Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2008 Poul-Henning Kamp
 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_acpi.h"
#include "opt_isa.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/timeet.h>

#include <isa/rtc.h>
#ifdef DEV_ISA
#include <isa/isareg.h>
#include <isa/isavar.h>
#endif
#include <machine/intr_machdep.h>
#include "clock_if.h"
#ifdef DEV_ACPI
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <machine/md_var.h>
#endif

/*
 * atrtc_lock protects low-level access to individual hardware registers.
 * atrtc_time_lock protects the entire sequence of accessing multiple registers
 * to read or write the date and time.
 */
static struct mtx atrtc_lock;
MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN);

/* Force RTC enabled/disabled. */
static int atrtc_enabled = -1;
TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled);

struct mtx atrtc_time_lock;
MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF);

int	atrtcclock_disable = 0;

static	int	rtc_reg = -1;
static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static	u_char	rtc_statusb = RTCSB_24HR;

#ifdef DEV_ACPI
#define	_COMPONENT	ACPI_TIMER
ACPI_MODULE_NAME("ATRTC")
#endif

/*
 * RTC support routines
 */

static inline u_char
rtcin_locked(int reg)
{

	if (rtc_reg != reg) {
		inb(0x84);
		outb(IO_RTC, reg);
		rtc_reg = reg;
		inb(0x84);
	}
	return (inb(IO_RTC + 1));
}

static inline void
rtcout_locked(int reg, u_char val)
{

	if (rtc_reg != reg) {
		inb(0x84);
		outb(IO_RTC, reg);
		rtc_reg = reg;
		inb(0x84);
	}
	outb(IO_RTC + 1, val);
	inb(0x84);
}

int
rtcin(int reg)
{
	u_char val;

	mtx_lock_spin(&atrtc_lock);
	val = rtcin_locked(reg);
	mtx_unlock_spin(&atrtc_lock);
	return (val);
}

void
writertc(int reg, u_char val)
{

	mtx_lock_spin(&atrtc_lock);
	rtcout_locked(reg, val);
	mtx_unlock_spin(&atrtc_lock);
}

static void
atrtc_start(void)
{

	mtx_lock_spin(&atrtc_lock);
	rtcout_locked(RTC_STATUSA, rtc_statusa);
	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
	mtx_unlock_spin(&atrtc_lock);
}

static void
atrtc_rate(unsigned rate)
{

	rtc_statusa = RTCSA_DIVIDER | rate;
	writertc(RTC_STATUSA, rtc_statusa);
}

static void
atrtc_enable_intr(void)
{

	rtc_statusb |= RTCSB_PINTR;
	mtx_lock_spin(&atrtc_lock);
	rtcout_locked(RTC_STATUSB, rtc_statusb);
	rtcin_locked(RTC_INTR);
	mtx_unlock_spin(&atrtc_lock);
}

static void
atrtc_disable_intr(void)
{

	rtc_statusb &= ~RTCSB_PINTR;
	mtx_lock_spin(&atrtc_lock);
	rtcout_locked(RTC_STATUSB, rtc_statusb);
	rtcin_locked(RTC_INTR);
	mtx_unlock_spin(&atrtc_lock);
}

void
atrtc_restore(void)
{

	/* Restore all of the RTC's "status" (actually, control) registers. */
	mtx_lock_spin(&atrtc_lock);
	rtcin_locked(RTC_STATUSA);	/* dummy to get rtc_reg set */
	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
	rtcout_locked(RTC_STATUSA, rtc_statusa);
	rtcout_locked(RTC_STATUSB, rtc_statusb);
	rtcin_locked(RTC_INTR);
	mtx_unlock_spin(&atrtc_lock);
}

/**********************************************************************
 * RTC driver for subr_rtc
 */

struct atrtc_softc {
	int port_rid, intr_rid;
	struct resource *port_res;
	struct resource *intr_res;
	void *intr_handler;
	struct eventtimer et;
#ifdef DEV_ACPI
	ACPI_HANDLE acpi_handle;
#endif
};

static int
rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{

	atrtc_rate(max(fls(period + (period >> 1)) - 17, 1));
	atrtc_enable_intr();
	return (0);
}

static int
rtc_stop(struct eventtimer *et)
{

	atrtc_disable_intr();
	return (0);
}

/*
 * This routine receives statistical clock interrupts from the RTC.
 * As explained above, these occur at 128 interrupts per second.
 * When profiling, we receive interrupts at a rate of 1024 Hz.
 *
 * This does not actually add as much overhead as it sounds, because
 * when the statistical clock is active, the hardclock driver no longer
 * needs to keep (inaccurate) statistics on its own.  This decouples
 * statistics gathering from scheduling interrupts.
 *
 * The RTC chip requires that we read status register C (RTC_INTR)
 * to acknowledge an interrupt, before it will generate the next one.
 * Under high interrupt load, rtcintr() can be indefinitely delayed and
 * the clock can tick immediately after the read from RTC_INTR.  In this
 * case, the mc146818A interrupt signal will not drop for long enough
 * to register with the 8259 PIC.  If an interrupt is missed, the stat
 * clock will halt, considerably degrading system performance.  This is
 * why we use 'while' rather than a more straightforward 'if' below.
 * Stat clock ticks can still be lost, causing minor loss of accuracy
 * in the statistics, but the stat clock will no longer stop.
 */
static int
rtc_intr(void *arg)
{
	struct atrtc_softc *sc = (struct atrtc_softc *)arg;
	int flag = 0;

	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
		flag = 1;
		if (sc->et.et_active)
			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
	}
	return(flag ? FILTER_HANDLED : FILTER_STRAY);
}

#ifdef DEV_ACPI
/*
 *  ACPI RTC CMOS address space handler
 */
#define	ATRTC_LAST_REG	0x40

static void
rtcin_region(int reg, void *buf, int len)
{
	u_char *ptr = buf;

	/* Drop lock after each IO as intr and settime have greater priority */
	while (len-- > 0)
		*ptr++ = rtcin(reg++) & 0xff;
}

static void
rtcout_region(int reg, const void *buf, int len)
{
	const u_char *ptr = buf;

	while (len-- > 0)
		writertc(reg++, *ptr++);
}

static bool
atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len)
{

	/* Block address space wrapping on out-of-bound access */
	if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG)
		return (false);

	if (is_read) {
		/* Reading 0x0C will muck with interrupts */
		if (addr <= RTC_INTR && addr + len > RTC_INTR)
			return (false);
	} else {
		/*
		 * Allow single-byte writes to alarm registers and
		 * multi-byte writes to addr >= 0x30, else deny.
		 */
		if (!((len == 1 && (addr == RTC_SECALRM ||
				    addr == RTC_MINALRM ||
				    addr == RTC_HRSALRM)) ||
		      addr >= 0x30))
			return (false);
	}
	return (true);
}

static ACPI_STATUS
atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr,
    UINT32 bitwidth, UINT64 *value, void *context, void *region_context)
{
	device_t dev = context;
	UINT32 bytewidth = howmany(bitwidth, 8);
	bool is_read = func == ACPI_READ;

	/* ACPICA is very verbose on CMOS handler failures, so we, too */
#define	CMOS_HANDLER_ERR(fmt, ...) \
	device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__)

	ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);

	if (value == NULL) {
		CMOS_HANDLER_ERR("NULL parameter\n");
		return (AE_BAD_PARAMETER);
	}
	if (bitwidth == 0 || (bitwidth & 0x07) != 0) {
		CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth);
		return (AE_BAD_PARAMETER);
	}
	if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) {
		CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n",
		    is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth);
		return (AE_BAD_PARAMETER);
	}

	switch (func) {
	case ACPI_READ:
		rtcin_region(addr, value, bytewidth);
		break;
	case ACPI_WRITE:
		rtcout_region(addr, value, bytewidth);
		break;
	default:
		CMOS_HANDLER_ERR("Invalid function: %u\n", func);
		return (AE_BAD_PARAMETER);
	}

	ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev),
	    "ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n",
	    is_read ? "read" : "write", (unsigned)addr, bytewidth,
	    bytewidth, value, " ");

	return (AE_OK);
}

static int
atrtc_reg_acpi_cmos_handler(device_t dev)
{
	struct atrtc_softc *sc = device_get_softc(dev);

	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);

	/* Don't handle address space events if driver is disabled. */
	if (acpi_disabled("atrtc"))
		return (ENXIO);

	sc->acpi_handle = acpi_get_handle(dev);
	if (sc->acpi_handle == NULL ||
	    ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle,
	      ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) {
		sc->acpi_handle = NULL;
		device_printf(dev,
		    "Can't register ACPI CMOS address space handler\n");
		return (ENXIO);
        }

        return (0);
}

static int
atrtc_unreg_acpi_cmos_handler(device_t dev)
{
	struct atrtc_softc *sc = device_get_softc(dev);

	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);

	if (sc->acpi_handle != NULL)
		AcpiRemoveAddressSpaceHandler(sc->acpi_handle,
		    ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler);

	return (0);
}
#endif	/* DEV_ACPI */

/*
 * Attach to the ISA PnP descriptors for the timer and realtime clock.
 */
static struct isa_pnp_id atrtc_ids[] = {
	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
	{ 0 }
};

static bool
atrtc_acpi_disabled(void)
{
#ifdef DEV_ACPI
	uint16_t flags;

	if (!acpi_get_fadt_bootflags(&flags))
		return (false);
	return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0);
#else
	return (false);
#endif
}

static int
atrtc_probe(device_t dev)
{
	int result;

	if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) ||
	    (atrtc_enabled == 0))
		return (ENXIO);

	result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids);
	/* ENOENT means no PnP-ID, device is hinted. */
	if (result == ENOENT) {
		device_set_desc(dev, "AT realtime clock");
		return (BUS_PROBE_LOW_PRIORITY);
	}
	return (result);
}

static int
atrtc_attach(device_t dev)
{
	struct atrtc_softc *sc;
	rman_res_t s;
	int i;

	sc = device_get_softc(dev);
	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
	    IO_RTC, IO_RTC + 1, 2, RF_ACTIVE);
	if (sc->port_res == NULL)
		device_printf(dev, "Warning: Couldn't map I/O.\n");
	atrtc_start();
	clock_register(dev, 1000000);
	bzero(&sc->et, sizeof(struct eventtimer));
	if (!atrtcclock_disable &&
	    (resource_int_value(device_get_name(dev), device_get_unit(dev),
	     "clock", &i) != 0 || i != 0)) {
		sc->intr_rid = 0;
		while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
		    &s, NULL) == 0 && s != 8)
			sc->intr_rid++;
		sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
		    &sc->intr_rid, 8, 8, 1, RF_ACTIVE);
		if (sc->intr_res == NULL) {
			device_printf(dev, "Can't map interrupt.\n");
			return (0);
		} else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
		    rtc_intr, NULL, sc, &sc->intr_handler))) {
			device_printf(dev, "Can't setup interrupt.\n");
			return (0);
		} else { 
			/* Bind IRQ to BSP to avoid live migration. */
			bus_bind_intr(dev, sc->intr_res, 0);
		}
		sc->et.et_name = "RTC";
		sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV;
		sc->et.et_quality = 0;
		sc->et.et_frequency = 32768;
		sc->et.et_min_period = 0x00080000;
		sc->et.et_max_period = 0x80000000;
		sc->et.et_start = rtc_start;
		sc->et.et_stop = rtc_stop;
		sc->et.et_priv = dev;
		et_register(&sc->et);
	}
	return(0);
}

static int
atrtc_isa_attach(device_t dev)
{

	return (atrtc_attach(dev));
}

#ifdef DEV_ACPI
static int
atrtc_acpi_attach(device_t dev)
{
	int ret;

	ret = atrtc_attach(dev);
	if (ret)
		return (ret);

	(void)atrtc_reg_acpi_cmos_handler(dev);

	return (0);
}

static int
atrtc_acpi_detach(device_t dev)
{

	(void)atrtc_unreg_acpi_cmos_handler(dev);
	return (0);
}
#endif	/* DEV_ACPI */

static int
atrtc_resume(device_t dev)
{

	atrtc_restore();
	return(0);
}

static int
atrtc_settime(device_t dev __unused, struct timespec *ts)
{
	struct bcd_clocktime bct;

	clock_ts_to_bcd(ts, &bct, false);
	clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct);

	mtx_lock(&atrtc_time_lock);
	mtx_lock_spin(&atrtc_lock);

	/* Disable RTC updates and interrupts.  */
	rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);

	/* Write all the time registers. */
	rtcout_locked(RTC_SEC,   bct.sec);
	rtcout_locked(RTC_MIN,   bct.min);
	rtcout_locked(RTC_HRS,   bct.hour);
	rtcout_locked(RTC_WDAY,  bct.dow + 1);
	rtcout_locked(RTC_DAY,   bct.day);
	rtcout_locked(RTC_MONTH, bct.mon);
	rtcout_locked(RTC_YEAR,  bct.year & 0xff);
#ifdef USE_RTC_CENTURY
	rtcout_locked(RTC_CENTURY, bct.year >> 8);
#endif

	/*
	 * Re-enable RTC updates and interrupts.
	 */
	rtcout_locked(RTC_STATUSB, rtc_statusb);
	rtcin_locked(RTC_INTR);

	mtx_unlock_spin(&atrtc_lock);
	mtx_unlock(&atrtc_time_lock);

	return (0);
}

static int
atrtc_gettime(device_t dev, struct timespec *ts)
{
	struct bcd_clocktime bct;

	/* Look if we have a RTC present and the time is valid */
	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
		device_printf(dev, "WARNING: Battery failure indication\n");
		return (EINVAL);
	}

	/*
	 * wait for time update to complete
	 * If RTCSA_TUP is zero, we have at least 244us before next update.
	 * This is fast enough on most hardware, but a refinement would be
	 * to make sure that no more than 240us pass after we start reading,
	 * and try again if so.
	 */
	mtx_lock(&atrtc_time_lock);
	while (rtcin(RTC_STATUSA) & RTCSA_TUP)
		continue;
	mtx_lock_spin(&atrtc_lock);
	bct.sec  = rtcin_locked(RTC_SEC);
	bct.min  = rtcin_locked(RTC_MIN);
	bct.hour = rtcin_locked(RTC_HRS);
	bct.day  = rtcin_locked(RTC_DAY);
	bct.mon  = rtcin_locked(RTC_MONTH);
	bct.year = rtcin_locked(RTC_YEAR);
#ifdef USE_RTC_CENTURY
	bct.year |= rtcin_locked(RTC_CENTURY) << 8;
#endif
	mtx_unlock_spin(&atrtc_lock);
	mtx_unlock(&atrtc_time_lock);
	/* dow is unused in timespec conversion and we have no nsec info. */
	bct.dow  = 0;
	bct.nsec = 0;
	clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct);
	return (clock_bcd_to_ts(&bct, ts, false));
}

static device_method_t atrtc_isa_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		atrtc_probe),
	DEVMETHOD(device_attach,	atrtc_isa_attach),
	DEVMETHOD(device_detach,	bus_generic_detach),
	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
	DEVMETHOD(device_suspend,	bus_generic_suspend),
		/* XXX stop statclock? */
	DEVMETHOD(device_resume,	atrtc_resume),

	/* clock interface */
	DEVMETHOD(clock_gettime,	atrtc_gettime),
	DEVMETHOD(clock_settime,	atrtc_settime),
	{ 0, 0 }
};

static driver_t atrtc_isa_driver = {
	"atrtc",
	atrtc_isa_methods,
	sizeof(struct atrtc_softc),
};

#ifdef DEV_ACPI
static device_method_t atrtc_acpi_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		atrtc_probe),
	DEVMETHOD(device_attach,	atrtc_acpi_attach),
	DEVMETHOD(device_detach,	atrtc_acpi_detach),
		/* XXX stop statclock? */
	DEVMETHOD(device_resume,	atrtc_resume),

	/* clock interface */
	DEVMETHOD(clock_gettime,	atrtc_gettime),
	DEVMETHOD(clock_settime,	atrtc_settime),
	{ 0, 0 }
};

static driver_t atrtc_acpi_driver = {
	"atrtc",
	atrtc_acpi_methods,
	sizeof(struct atrtc_softc),
};
#endif	/* DEV_ACPI */

static devclass_t atrtc_devclass;

DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, atrtc_devclass, 0, 0);
#ifdef DEV_ACPI
DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, atrtc_devclass, 0, 0);
#endif
ISA_PNP_INFO(atrtc_ids);