int32_t *)space;
		for (i = 0; i < fs->fs_ncg; i++)
			*lp++ = fs->fs_contigsumsize;
		space = (uint8_t *)lp;
	}
	size = fs->fs_ncg * sizeof(u_int8_t);
	fs->fs_contigdirs = (u_int8_t *)space;
	bzero(fs->fs_contigdirs, size);
	*fsp = fs;
	return (0);
}

/*
 * Try to read a superblock from the location specified by sblockloc.
 * Return zero on success or an errno on failure.
 */
static int
readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int isaltsblk,
    int chkhash, int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
	struct fs *fs;
	int error, res;
	uint32_t ckhash;

	error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
	if (error != 0)
		return (error);
	fs = *fsp;
	if (fs->fs_magic == FS_BAD_MAGIC)
		return (EINVAL);
	if (((fs->fs_magic == FS_UFS1_MAGIC && (isaltsblk ||
	      sblockloc <= SBLOCK_UFS1)) ||
	     (fs->fs_magic == FS_UFS2_MAGIC && (isaltsblk ||
	      sblockloc == fs->fs_sblockloc))) &&
	    fs->fs_ncg >= 1 &&
	    fs->fs_bsize >= MINBSIZE &&
	    fs->fs_bsize <= MAXBSIZE &&
	    fs->fs_bsize >= roundup(sizeof(struct fs), DEV_BSIZE) &&
	    fs->fs_sbsize <= SBLOCKSIZE) {
		/*
		 * If the filesystem has been run on a kernel without
		 * metadata check hashes, disable them.
		 */
		if ((fs->fs_flags & FS_METACKHASH) == 0)
			fs->fs_metackhash = 0;
		/*
		 * Clear any check-hashes that are not maintained
		 * by this kernel. Also clear any unsupported flags.
		 */
		fs->fs_metackhash &= CK_SUPPORTED;
		fs->fs_flags &= FS_SUPPORTED;
		if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
#ifdef _KERNEL
			res = uprintf("Superblock check-hash failed: recorded "
			    "check-hash 0x%x != computed check-hash 0x%x%s\n",
			    fs->fs_ckhash, ckhash,
			    chkhash == 0 ? " (Ignored)" : "");
#else
			res = 0;
#endif
			/*
			 * Print check-hash failure if no controlling terminal
			 * in kernel or always if in user-mode (libufs).
			 */
			if (res == 0)
				printf("Superblock check-hash failed: recorded "
				    "check-hash 0x%x != computed check-hash "
				    "0x%x%s\n", fs->fs_ckhash, ckhash,
				    chkhash == 0 ? " (Ignored)" : "");
			if (chkhash == 0) {
				fs->fs_flags |= FS_NEEDSFSCK;
				fs->fs_fmod = 1;
				return (0);
			}
			fs->fs_fmod = 0;
			return (EINTEGRITY);
		}
		/* Have to set for old filesystems that predate this field */
		fs->fs_sblockactualloc = sblockloc;
		/* Not yet any summary information */
		fs->fs_si = NULL;
		return (0);
	}
	return (ENOENT);
}

/*
 * Write a superblock to the devfd device from the memory pointed to by fs.
 * Write out the superblock summary information if it is present.
 *
 * If the write is successful, zero is returned. Otherwise one of the
 * following error values is returned:
 *     EIO: failed to write superblock.
 *     EIO: failed to write superblock summary information.
 */
int
ffs_sbput(void *devfd, struct fs *fs, off_t loc,
    int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
{
	int i, error, blks, size;
	uint8_t *space;

	/*
	 * If there is summary information, write it first, so if there
	 * is an error, the superblock will not be marked as clean.
	 */
	if (fs->fs_si != NULL && fs->fs_csp != NULL) {
		blks = howmany(fs->fs_cssize, fs->fs_fsize);
		space = (uint8_t *)fs->fs_csp;
		for (i = 0; i < blks; i += fs->fs_frag) {
			size = fs->fs_bsize;
			if (i + fs->fs_frag > blks)
				size = (blks - i) * fs->fs_fsize;
			if ((error = (*writefunc)(devfd,
			     dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
			     space, size)) != 0)
				return (error);
			space += size;
		}
	}
	fs->fs_fmod = 0;
#ifndef _KERNEL
	{
		struct fs_summary_info *fs_si;

		fs->fs_time = time(NULL);
		/* Clear the pointers for the duration of writing. */
		fs_si = fs->fs_si;
		fs->fs_si = NULL;
		fs->fs_ckhash = ffs_calc_sbhash(fs);
		error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
		fs->fs_si = fs_si;
	}
#else /* _KERNEL */
	fs->fs_time = time_second;
	fs->fs_ckhash = ffs_calc_sbhash(fs);
	error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
#endif /* _KERNEL */
	return (error);
}

/*
 * Calculate the check-hash for a superblock.
 */
uint32_t
ffs_calc_sbhash(struct fs *fs)
{
	uint32_t ckhash, save_ckhash;

	/*
	 * A filesystem that was using a superblock ckhash may be moved
	 * to an older kernel that does not support ckhashes. The
	 * older kernel will clear the FS_METACKHASH flag indicating
	 * that it does not update hashes. When the disk is moved back
	 * to a kernel capable of ckhashes it disables them on mount:
	 *
	 *	if ((fs->fs_flags & FS_METACKHASH) == 0)
	 *		fs->fs_metackhash = 0;
	 *
	 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
	 * old stale value in the fs->fs_ckhash field. Thus the need to
	 * just accept what is there.
	 */
	if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
		return (fs->fs_ckhash);

	save_ckhash = fs->fs_ckhash;
	fs->fs_ckhash = 0;
	/*
	 * If newly read from disk, the caller is responsible for
	 * verifying that fs->fs_sbsize <= SBLOCKSIZE.
	 */
	ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
	fs->fs_ckhash = save_ckhash;
	return (ckhash);
}

/*
 * Update the frsum fields to reflect addition or deletion
 * of some frags.
 */
void
ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
{
	int inblk;
	int field, subfield;
	int siz, pos;

	inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
	fragmap <<= 1;
	for (siz = 1; siz < fs->fs_frag; siz++) {
		if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
			continue;
		field = around[siz];
		subfield = inside[siz];
		for (pos = siz; pos <= fs->fs_frag; pos++) {
			if ((fragmap & field) == subfield) {
				fraglist[siz] += cnt;
				pos += siz;
				field <<= siz;
				subfield <<= siz;
			}
			field <<= 1;
			subfield <<= 1;
		}
	}
}

/*
 * block operations
 *
 * check if a block is available
 */
int
ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
{
	unsigned char mask;

	switch ((int)fs->fs_frag) {
	case 8:
		return (cp[h] == 0xff);
	case 4:
		mask = 0x0f << ((h & 0x1) << 2);
		return ((cp[h >> 1] & mask) == mask);
	case 2:
		mask = 0x03 << ((h & 0x3) << 1);
		return ((cp[h >> 2] & mask) == mask);
	case 1:
		mask = 0x01 << (h & 0x7);
		return ((cp[h >> 3] & mask) == mask);
	default:
#ifdef _KERNEL
		panic("ffs_isblock");
#endif
		break;
	}
	return (0);
}

/*
 * check if a block is free
 */
int
ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
{

	switch ((int)fs->fs_frag) {
	case 8:
		return (cp[h] == 0);
	case 4:
		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
	case 2:
		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
	case 1:
		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
	default:
#ifdef _KERNEL
		panic("ffs_isfreeblock");
#endif
		break;
	}
	return (0);
}

/*
 * take a block out of the map
 */
void
ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
{

	switch ((int)fs->fs_frag) {
	case 8:
		cp[h] = 0;
		return;
	case 4:
		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
		return;
	case 2:
		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
		return;
	case 1:
		cp[h >> 3] &= ~(0x01 << (h & 0x7));
		return;
	default:
#ifdef _KERNEL
		panic("ffs_clrblock");
#endif
		break;
	}
}

/*
 * put a block into the map
 */
void
ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
{

	switch ((int)fs->fs_frag) {
	case 8:
		cp[h] = 0xff;
		return;
	case 4:
		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
		return;
	case 2:
		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
		return;
	case 1:
		cp[h >> 3] |= (0x01 << (h & 0x7));
		return;
	default:
#ifdef _KERNEL
		panic("ffs_setblock");
#endif
		break;
	}
}

/*
 * Update the cluster map because of an allocation or free.
 *
 * Cnt == 1 means free; cnt == -1 means allocating.
 */
void
ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
{
	int32_t *sump;
	int32_t *lp;
	u_char *freemapp, *mapp;
	int i, start, end, forw, back, map;
	u_int bit;

	if (fs->fs_contigsumsize <= 0)
		return;
	freemapp = cg_clustersfree(cgp);
	sump = cg_clustersum(cgp);
	/*
	 * Allocate or clear the actual block.
	 */
	if (cnt > 0)
		setbit(freemapp, blkno);
	else
		clrbit(freemapp, blkno);
	/*
	 * Find the size of the cluster going forward.
	 */
	start = blkno + 1;
	end = start + fs->fs_contigsumsize;
	if (end >= cgp->cg_nclusterblks)
		end = cgp->cg_nclusterblks;
	mapp = &freemapp[start / NBBY];
	map = *mapp++;
	bit = 1U << (start % NBBY);
	for (i = start; i < end; i++) {
		if ((map & bit) == 0)
			break;
		if ((i & (NBBY - 1)) != (NBBY - 1)) {
			bit <<= 1;
		} else {
			map = *mapp++;
			bit = 1;
		}
	}
	forw = i - start;
	/*
	 * Find the size of the cluster going backward.
	 */
	start = blkno - 1;
	end = start - fs->fs_contigsumsize;
	if (end < 0)
		end = -1;
	mapp = &freemapp[start / NBBY];
	map = *mapp--;
	bit = 1U << (start % NBBY);
	for (i = start; i > end; i--) {
		if ((map & bit) == 0)
			break;
		if ((i & (NBBY - 1)) != 0) {
			bit >>= 1;
		} else {
			map = *mapp--;
			bit = 1U << (NBBY - 1);
		}
	}
	back = start - i;
	/*
	 * Account for old cluster and the possibly new forward and
	 * back clusters.
	 */
	i = back + forw + 1;
	if (i > fs->fs_contigsumsize)
		i = fs->fs_contigsumsize;
	sump[i] += cnt;
	if (back > 0)
		sump[back] -= cnt;
	if (forw > 0)
		sump[forw] -= cnt;
	/*
	 * Update cluster summary information.
	 */
	lp = &sump[fs->fs_contigsumsize];
	for (i = fs->fs_contigsumsize; i > 0; i--)
		if (*lp-- > 0)
			break;
	fs->fs_maxcluster[cgp->cg_cgx] = i;
}