Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LayoutPass.h"
#include "lld/Core/Instrumentation.h"
#include "lld/Core/PassManager.h"
#include "lld/ReaderWriter/MachOLinkingContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#include <algorithm>
#include <set>
#include <utility>

using namespace lld;

#define DEBUG_TYPE "LayoutPass"

namespace lld {
namespace mach_o {

static bool compareAtoms(const LayoutPass::SortKey &,
                         const LayoutPass::SortKey &,
                         LayoutPass::SortOverride customSorter);

#ifndef NDEBUG
// Return "reason (leftval, rightval)"
static std::string formatReason(StringRef reason, int leftVal, int rightVal) {
  return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")")
      .str();
}

// Less-than relationship of two atoms must be transitive, which is, if a < b
// and b < c, a < c must be true. This function checks the transitivity by
// checking the sort results.
static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec,
                              LayoutPass::SortOverride customSorter) {
  for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) {
    for (auto j = i + 1; j != e; ++j) {
      assert(compareAtoms(*i, *j, customSorter));
      assert(!compareAtoms(*j, *i, customSorter));
    }
  }
}

// Helper functions to check follow-on graph.
typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT;

static std::string atomToDebugString(const Atom *atom) {
  const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom);
  std::string str;
  llvm::raw_string_ostream s(str);
  if (definedAtom->name().empty())
    s << "<anonymous " << definedAtom << ">";
  else
    s << definedAtom->name();
  s << " in ";
  if (definedAtom->customSectionName().empty())
    s << "<anonymous>";
  else
    s << definedAtom->customSectionName();
  s.flush();
  return str;
}

static void showCycleDetectedError(const Registry &registry,
                                   AtomToAtomT &followOnNexts,
                                   const DefinedAtom *atom) {
  const DefinedAtom *start = atom;
  llvm::dbgs() << "There's a cycle in a follow-on chain!\n";
  do {
    llvm::dbgs() << "  " << atomToDebugString(atom) << "\n";
    for (const Reference *ref : *atom) {
      StringRef kindValStr;
      if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(),
                                          ref->kindValue(), kindValStr)) {
        kindValStr = "<unknown>";
      }
      llvm::dbgs() << "    " << kindValStr
                   << ": " << atomToDebugString(ref->target()) << "\n";
    }
    atom = followOnNexts[atom];
  } while (atom != start);
  llvm::report_fatal_error("Cycle detected");
}

/// Exit if there's a cycle in a followon chain reachable from the
/// given root atom. Uses the tortoise and hare algorithm to detect a
/// cycle.
static void checkNoCycleInFollowonChain(const Registry &registry,
                                        AtomToAtomT &followOnNexts,
                                        const DefinedAtom *root) {
  const DefinedAtom *tortoise = root;
  const DefinedAtom *hare = followOnNexts[root];
  while (true) {
    if (!tortoise || !hare)
      return;
    if (tortoise == hare)
      showCycleDetectedError(registry, followOnNexts, tortoise);
    tortoise = followOnNexts[tortoise];
    hare = followOnNexts[followOnNexts[hare]];
  }
}

static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots,
                                      const DefinedAtom *atom) {
  if (!atom) return;
  auto i = followOnRoots.find(atom);
  if (i == followOnRoots.end()) {
    llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) +
                       "> has no follow-on root!"))
                         .str()
                         .c_str());
  }
  const DefinedAtom *ap = i->second;
  while (true) {
    const DefinedAtom *next = followOnRoots[ap];
    if (!next) {
      llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) +
                              "> is not reachable from its root!"))
                           .str()
                           .c_str());
    }
    if (next == ap)
      return;
    ap = next;
  }
}

static void printDefinedAtoms(const File::AtomRange<DefinedAtom> &atomRange) {
  for (const DefinedAtom *atom : atomRange) {
    llvm::dbgs() << "  file=" << atom->file().path()
                 << ", name=" << atom->name()
                 << ", size=" << atom->size()
                 << ", type=" << atom->contentType()
                 << ", ordinal=" << atom->ordinal()
                 << "\n";
  }
}

/// Verify that the followon chain is sane. Should not be called in
/// release binary.
void LayoutPass::checkFollowonChain(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain");

  // Verify that there's no cycle in follow-on chain.
  std::set<const DefinedAtom *> roots;
  for (const auto &ai : _followOnRoots)
    roots.insert(ai.second);
  for (const DefinedAtom *root : roots)
    checkNoCycleInFollowonChain(_registry, _followOnNexts, root);

  // Verify that all the atoms in followOnNexts have references to
  // their roots.
  for (const auto &ai : _followOnNexts) {
    checkReachabilityFromRoot(_followOnRoots, ai.first);
    checkReachabilityFromRoot(_followOnRoots, ai.second);
  }
}
#endif // #ifndef NDEBUG

/// The function compares atoms by sorting atoms in the following order
/// a) Sorts atoms by their ordinal overrides (layout-after/ingroup)
/// b) Sorts atoms by their permissions
/// c) Sorts atoms by their content
/// d) Sorts atoms by custom sorter
/// e) Sorts atoms on how they appear using File Ordinality
/// f) Sorts atoms on how they appear within the File
static bool compareAtomsSub(const LayoutPass::SortKey &lc,
                            const LayoutPass::SortKey &rc,
                            LayoutPass::SortOverride customSorter,
                            std::string &reason) {
  const DefinedAtom *left = lc._atom.get();
  const DefinedAtom *right = rc._atom.get();
  if (left == right) {
    reason = "same";
    return false;
  }

  // Find the root of the chain if it is a part of a follow-on chain.
  const DefinedAtom *leftRoot = lc._root;
  const DefinedAtom *rightRoot = rc._root;

  // Sort atoms by their ordinal overrides only if they fall in the same
  // chain.
  if (leftRoot == rightRoot) {
    LLVM_DEBUG(reason = formatReason("override", lc._override, rc._override));
    return lc._override < rc._override;
  }

  // Sort same permissions together.
  DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions();
  DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions();

  if (leftPerms != rightPerms) {
    LLVM_DEBUG(
        reason = formatReason("contentPerms", (int)leftPerms, (int)rightPerms));
    return leftPerms < rightPerms;
  }

  // Sort same content types together.
  DefinedAtom::ContentType leftType = leftRoot->contentType();
  DefinedAtom::ContentType rightType = rightRoot->contentType();

  if (leftType != rightType) {
    LLVM_DEBUG(reason =
                   formatReason("contentType", (int)leftType, (int)rightType));
    return leftType < rightType;
  }

  // Use custom sorter if supplied.
  if (customSorter) {
    bool leftBeforeRight;
    if (customSorter(leftRoot, rightRoot, leftBeforeRight))
      return leftBeforeRight;
  }

  // Sort by .o order.
  const File *leftFile = &leftRoot->file();
  const File *rightFile = &rightRoot->file();

  if (leftFile != rightFile) {
    LLVM_DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(),
                                     (int)rightFile->ordinal()));
    return leftFile->ordinal() < rightFile->ordinal();
  }

  // Sort by atom order with .o file.
  uint64_t leftOrdinal = leftRoot->ordinal();
  uint64_t rightOrdinal = rightRoot->ordinal();

  if (leftOrdinal != rightOrdinal) {
    LLVM_DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(),
                                     (int)rightRoot->ordinal()));
    return leftOrdinal < rightOrdinal;
  }

  llvm::errs() << "Unordered: <" << left->name() << "> <" << right->name()
               << ">\n";
  llvm_unreachable("Atoms with Same Ordinal!");
}

static bool compareAtoms(const LayoutPass::SortKey &lc,
                         const LayoutPass::SortKey &rc,
                         LayoutPass::SortOverride customSorter) {
  std::string reason;
  bool result = compareAtomsSub(lc, rc, customSorter, reason);
  LLVM_DEBUG({
    StringRef comp = result ? "<" : ">=";
    llvm::dbgs() << "Layout: '" << lc._atom.get()->name()
                 << "' " << comp << " '"
                 << rc._atom.get()->name() << "' (" << reason << ")\n";
  });
  return result;
}

LayoutPass::LayoutPass(const Registry &registry, SortOverride sorter)
    : _registry(registry), _customSorter(std::move(sorter)) {}

// Returns the atom immediately followed by the given atom in the followon
// chain.
const DefinedAtom *LayoutPass::findAtomFollowedBy(
    const DefinedAtom *targetAtom) {
  // Start from the beginning of the chain and follow the chain until
  // we find the targetChain.
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    const DefinedAtom *prevAtom = atom;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
    if (atom == targetAtom)
      return prevAtom;
  }
}

// Check if all the atoms followed by the given target atom are of size zero.
// When this method is called, an atom being added is not of size zero and
// will be added to the head of the followon chain. All the atoms between the
// atom and the targetAtom (specified by layout-after) need to be of size zero
// in this case. Otherwise the desired layout is impossible.
bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    if (atom == targetAtom)
      return true;
    if (atom->size() != 0)
      // TODO: print warning that an impossible layout is being desired by the
      // user.
      return false;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
  }
}

// Set the root of all atoms in targetAtom's chain to the given root.
void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
                              const DefinedAtom *root) {
  // Walk through the followon chain and override each node's root.
  while (true) {
    _followOnRoots[targetAtom] = root;
    AtomToAtomT::iterator targetFollowOnAtomsIter =
        _followOnNexts.find(targetAtom);
    if (targetFollowOnAtomsIter == _followOnNexts.end())
      return;
    targetAtom = targetFollowOnAtomsIter->second;
  }
}

/// This pass builds the followon tables described by two DenseMaps
/// followOnRoots and followonNexts.
/// The followOnRoots map contains a mapping of a DefinedAtom to its root
/// The followOnNexts map contains a mapping of what DefinedAtom follows the
/// current Atom
/// The algorithm follows a very simple approach
/// a) If the atom is first seen, then make that as the root atom
/// b) The targetAtom which this Atom contains, has the root thats set to the
///    root of the current atom
/// c) If the targetAtom is part of a different tree and the root of the
///    targetAtom is itself, Chain all the atoms that are contained in the tree
///    to the current Tree
/// d) If the targetAtom is part of a different chain and the root of the
///    targetAtom until the targetAtom has all atoms of size 0, then chain the
///    targetAtoms and its tree to the current chain
void LayoutPass::buildFollowOnTable(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
  // Set the initial size of the followon and the followonNext hash to the
  // number of atoms that we have.
  _followOnRoots.reserve(range.size());
  _followOnNexts.reserve(range.size());
  for (const DefinedAtom *ai : range) {
    for (const Reference *r : *ai) {
      if (r->kindNamespace() != lld::Reference::KindNamespace::all ||
          r->kindValue() != lld::Reference::kindLayoutAfter)
        continue;
      const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target());
      _followOnNexts[ai] = targetAtom;

      // If we find a followon for the first time, let's make that atom as the
      // root atom.
      if (_followOnRoots.count(ai) == 0)
        _followOnRoots[ai] = ai;

      auto iter = _followOnRoots.find(targetAtom);
      if (iter == _followOnRoots.end()) {
        // If the targetAtom is not a root of any chain, let's make the root of
        // the targetAtom to the root of the current chain.

        // The expression m[i] = m[j] where m is a DenseMap and i != j is not
        // safe. m[j] returns a reference, which would be invalidated when a
        // rehashing occurs. If rehashing occurs to make room for m[i], m[j]
        // becomes invalid, and that invalid reference would be used as the RHS
        // value of the expression.
        // Copy the value to workaround.
        const DefinedAtom *tmp = _followOnRoots[ai];
        _followOnRoots[targetAtom] = tmp;
        continue;
      }
      if (iter->second == targetAtom) {
        // If the targetAtom is the root of a chain, the chain becomes part of
        // the current chain. Rewrite the subchain's root to the current
        // chain's root.
        setChainRoot(targetAtom, _followOnRoots[ai]);
        continue;
      }
      // The targetAtom is already a part of a chain. If the current atom is
      // of size zero, we can insert it in the middle of the chain just
      // before the target atom, while not breaking other atom's followon
      // relationships. If it's not, we can only insert the current atom at
      // the beginning of the chain. All the atoms followed by the target
      // atom must be of size zero in that case to satisfy the followon
      // relationships.
      size_t currentAtomSize = ai->size();
      if (currentAtomSize == 0) {
        const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
        _followOnNexts[targetPrevAtom] = ai;
        const DefinedAtom *tmp = _followOnRoots[targetPrevAtom];
        _followOnRoots[ai] = tmp;
        continue;
      }
      if (!checkAllPrevAtomsZeroSize(targetAtom))
        break;
      _followOnNexts[ai] = _followOnRoots[targetAtom];
      setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
    }
  }
}

/// Build an ordinal override map by traversing the followon chain, and
/// assigning ordinals to each atom, if the atoms have their ordinals
/// already assigned skip the atom and move to the next. This is the
/// main map thats used to sort the atoms while comparing two atoms together
void
LayoutPass::buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
  uint64_t index = 0;
  for (const DefinedAtom *ai : range) {
    const DefinedAtom *atom = ai;
    if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
      continue;
    AtomToAtomT::iterator start = _followOnRoots.find(atom);
    if (start == _followOnRoots.end())
      continue;
    for (const DefinedAtom *nextAtom = start->second; nextAtom;
         nextAtom = _followOnNexts[nextAtom]) {
      AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
      if (pos == _ordinalOverrideMap.end())
        _ordinalOverrideMap[nextAtom] = index++;
    }
  }
}

std::vector<LayoutPass::SortKey>
LayoutPass::decorate(File::AtomRange<DefinedAtom> &atomRange) const {
  std::vector<SortKey> ret;
  for (OwningAtomPtr<DefinedAtom> &atom : atomRange.owning_ptrs()) {
    auto ri = _followOnRoots.find(atom.get());
    auto oi = _ordinalOverrideMap.find(atom.get());
    const auto *root = (ri == _followOnRoots.end()) ? atom.get() : ri->second;
    uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second;
    ret.push_back(SortKey(std::move(atom), root, override));
  }
  return ret;
}

void LayoutPass::undecorate(File::AtomRange<DefinedAtom> &atomRange,
                            std::vector<SortKey> &keys) const {
  size_t i = 0;
  for (SortKey &k : keys)
    atomRange[i++] = std::move(k._atom);
}

/// Perform the actual pass
llvm::Error LayoutPass::perform(SimpleFile &mergedFile) {
  LLVM_DEBUG(llvm::dbgs() << "******** Laying out atoms:\n");
  // sort the atoms
  ScopedTask task(getDefaultDomain(), "LayoutPass");
  File::AtomRange<DefinedAtom> atomRange = mergedFile.defined();

  // Build follow on tables
  buildFollowOnTable(atomRange);

  // Check the structure of followon graph if running in debug mode.
  LLVM_DEBUG(checkFollowonChain(atomRange));

  // Build override maps
  buildOrdinalOverrideMap(atomRange);

  LLVM_DEBUG({
    llvm::dbgs() << "unsorted atoms:\n";
    printDefinedAtoms(atomRange);
  });

  std::vector<LayoutPass::SortKey> vec = decorate(atomRange);
  llvm::parallelSort(
      vec,
      [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool {
        return compareAtoms(l, r, _customSorter);
      });
  LLVM_DEBUG(checkTransitivity(vec, _customSorter));
  undecorate(atomRange, vec);

  LLVM_DEBUG({
    llvm::dbgs() << "sorted atoms:\n";
    printDefinedAtoms(atomRange);
  });

  LLVM_DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n");
  return llvm::Error::success();
}

void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) {
  pm.add(std::make_unique<LayoutPass>(
      ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right,
                          bool & leftBeforeRight) ->bool {
    return ctx.customAtomOrderer(left, right, leftBeforeRight);
  }));
}

} // namespace mach_o
} // namespace lld